
 The Open Software Engineering Journal, 2008, 2, 31-39 31

 1874-107X/08 2008 Bentham Open

Open Access

A Graduate Level Case Study Using a Real World Project: What Students
Say They Learned

Chlotia P. Garrison*

Thurmond Building, Winthrop University, Rock Hill, SC 29733

Abstract: Allowing graduate students to develop a real world project for actual customers provides an opportunity for

students to experience the benefits of following basic software engineering principles. Most universities now offer a

course in software engineering and many information technology students must complete a class project in conjunction

with their degree program. One reason businesses often struggle to implement a software process improvement program is

that many practicing professionals have never experienced the complete software lifecycle and discovered how software

engineering principles aid a real project. This paper presents the lessons learned by students in a capstone graduate soft-

ware development course when required to develop an intensive real world project for real customers. Students had to

solve the same type of problems encountered by practicing professionals, developed an appreciation for following soft-

ware engineering principles, discovered the importance of good team communication and appreciated developing a prod-

uct for a real customer.

INTRODUCTION

In addition to teaching theory, a goal of the education
process should be to develop students that can succeed in
industry. Students need to learn not just the theory but how
to properly apply software engineering tools, techniques, and
principles. Hoxmeier and Lenk [1] identify three factors that
contribute to Information Systems (IS) graduates not being
able to properly apply theory in practice: lack of public ex-
posure to the final product, lack of complexity in class pro-
jects, and lack of inter-disciplinary project teams.

Information Technology (IT) and other disciplines often
use class projects to help improve student learning. This arti-
cle presents the results of a three-year period of having
graduate students develop a complete project for real cus-
tomers. The projects all produced products for real custom-
ers which provided public exposure, were more complex
than the typical undergraduate class project, and often in-
cluded students from multiple disciplines. Thus a class pro-
ject developed for real customers can remove the obstacles to
applying theory in practice identified by Hoxmeier and Lenk
[1]. Students answered questions at the end of the semester
about the project. Student feedback is that both students who
have not yet worked in the software field and practicing pro-
fessionals both appreciate the real world project and rigor of
the course. This article presents an analysis of student an-
swers that reveal some common lessons learned and areas of
heightened awareness; the answers indicate these students
will be better able to properly apply theory in practice.

*Address correspondence to this author at the Winthrop University 316
Thurmond Building, Rock Hill, SC 29733; USA; Tel: 803-323-2470; Fax:
803-323-4600; E-mail: garrisonc@winthrop.edu

INDUSTRY OBSERVATIONS

In October 2003, the author’s former employer became
only the second government organization to achieve a Capa-
bility Maturity Model®) Level 5 rating, the highest level of
software maturity as defined by the Software Engineering
Institute. The author was present at the inception of the or-
ganization’s journey and experienced many of the challenges
of instituting a software engineering process. One critical
challenge to implementing software engineering principles is
that experienced software developers who have been operat-
ing in an environment where there are few formal processes
often strongly resist change to a more structured environ-
ment. This type of resistance, however, was also present
among more recent college graduates who had studied the
principles of software engineering but had never experienced
the benefits. Both groups saw the change to a structured and
disciplined approach as a loss of independence.

Discussions with graduate students working in the soft-
ware industry indicate that many of their employers are not
practicing the software engineering discipline. Some organi-
zations ignore company standards, others have standards that
are ineffective, and some have few or no defined processes.
When professionals themselves recognize the benefit of
software engineering principles, then it is much easier to
successfully institute a process improvement program and, if
necessary, to convince management of the need for such a
program.

CLASS PROJECT AND ACTIVE LEARNING

One method to help students learn to properly apply and
recognize the benefits of software engineering tools, tech-
niques, and principles is the active learning available through
class projects. Multiple researchers have studied and defined

32 The Open Software Engineering Journal, 2008, Volume 2 Chlotia P. Garrison

active learning. Norman and Spohrer [2] state that incentive
to seek new knowledge to solve a problem increases learn-
ing. A review of the research by Prince [3] defines three
types of active learning: collaborative, cooperative, and
problem-based. In collaborative learning students work to-
gether; in cooperative learning students cooperate but with
individual assessment. Problem-based learning, which is
often collaborative and cooperative, presents students with a
problem and learning is frequently self-directed [4], [3]. La-
ware and Walters [5] distinguish between problem-based
learning and problem-centered learning, asserting that prob-
lem-centered learning is more structured. A class project that
requires students to develop a software product can include
all these elements making possible the combined benefits of
the various types of active learning.

