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Abstract: Untrusted data validation is an important part of software security, yet most current validation techniques fall 

short in two ways: they lack practicality when it comes to validating data in large scale, real life applications, and they do 

not clearly identify the different goals of handling untrusted data securely. In this paper, we clarify the different, 

independent problems that “data validation” should solve, and we provide a clear and detailed three step process to data 

validation: a “data validation” step to protect the application itself against malicious users, a “data neutralization” step to 

protect other applications from malicious users of the application, and a “data footprint” step to protect against attacks on 

future, unforeseen components that will be connected to the application.  

1. INTRODUCTION AND MOTIVATIONS  

 Securely handling untrusted data is an important part of 
software security, yet it is a question that is often overlooked 
by security researchers. Indeed, most of the academic focus 
in the security domain is on cryptographic systems, secure 
protocols, intrusion detections etc. In other words, a lot of 
attention is (rightfully) given to security software and the 
security features of non security software, but the over-all 
security of the resulting software does not seem to receive 
the required attention from the academic world. This is 
particularly unfortunate since a large number of security 
vulnerabilities published over the last few years come from 
exploitation of non security software, in parts that are not 
dealing with the existing security features of the software. In 
fact, the software industry seems to have taken the lead on 
that front. For example, after having lunched its 
“Trustworthy Computing” campaign in January 2002 [1, 2], 
Microsoft has started publishing documentation on what it 
calls the “Security Development Lifecycle” [3], an attempt to 
integrate software security concerns into the software 
development life cycle, while current software engineering 
books aimed at university level courses are essentially silent 
on the question of producing secure software [4, 5].  

 Although there have been some (mostly industry led) 
efforts to improve the overall security of software, much is 
left to be done. A 2004 study of over 250 Web applications 
showed that over 90% of them were vulnerable to “common 
hacking techniques” [6]. A rapid overview of the software 
vulnerabilities published within the last couple of years 
shows that a number of them belong to the category of 
command injections. For example, three of the “Ten Most 
Critical Web Application Security Vulnerabilities” in 2004, 
as reported in [7], were direct command injection 
vulnerabilities.  
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 These types of attack should not be confused with control 
flow attacks, which have been know since at least 1972 [8] 
and have been widely researched ever since. Control flow 
attacks, sometimes also referred as command injection 
attacks, are in fact based on the attacker ability to direct the 
program counter to a location where some malicious code 
has been put, usually using a bug in the host application such 
as a buffer overflow [9]. Protecting against this type of 
attacks calls for a better control over the program counter 
[10-12] or a hardware or software based separation between 
code memory and data memory [13]. Despite some 
similarities, command injections as defined in this paper are 
much broader and do not necessitate neither a bug in the host 
application nor a control over the program counter. 
Therefore, techniques to prevent control flow attacks are 
unfortunately not able to contain command injection attacks 
as defined here.  

 In this paper, we look at the question of data validation, 
that is, how to safely process data coming from an untrusted 
source, throughout the application, in order to avoid 
vulnerabilities such as command injections. We argue that 
most of the existing published solutions fall short of their 
expectations in several aspects: they are usually unclear 
about the goal of data validation, they are at odds with good 
software engineering practices, and they are not really usable 
when dealing with real, medium to large size software 
systems (see Section 3 for a detailed explanation of this 
claim). We propose a new solution based on a three steps 
framework to address these issues. Our solution breaks down 
the “data validation” efforts into two, clearly identified, 
formally defined and clearly localized steps. As we will 
show in Sections 4 and 5, this solution integrates well with 
good software engineering practices. In particular, it avoids 
the duplication of efforts often encountered in other 
approaches, it does not make unrealistic assumptions about 
the application or the environment, and has been 
successfully used with real life large web applications [14].  

Our contributions are the following:  
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• We provide a formal definition of command 
injections, and formally identify the two separated 
goals that “data validation” should reach: protecting 
the application itself and protecting the other 
applications that are used by the application being 
secured.  

• We show that most current data validation 
techniques fail to address the question in an 
effective way for large applications and that even 
with simple, small applications, these techniques 
are mostly incompatible with good software 
engineering practices.  

• We provide a practical and intuitive three steps 
framework that can be used to achieve effective 
data validation even with large software. Our 
framework is compatible with modern, good 
software engineering practice and provides clear 
guidelines about what to do and when to do it. The 
framework also accounts for future problems linked 
to the processing of untrusted data that cannot be 
known at the time of coding.  

 The rest of this paper is organized as follows: in Section 
2, we introduce the problem of command injection and give 
a formal model for it. In Section 3, we give an overview of 
some of the current data validation techniques, and show 
their limitations. We then introduce our three step 
framework in the next three sections: Section 4 covers the 
data validation step, where the application itself is protected 
from untrusted data. Section 5 covers the data neutralization 
step, where other applications used by the application are 
protected. And Section 6 describes the last step, the data 
footprint, used to handle future evolutions of the 
application’s environment. We conclude in Section 7.  