The many benefits of active learning have been identified
by researchers in many disciplines and include developing a
more positive attitude in students, fostering a deeper ap-
proach to learning, helping students retain knowledge longer,
increasing students’ ability to organize, plan and execute,
enhancing problem solving skills, enhancing students’ aca-
demic achievement, interpersonal skills, and retention [3],
[4], [5]. Edelson et al. [6] developed a software tool to aid
students in doing collaborative, open ended activities. They
found that contrary to what they expected, students generally
did not recognize the benefits the software would provide
before they used it. Students only used the software when
there was a clear advantage to them, such as being required
to perform an activity using the software as a part of their
grade, or allowing them to contact students with different
schedules or in different locations. Lave [7] views learning
as social practice and questions the traditional understanding
that separates formal and informal education. His research
into apprenticeships revealed that traditional teaching meth-
ods are not essential and also insufficient to produce learn-
ing. Holt et al. [8] advocate a curriculum that brings together
theory and practice through a cooperative program that
places the student in a real business environment. The results
of their research show that the value of the program to the
students varied widely based on the specific placement of the
student. Holt et al. [8] further identify quality as the interac-
tions between the student, faculty, and the profession. Stu-
dents involved in research on pair-programming by Williams
and Kessler [9] noted the following collaborative benefits:
increased quality as a result of continuous review by their
partner, the added assistance of the partner to help solve
problems, and the self imposed “pair-pressure” of not want-
ing to disappoint their partner. Tanniru and Agarwal [10]
found that students in a 4-semester program that uses pro-
jects to link theory and practice had greater success on more
complex problems because they liked being able to meet the
challenge. Schuldt [11] in contrasting the benefits of simu-
lated and real-world projects in IS education state that both
types of projects help sharpen the students’ communication
skills.

A class project that produces a product for an actual cus-
tomer is also a service-learning opportunity, which offers
additional benefits. The Corporation for National and Com-
munity Service [12] describes service-learning as an oppor-
tunity for students kindergarten through university to be-
come involved with their communities by combining service

projects with classroom learning. They assert that service-
learning programs can improve grades, increase attendance
in school, develop students' personal and social responsibili-
ties and promote a sense of caring for others. Bringle and
Hatcher [13] add that service-learning increases understand-
ing of the course content and increases appreciation for the
discipline. Fox [14] states that a real-world project increases
the new graduates’ confidence that they can succeed in the
business world, and employers feel these students are better
prepared than students who have not had the experience of
developing a project from inception through fielding. Mag-
boo and Magboo [15] use the assignment of a real-world
prototype project to benefit both the university and the stu-
dents. The university receives a working prototype that sup-
plements a constrained budget and the students gain a sense
of achievement and an appreciation for various software en-
gineering principles. Harris [16] states that a systems project
for a real customer gives the students opportunities to im-
prove their written and oral communication skills, areas that
the IT community consider critical for success.

While the information on real world projects is increas-
ing, additional studies add to the empirical research. Most of
the research and case studies address undergraduate students.
The increased challenge possible in a graduate service-
learning software project should mean greater success and an
increased appreciation for the discipline. This article adds to
the body of material available in general, adds the compo-
nent of being for graduate students, and includes what the
students (including practicing professionals) learned about
software engineering through developing a real project.

PROJECT DESCRIPTION

The Software Development course in the Master of Sci-
ence in Software Development program at the author’s insti-
tution calls for “an extensive and intensive project involving
all aspects of a software development project including
teamwork, requirements specification, design, configuration,
coding, testing, quality control, and evaluation” [17]. The
university offers the software development course annually.
The presented results cover three offerings of the course.
Each class required students to develop a real product for use
by real customers. The instructor informed the customers
that because the software was being developed as a class
project the project had to be completed by the end of the
semester, success was not guaranteed, and no maintenance
was available once the semester ended. The completed soft-
ware is loaded in the customers' environment and they have
free access to modify the software once the project ends.

Project 1 developed a course scheduling system for the
College of Business Administration at the author’s institu-
tion. Prior to the project, department chairs and the associate
dean used a time consuming manual process to schedule
courses using a series of meetings and e-mails to resolve
conflicts over time slots, sequencing and available rooms.
The resulting system allows department chairs to enter
course scheduling information and to immediately see in-
formation already entered by others. The system generates
warning flags for conflicting entries and allows authorized
users to perform maintenance functions and view and print a
variety of reports. The system has now been in use for 4

A Graduate Level Case Study Using a Real World Project The Open Software Engineering Journal, 2008, Volume 2 33

years. The customers were extremely happy with the fin-
ished project. One of the customers was a computer science
professor and stated that he had not expected the many capa-
bilities of the resulting system.

Project 2 created a resource directory tool for a leading
non-profit social services organization. The interactive data-
base provides the agency the ability to have a complete, up-
to-date and searchable directory of area agencies. The direc-
tory provides an efficient way for one agency to refer clients
to other agencies for additional services. The directory also
provides the capability to match volunteers with service
agencies using interests, skills, and expertise. Prior to this
project, a directory of agencies that provide social services in
the county did not exist. The customers were extremely
pleased with the product. The project has been in use for
over 3 years and the customers have made it accessible
through the Internet. At the time the project was developed,
the agency did not have a website.

Project 3 was developed for a local church. The goal of
the project was to provide a functional website for use by the
general public and the members of the church. In addition,
the website provided a secure area for members. In the se-
cure area, members can view and maintain personal and
membership information. Members are able to view informa-
tion about other members and generate reports of selectable
information. This project was not a success because of a
problem in updating the site. Though the members-only area
was updatable using the developed database, the customer
could not easily update the publicly available pages. The
public pages were created using the wizard feature of Micro-
soft FrontPage and would revert to the previous page when
they were updated. A subsequent class redid the project and
it has been in use for over a year.

Because of the small class size, the entire class acted as
the team for each project. The team size was 4 students for
projects 1 and 2 and 3 students for project 3. The instructor
acted as project manager and each team selected a team
leader. Every student was individually responsible for writ-
ing one formal document with team input: Software Re-
quirements Specification, Project Plan, Software Develop-
ment Plan, Test Plan and Summary, or User’s Guide. Each
project was a major endeavor that required most of the se-
mester to complete, required significant effort on the part of
the students, and required students to learn some technology
or capability previously unknown to them. The instructor
introduced the projects at the beginning of the semester with
the deadline coinciding with the last or next to last week of
class. Lectures and class discussions focused on techniques
for developing solid software.

The goals of the class project are to provide the students
with experience in the complete software development life-
cycle, help them gain an appreciation for following software
engineering principles, give students experience in working
with a team, communicating with a customer and preparing
formal documentation, and help prepare students to succeed
in industry. The class projects are also an opportunity to pro-
vide a service to the community. Specific software engineer-
ing principles emphasized by the project and the class dis-
cussions included requirements elicitation, the importance of
documentation (especially requirements, design, and testing),

configuration management, peer reviews, customer involve-
ment throughout the lifecycle, risk management, and project
planning.

Students had to manage the projects to be completed by
the end of the semester. Students review requirements to
determine their internal project schedule. The students in-
form the customer at the beginning of the project and
throughout the lifecycle of any requirements they will not be
able to complete. Some requirements can not be completed
on time because the customers fail to provide information in
a timely manner. Some teams have had to refuse to add new
requirements and have asked the customers to prioritize re-
quirements because of the mandatory project end date. Be-
cause the customers are kept informed, have sometimes been
slow to provide requested information, and are receiving a
tool they did not have previously, customer feedback has
been positive even if all initial requirements are not com-
pleted by the end of the semester. Customer feedback indi-
cates they would recommend the student teams to other or-
ganizations.

Students performed the following activities in varying
degrees: elicited and documented requirements, developed a
project plan with schedule, designed the software, performed
peer reviews, and communicated with the customers
throughout the project. Students implemented the software,
developed a test plan for use by the team and the customer,
tested the software, fixed software problems, developed a
user’s guide, and installed the software in the user’s envi-
ronment. Students gave periodic status reports throughout
the semester.

LESSONS LEARNED BASED ON STUDENT FEED-
BACK

Students answered a series of questions at the end of the
semester about the project. Students were asked to identify
tools, techniques and principles they thought applicable to
their project whether used or not and why. They also identi-
fied techniques and principles that were not applicable to
their project and explained why they were not applicable.
Students provided lessons learned for the class project and
for their current or future career. An analysis of their free-
form answers reveals some common themes.

Teamwork

The second lesson presented in the Software Develop-
ment course is on successful teams. Students are asked to
identify problems that can occur with software teams. Stu-
dents readily identify lack of technical ability, personality
conflicts, communication challenges, and failure to execute.
All these are potential real issues that a team may encounter.
The class then focuses on team formation, methods of con-
flict resolution and success characteristics. Ideally, team
members are selected based on the knowledge, skills, and
abilities needed to accomplish the project. However, the
class roster determines the project team. The instructor as-
sured the students that this is not atypical of industry. De-
pending on project priority, an organization may select team
members from available employees instead of the best quali-
fied for the project. The instructor informed students that
there is rarely equal ability on a team. In order to have suc-

34 The Open Software Engineering Journal, 2008, Volume 2 Chlotia P. Garrison

cessful teams, assign individual team members tasks based
on ability.

Team members must research and bring in examples of
team building exercises, and the class performs one of these
exercises at the end of the class. Two exercises that the
classes have conducted successfully follow:

1. The first requires a box containing items such as paper-
clips, sticky notes, sticks of gum and batteries. The in-
structor takes off the lid and all the members look inside
the box for 60 seconds. After one minute, the lid is re-
placed and the members individually list the items they
can recall. The members then compare results. It is in-
teresting that some members see some items and some
another. Alternatively, one member sees only one of an
item while another sees more. The instructor then re-
moves the lid and members see for themselves what
they missed. The team saw and discussed the fact that
the team is able to achieve better results than any one
individual. Even though some remembered or saw more
than others saw, no one remembered everything.

2. Another selected exercise emphasized the importance of
communication. The instructor read the instructions
while each member took a single piece of paper and
closed their eyes. The students could not ask. The
teacher instructed the members to repeatedly fold and
tear the end off their paper. Once all instructions were
complete, everyone opened their eyes and their sheets to
reveal the results. No paper looked the same. When
asked if they thought the results would have been differ-
ent had they been allowed to ask questions one student
stated that he didn’t have any questions but he may have
had feedback been given. This exercise not only demon-
strated the value of two way communication but the fact
that we can think we are doing everything just as ex-
pected and still be doing something different than de-
sired.

In addition to the application, the team building exercise

serves as an icebreaker for the team members and the in-
structor.

Comments reveal that students learned the value of a

good team and the problems associated with a dysfunctional

team. Students saw both the advantages of good communica-

tion and experienced the adversity of poor communication.

Some teams had to overcome cultural and personality con-
flicts before eventually becoming a functional team.

Representative comments from students follow:

• Teamwork was the biggest factor in the project because
within the group there was a variety of domain knowledge.
The team used many of the suggestions on building a
successful team that we discussed in class, such as
planning, clearly defining roles, clear communication and
a reasonably balanced participation based on the
knowledge of the team member.

• I’ve learned the value of solid, dedicated teamwork. I’ve
been on unmotivated teams that did not know their roles.
This team worked hard, worked very well together, and
understood our individual roles, as well as our team
objective.

• Most importantly, I learned that it is very important to
respect your team members. (Even with different
personalities and disagreements) it’s still very important to
respect others and their views.

• I learned that it is extremely important to have clear open
communication when working on a project team. When
there are several people working on the same product, it is
essential that communication takes place whether it is to
let the team know of our status, issues that you may have
encountered, etc.

• I also realized that to get the full benefit of collaborative
design, we really had to learn how to communicate
effectively with each other. We definitely had some
communication issues in our group… After a certain point,
we were able to meet some where in the middle and
communicate more effectively.

Preliminary Research

Each project required students to use some tool or tech-
nique they were not familiar with or use it at a deeper level
than previously used; an example of problem-based learning.
Each project had a password feature that the students had to
learn to implement in the application or the customer’s envi-
ronment. Project 1 team members had to install the product
on the school’s intranet and incorporate the schools authenti-
cation system. Project 2 team members had to investigate
and learn to use the security features of Microsoft Access.
Project 3 team members chose to use two software products
without investigating their integrated security capabilities.
When they tried to implement the security aspect of the da-
tabase with the web application, they were unsuccessful.
They had to switch tools near the end of the project. This
issue led to the project being in an unacceptable state relative
to updatability when provided to the customer. All team
members commented on the need to do preliminary research
and not assume a product’s capability.

• Find out the limitations of a certain software before we try
to use it. I learned that a little research in the beginning
can save you a lot of time in the end.

• This project taught me a valuable lesson in NOT assuming
a software package will work according to its
requirements. It also made me aware that we must fully
understand all a project entails so that you can choose the
resources accordingly.

• We should have done some preliminary research to find
out the best tool to use from experts in the field.

Prototyping

Prototypes are a valuable resource in software develop-
ment. Prototypes can be useful in the requirements elicita-
tion, design, implementation, and testing of a product. Each
class discussed the benefits of prototypes as a tool for in-
creasing the quality of software. Though the instructor en-
couraged the use of prototypes, the teams were not required
to develop one. Two of the projects developed a prototype
and realized the benefits. For example, the project 1 team
developed a skeleton database and sample reports. The pro-
totype helped to clarify and correct requirements, revealed

A Graduate Level Case Study Using a Real World Project The Open Software Engineering Journal, 2008, Volume 2 35

conflicting requirements and educated some users on the
potential of the product. During the prototype demonstration
a conflict in how the customers wanted the data filtered for a
report surfaced; an option was included to allow users to
filter the data multiple ways.

The project 2 team chose not to develop a prototype but
later recognized how a prototype could have enhanced the
project. Students learned that a prototype can help in elicit-
ing requirements and facilitate user interface design. Stu-
dents from all three projects commented on prototypes.

• I do not think we would have done nearly as well gathering

the requirements if not for the prototyping. I think that

prototyping actually yielded better information than the

interviews in some respects.

• I learned a very valuable lesson about prototyping. It is a

very good way of receiving gradual sign off on a project.

At the end, questions were raised about whether the

customer would like certain design features. Had we used

a prototype, we would have known the answer to those

questions earlier in the project life cycle. While installing

the product for user acceptance testing the customer

immediately noted that they would like to see the phone

number displayed. I would have known this prior to testing

if our team had implemented prototyping and
incrementally released the product.

• One thing that would have prevented us from finding

certain faults in design so late in the process may have

been to do a prototype for ourselves to determine how we
wanted the system to navigate from one screen to the next.

• We developed a prototype so the customer could get a
preliminary idea of what [the product] would look like.

Peer Reviews

Effective peer reviews have great potential for improving
the quality of software. Unfortunately, experience and re-
search have shown that many reviews are ineffective. Stud-
ies by Porter & Siy [18] show that factors such as reviewers,
authors, code units, team size and number of sessions can
affect review effectiveness. In discussing the Team Software
Process, Watts Humphrey [19] states that engineers stopped
performing quality reviews without the constant oversight of
the quality manager. Pflegger, Hatton, and Howell [20] dis-
cuss the pitfalls of the review process and how such factors
as planning, individual preparation, reviewing speed, and
psychological factors affect reviews.

The potential for significant resources being lost to inef-
fective reviews partly explains why some organizations do
not practice them. An informal survey of students reveals
that even many software professionals have never had their
code reviewed. An early class is dedicated to defining the
various types of peer reviews and presenting how effective
reviews can be when done properly. In addition, the instruc-
tor presents the execution problems that are evident from
industry experience. The instructor gives the students practi-
cal guidelines for the actual conduct of a review meeting,
forms for recording findings, and the instructor acts as mod-
erator for reviews conducted during class. Students are cau-
tioned that proper preparation is required for the review to be

successful. The most critical guideline for the review meet-
ing is for reviewers to address the product and not the
author: the product does not, instead of you did not. The
moderator repeatedly reinforces this technique during the
actual review because it takes effort to remember. The stu-
dents and instructor review the Software Requirements
Specification and the User’s Guide during class. The instruc-
tor advises students to review other documents and the code
outside of class. Evidence of these reviews was not required.
Students realized that peer reviews were helpful in discover-
ing and avoiding problems, saw where additional code re-
views could have prevented some problems, and found that
peer reviews were an opportunity to learn from the knowl-
edge of others.

• The peer reviews were quite helpful because it enabled

those with more domain knowledge a chance to share it

and for everyone to have input in the decision at hand. The

reviews also took the ‘egos’ out of the process as we
concentrated on the application and not on the author.

• If more communication had been in place, or more status

updates, or even a code review, this mishap (search

functionality implemented differently by different team
members) could have been prevented.

• Having feedback on what you are working on is also

important. If you can get the perspective of one or more
people, it can benefit your work.

• While we occasionally do design reviews [at work], we

typically skip code reviews. I would recommend the
implementation of code reviews.

• While I think that the egos of the developers would initially

make peer reviews painful, I see several aspects of our

current application which would have benefited from an
objective evaluation.

• Peer reviews were a tremendous help in driving out issues
and problems during the project.

Requirements

The instructor presented the proposed projects to the
class with an overview of their purpose. After the initial cus-
tomer meeting, the students interacted with the customers
apart from the instructor to refine requirements for the sys-
tem. The teams used interviews, prototypes, storyboarding,
and use cases to elicit requirements. Students had to properly
interpret requirements and cope with conflicting require-
ments. Because of time constraints, students had to limit the
time for allowing new requirements and had to decide if they
could meet all requirements. Often a trade off has to be made
in business between providing everything a customer desires
and the economical benefits. Students gained experience in
overcoming the challenges of the requirements elicitation
process, discovered the value of having documented re-
quirements and the shortcomings of not following the re-
quirements.

• We benefited from a well-defined requirements document.

We were able to nail down the requirements through good

communication with the customer, and take advantage of
prototyping.

36 The Open Software Engineering Journal, 2008, Volume 2 Chlotia P. Garrison

• The requirements document was used the most. However,

we still had people that made changes that were contrary
to the requirements.

• It’s so easy to jump into developing before the actual

requirements are complete, but to prevent as much re-work

as possible it may not be a bad idea to have a solid set of
requirements before beginning the development phase.

Design

In class we discuss the importance of design and ele-
ments of good design. Students perform design and imple-
mentation outside of class; however, we devote some in-
class time to design considerations. A separate design docu-
ment was not required; the project plan template included a
section for presenting high-level design. Some teams used
the Unified Modeling Language to help document their de-
signs. A real project for real customers provided an excellent
opportunity for students to experience the shortcomings of
skipping or glossing over design as well as the rewards of a
good design. Students learned that a good design creates a
shared vision of the product which helps to prevent faults
and also learned to appreciate the benefits of a modular de-
sign.

• The majority of faults in the product are a result of poor
work during the design phase. A clear vision for how the
application would behave was not shared among team
members, particularly with the search feature.

• I also learned that it is extremely important to have a good
design in place before actually trying to develop any
software. One problem we ran into was everyone was
eager to start coding but we did not take the time to sit
down and talk about, communicate, what the application
should look like.

• I also learned why collaborative design is so important,
though I fully realized this late in the process. There were
faults that one person may have had on the module that
they worked on that they didn’t see as a fault until another
team member performed unit testing on their module.

• Modularity – once the application was complete I was able
to identify areas of modularity that had been successful.
For example, the “Get Details” button executes a function
to retrieve an individual agency. When the search function
was re-written we had only to attach the “get details”
function. This experience gave me a greater appreciation
of the concept.

Risk Management

The instructor presented a model for risk management
and cautioned the students to both assess and control risks.
The instructor presented categories of risks and provided a
form for identifying and tracking risks. For example, stu-
dents select a status for each risk: research, accept, watch,
mitigate, or close. The students review the risks with the
instructor during the periodic status reports. Students learned
they must not only identify and track risks, but also develop
viable mitigation plans.

• The team performed risk assessment and successfully
identified risks of events that actually occurred, namely the

lack of knowledge of the development environment. A
stronger mitigation plan could have lessened the impact.

• We used risk analysis to identify problems that arose
during the implementation and design phase. Risks were
identified but not mitigated very well.

• We also had to analyze risks of our predictions on the
system as we developed a new system no one had seen
before.

Planning

We address the need for planning throughout the course.

The review of the project plan template and regular status

meetings emphasize planning. One of the items in the status

report is Goals for Next Review. Teams have used Microsoft

Project and a Word table to document the project schedule.

The lessons on testing stress the need to plan testing well in

advance of the testing phase. The instructor emphasized that

the purpose of documentation goes beyond the document to

planning a course of action. Students recognized that plan-

ning can make a task easier and help keep the project on
schedule.

• I have worked as a software developer for over 10 years
and this project was the first time I was ever involved in
the creation of an actual test plan. This is something I will
recommend on future projects in my career.

• We tested our system over the weekend and were able to
identify, and correct several faults by following a well-
planned test plan.

• I learned that planning and organization is essential to
completing a project on time. There were times that we got
unorganized and it led to some lost time and inefficiency.
While not a complete cure to help insure that a project will
be completed on time, planning and organization will
definitely make things easier.

• Our team not only benefited from giving dates to our
stakeholders, but from setting well planned dates for
ourselves.

Configuration Management

Configuration management is presented as one of the

elements needed to develop solid software. We discuss sev-

eral aspects of configuration management including change

management, identifying configuration items, status account-

ing, control boards, and tools. Because the students primarily

used machines not on the campus network and did not install

the software in the customers’ environment until later in the

project lifecycle no formal configuration management tools

were available. The students had to develop a technique that

would work for their team and their project. One team had a

designated configuration manger that made all updates to the

database on the website used for development. The configu-

ration manager performed manual version control. Other

team members did have access in case the configuration

manager was unavailable. Another team used e-mail and

version numbers to perform configuration management. Stu-

dents acknowledged the value of configuration management
to the project.

A Graduate Level Case Study Using a Real World Project The Open Software Engineering Journal, 2008, Volume 2 37

• The technique that we used and I thought worked very well

and is very important in developing solid software, is the

use of the configuration management process. This process

ensures that the project team members are not stepping on

each other’s toes and that the latest version of the software

is what gets implemented. We used a ‘check in’ ‘check out’

method via an e-mail system and made sure the naming

convention of the database included the date & version
number.

• We did do configuration management, which was difficult

given the nature of this project. Definitely a necessity or
software could have been overlapped.

Appreciation for the Software Engineering Process and

Principles

The instructor provided templates to assist students in

formally documenting the requirements, project plan, test

plan/summary and user’s guide. Students performed configu-

ration management, peer reviews, risk management, and

project tracking. The instructor provided standards and forms

for risk management and peer reviews, and emphasized the

importance of following a software development process.

The instructor also presented such best practices as hazard

analysis, error-handling design, and maintaining historical

records. Student comments reveal that many gained an ap-

preciation for the discipline of software engineering, which

will make it easier for organizations to implement process

improvement efforts. Both working software professionals

and students who had never worked in the industry ex-
pressed new appreciation for following a disciplined process.

• I have developed a new appreciation for a more formal
and systematic approach to software development which
has been missing throughout most of my career.

• I’ve learned that it’s very important to follow the
development life cycle as much as possible. It makes life a
little easier when you work on a project in phases as
opposed to just doing whatever is necessary to get the
project completed.

• Overall I am happy with the experiences gained in the
class and will continue to take tools and techniques into my
workplace.

Fault Prevention

The lessons in the software development course focus on
developing solid software. There are lessons on hazard
analysis, designing to prevent and tolerate faults, and using
peer reviews to discover and avoid faults or defects. The
formal peer reviews of the requirements document conducted
by the team with the instructor helped to prevent many
faults. The prototype of Project 1 highlighted a misunder-
standing of requirements early in the life cycle, preventing
the students from implementing the wrong functionality. In-
class discussions of design and design alternatives increased
the amount of error handling in the final products. Students
also recognized that a good design, a prototype and solid
requirements can help prevent faults.

• I do believe that this particular issue could have been
prevented if we had good design and prototyping in place.

This would have allowed everyone on the project to have a
visual idea of what this piece of functionality should look
like on the screen and how it should behave.

• It’s so easy to jump into developing before the actual
requirements are complete, but to prevent as much re-work
as possible it may not be a bad idea to have a solid set of
requirements before beginning the developing phase.

• One thing that would have prevented us from finding
certain faults in design so late in the process may have
been to do a prototype for ourselves to determine how we
wanted the system to navigate from one screen to the next.

General Lessons

Students expressed the following general lessons learned:
the importance of documenting code, the need to communi-
cate, and the value of good estimates.

• A weakness I have is not documenting what is going on

and what I am doing. The project has shown that

documentation is important because there were times

where we were called on to debug each others code

without a complete knowledge of what that code did.

Documentation would have sped the process up

tremendously. As the project progressed, I began to get in

the habit of documenting what changes were made for

future use. In the job I will be starting I know it is very
important to document all the work that I do.

• One lesson that I learned and I will definitely apply to my

current & future career is to speak up when you have an

issue with your part of the project. No matter how big your

ego, or how you think people perceive you, speak up

because you never know who may be encountering the

same issue or better yet, you don’t want to delay the
project because you did not open your mouth.

• One of the largest lessons is the importance of
communicating and communicating well. I will be required
to be able to use many methods of communications with
fellow employees and the clients that I work with. Knowing
how to handle a particular situation and communicate
effectively is definitely something that I have seen and will
always need to work on.

• Learning and having good estimates are important. I can
see how important it is to learn from past experiences and
judgments and to have that help you in the future.

• Although our time to complete this project was a little
short, I think it’s very important to follow the tasks & dates
in the software project plan as much as possible.

INSTRUCTOR LESSONS LEARNED AND RECOM-

MENDATIONS

• Make sure students give the customer specific timelines for
providing answers or artifacts. Students often asked that
customers provide artifacts or complete reviews ASAP.
But customers, as with anyone else, tend not to act until
there is a specific deadline. Providing the customer with
specific dates also improves customer understanding if
students can not implement some features because of time
constraints.

38 The Open Software Engineering Journal, 2008, Volume 2 Chlotia P. Garrison

• Identify potential projects prior to the start of the semester

and assign the project within the first few class meetings.

The upper level graduate classes at the author’s university

have recently transitioned to once a week classes. This

makes it even more important to assign the project in the
first or second meeting.

• Bring the customer and the students together very early in

the semester. The instructor should attend this meeting to

become more familiar with the system and help students
elicit requirements.

• In a graduate class, some students may have extensive

experiences and strengths that particularly benefit the

project. The instructor must monitor the tasks performed

by students to keep one student from carrying the project.

Watch for unequally weighted tasks in the project plan.

Remind students that learning and performing new tasks
are a goal of the project.

• In addition to periodic status reports, have the students

present the developing product to help the instructor assess
the progress of the project.

• It is best to have students develop a prototype. A prototype

helps the customers refine their requirements and can help
to identify any technical challenges early in the project.

• The instructor, in addition to the customer, must perform

acceptance testing before the project is complete. The

customers were often so impressed with just having a

product, they did minimal testing. Early instructor testing
allows time for the students to address errors.

• The instructor should serve as an expert reviewer of the

requirements document. Though the customer is asked to

review the requirements document, their reading of the
document is sometimes superficial.

• Encourage students to maintain ongoing communication

with the customer. Students need to inform customers of

the product’s progress, significant problems being

encountered, what they need to provide, and any features
the students will not be able to implement.

• Identify multiple projects if possible and allow students to
select the project they will develop.

• Make sure the customer is aware of the risk involved and
that there will be no maintenance support for the product.

• If time permits, have students prepare a maintenance

document in addition to the User’s Guide. The

maintenance document should provide subsequent

developers knowledge about the project, features not

implemented, and recommendations on how to fix any
known defects or weaknesses.

• Have students track and provide, during status meetings,
the number of hours they have worked on the project. This
information is helpful for the instructor and the student.
Students can use this information to improve future
estimates. The instructor can use the hours to help gauge
work distribution between team members, determine the
magnitude of the project, and report service learning hours
to the university.

• Conduct peer reviews. The instructor served as a reviewer
and the moderator for the requirements and the User’s
Guide reviews. Most students, even working professionals,
have not experienced a peer review of their work. Provide
formal guidelines for the review and emphasize that
students should address the work product and not the
author.

• Have students rate each other and themselves. A technique

similar to one the instructor learned at a conference has

proven successful. Give the students an uneven number of

points to divide among the team. The students must assign

whole numbers to each member, including themselves.

This forces the students to identify those that have

contributed the most to the project. The distribution of

points has been surprisingly consistent among team

members, even those given the lower number of points.

The instructor assigns a single grade to the project and uses

the student assessments to assign a project grade to each
student.

• Identifying potential projects can be difficult. If the

university has a service learning center, make them aware

of your course and the type of projects you are seeking.

The Small Business Development Center and colleagues

are also a source for projects. Make people aware of the

opportunity for no-cost software development for non-

profit organizations and others will often suggest projects
to you.

• A real project by graduate students requires less technical
problem solving on the part of the instructor. Graduate
students are expected to learn concepts independently.
Also, working professionals often bring related experi-
ence, code, or assistance from co-workers to the team.

CONCLUSION

Dromey [21] lists several factors needed to achieve soft-
ware quality by preventing defects. These include proper use
of effective process and product standards, formal inspec-
tions, identification and management of risks, prototyping,
and good requirements elicitation. Using a real project pro-
vides students with the opportunity to practice each of these
factors in a business environment. Requiring students to
complete a real project with real customers also provides
students with experience in skills sought by today’s Informa-
tion Technology Chief Information Officers.

Hoffman [22] identified troubleshooting, conflict resolu-
tion, interpersonal communication, project management,
business skills and systems integration as perceived areas
where today’s college graduates fall short. In developing the
class project, students practiced troubleshooting skills as
they tested the product and determined not only the source
but also the solution to defects. Interacting with real custom-
ers allowed the students the opportunity to experience and
resolve the challenges of conflicting, changing, and un-
known requirements. Students gained experience in interper-
sonal communication skills as they interacted with the cus-
tomers and the other members of the team in unscripted and
sometimes conflicting situations. They increased project
management skills as they managed the project from initia-
tion to fielding. Students in addition to the team leader ex-

A Graduate Level Case Study Using a Real World Project The Open Software Engineering Journal, 2008, Volume 2 39

pressed that they had learned management skills in develop-
ing the project. Students increased their systems integration
skills as the team members integrated the components of
individual members to form the system. The required docu-
mentation also provided students with practice in written
communication.

The results experienced in requiring a real world project
with real customers have been very positive. The students
experienced challenges that would not have been as evident
had the instructor been the only customer, and the project
been artificial and of reduced scope. The students felt an
obligation to provide a good product to the customer and
worked extensively to overcome all challenges. The students
enjoyed working on a large, purposeful project, achieved a
sense of accomplishment, and gained a specific achievement
for their resume.

The use of a real project not only benefited the students
that have never worked in the software industry but also the
working professionals who have never followed a formal
process or formal standards or whose work has been seg-
mented and they have never had the opportunity to experi-
ence the entire software development life cycle on a real
project. Because these students now recognize the benefit of
software engineering principles it will be much easier for
organizations that employ them to successfully institute a
software process improvement program. These students are
also more likely to become advocates for initiating such pro-
grams. The challenges and successes experienced in a real
project make these students eager to join a mature software
organization and better equipped to apply software engineer-
ing principles in practice.

REFERENCES

[1] J. Hoxmeir, and M. Lenk, “Service-Learning in Information Sys-

tems Courses: Community Projects that Make a Difference”, J. Inf.
Sys. Educ., vol. 14, pp. 91-100, Spring 2003.

[2] D. A. Norman, and J. C. Spohrer, “Learner-centered education”,
Commun. ACM, vol. 39, pp. 24-27, April 1996.

[3] M. Prince, “Does active learning work? A review of the research”,
J. Eng. Educ., vol. 93, pp. 223-231, July 2004.

[4] “Active Learning: Reviewing the Research”, Teach. Prof., vol. 19,
pp. 3, June/July 2005.

[5] G. Laware, and A. Walters, “Real World Problems Bringing Life to

Course Content”, in Proceedings of the 5th conference on Informa-
tion Technology Education, 2004, pp. 6-12.

[6] D. Edelson, R. Pea, and L. Gomez, “The Collaboratory Notebook”,
Commun. ACM, vol. 39, pp. 32-33, April 1996.

[7] J. Lave, “Teaching, as learning, in practice”, Mind, Cult. Activity,
vol. 3, no. 3, pp. 149-64, 1996.

[8] D. Holt, D. Mackay, and R. Smith, “Developing Professional Ex-
pertise in the Knowledge Economy: Integrating Industry-Based

Learning with the Academic Curriculum in the Field of Informa-
tion Technology”, Asia-Pac. J. Coop. Edu., vol. 5, no. 2, pp. 1-11,

2004. [Online] Available: www.apjce.org/volume_5/volume_5_
2_1_11.pdf. [Accessed July 21, 2008].

[9] L. Williams, and R Kessler, “Experimenting with industry's "pair-
programming" model in the Computer Science classroom”, J.

Comput. Sci. Educ., vol. 11, pp. 7-20, March 2001.
[10] M. Tanniru, and R. Agarwal, “Applied technology in business

program: an industry-academia partnership to support student
learning”, E-Serv. J., vol. 1, pp. 5, Winter 2002.

[11] B. A. Schuldt, “Real-world' versus `simulated' projects in database
instruction”, J. Educ. Bus., vol. 67, pp. 35-39, Sep/Oct 1991.

[12] “What is service-learning?”, Corp. Natl. Commun. Serv., [Online]
Available: www.learnandserve.org/about/service_learning/index.

asp [Accessed July 21, 2008].
[13] R. Bringle, and J. Hatcher, “A service-learning curriculum for

faculty”, Mich. J. Commun. Serv. Learn., vol. 2, pp. 112-122, 1995.
[14] T. Fox, “A case analysis of real-world systems development expe-

riences of CIS students”, J. Inf. Sys. Educ., vol. 13, pp. 343-350,
Winter 2002.

[15] M. Magboo, and V. Magboo, “Assignment of Real-World Projects:
An Economical Method of Building Applications for a University

and an Effective Way to Enhance Education of the Students”, J. In-
f. Technol. Educ., vol. 2, pp. 29-39, 2003.

[16] A. Harris, “Developing the Systems Project Course”, J. Inf. Sys.
Educ., vol. 6, pp. 192-193, 196-197, Winter 1994.

[17] 2006-2008 On-Line Graduate Catalog (2006) Winthrop University.
[Online] Available: www.winthrop.edu/graduate%2Dstudies/csci.

htm, [Accessed July 21, 2008].
[18] A. Porter, H. Siy, A. Mockus, and L. Votta, “Understanding the

sources of variation in software inspections”, ACM Trans. Softw.
Eng. Methodol., vol. 7, pp. 41-79, Jan. 1998.

[19] W. Humphrey, “Software – A performing science?”, Ann. Softw.
Eng., vol. 10, pp. 261-271, Nov. 2000.

[20] S. Pflegger, L. Hatton, and C. Howel, Solid Softw., Upper Saddle
River, NJ: Prentiss Hall, 2002, pp. 194-209.

[21] R. Dromey, “Software Quality – Prevention versus Cure?”, Softw.
Qual. J., Vol. 11, pp. 197-210, July 2003.

[22] T. Hoffman, “Preparing generation Z: CIOs say college graduates
aren't ready for corporate IT jobs. Now some progressive universi-

ties are doing something about it. (Careers)”, Computerworld, vol.
37, pp. 41-42, Aug. 2003.

Received: June 02, 2008 Revised: July 23, 2008 Accepted: July 24, 2008

© Chlotia P. Garrison; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