2. PRELIMINARIES  

2.1. Command Injections  

 In this section, we give a quick overview of the most 
common command injection vulnerabilities and then we 
provide a general, formal definition which can be used to 
explain current and future instances of the problem.  

2.1.1 Examples of Command Injections  

 What we call is this paper “command injection” is a type 
of vulnerability that is very common today. Many different 
technologies can be exploited, and as new technologies are 
introduced, new command injection vulnerabilities 
opportunities arise. Unfortunately, all of these vulnerabilities 
are not always understood as a variation on the same 
problem, leading to an array of specialized defense 
mechanisms and an inefficient approach to solving the 
problem overall.  

 In today’s typical application environment, there is a 
large spectrum of tools that are susceptible to command 
injection attacks, including but not limited to SQL-based 
databases, XML parsers, HTML browsers, scripting 
languages embedded into HTML browsers, XSL transforms 
[15], LDAP servers, word-processing and spreadsheet 
embedded application macros, interpreted programming 
languages, and shell commands.  

 Shell command injection vulnerabilities are historically 
important, although they seem to have become less common 
lately. This type of command injection occurs when the 
application invokes the operating system shell (C-shell, Bash 
etc. on Unix, command shell on Windows etc.) to initiate 
another program, such as the “grep” or the “mail” program 
under Unix. If, as part of this program invocation, the 
application is using some untrusted data without proper 
filtering, a malicious user can craft an input that will 
terminate the intended command and start another one of the 
attacker’s choice.  

 SQL injections are perhaps the most well known among 
command injection vulnerabilities and have been extensively 
studied (see e.g. [16-19]). An SQL command injection 
vulnerability exists whenever an application uses an SQL 
based database and constructs unfiltered (or improperly 
filtered) SQL commands based on untrusted input. An 
attacker can then use this opportunity to inject an SQL 
command, which will be sent by the application to the SQL-
database engine and executed. As an example, consider the 
following SQL query, assumed to be built on-the-fly on the 
server. The intent is to query a database to see if the table 
“UsersTable” contains a record where the field “UserId” 
matches the user-provided parameter “userName” and the 
field “Password” matches the user-provided parameter 
“password”.  

LoginQuery = ’’SELECT * FROM UsersTable 
WHERE UserId=’’’  

  + request.getParameter(’’userName’’)  

  + ’’’ AND Password = ’’’  

  +  request.getParameter(’’password’’)  

  + ’’’;’’;  

 Since the query is built directly from user input, 
malicious users can actually modify the end query in various 
ways. One of many ways to exploit such code is to bypass 
the password verification by providing a password such as  
’OR 1=1;--. If the user name provided is, for example, 
administrator, the query “LoginQuery” that is sent to 
the database ends up being

1
 

 

SELECT * 
FROM UsersTable WHERE UserId= 

’administrator’  

  AND Password = ’’ OR 1=1;--’;  

 This command will always return the record with a field 
UserId=’administrator’, regardless of the 
associated password value.  

 HTML-browsers can also be the target of command 
injection attacks. As a simple example, assume that the 
application produces an HTML page containing user-
provided comments to be displayed in other users’ HTML 
browsers. If the application has stored the user nickname and 
comment into the NickName and Comment variables, 
and if the HTML page showing the user-provided comments 
is built from the following server side ASP code:  

<B><%NickName%></B> says <%Comment%>  

 

1In SQL, “--” is the beginning of a comment.  
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then if a malicious user gives a nickname or a comment that 
includes HTML tags, those tags will be inserted into the 
resulting page “as is” and will be directly interpreted by the 
HTML browser of the users viewing the page. For example, 
that attacker can easily insert an entire fake login form 
similar to that used by the application. It will lie within a 
legitimate page of the application but can send the credential 
to some other location, controlled by the attacker. If instead 
the attacker injects a command such as  

<script>  

location.href=’http://attack.com/?’ 
             +document.cookie  

</script>  

then the JavaScript interpreter that is embedded in the 
browser will be invoked and the user’s cookies will be sent 
to the attacker’s server, which can lead to the victim’s 
session being hijacked (this particular type of injections is 
known as Cross Site Scripting, or XSS).  

2.1.2 Formal Definition of Command Injections  

 The various examples in Section 2.1.1 show variations of 
the same type of attack. Here, we give a formal, technology 
independent definition of the problem.  

 As seen in the previous examples, the root cause of the 
problem is the interaction between the application and 
another component (database server, HTML browser etc.), 
where something that is simple data within the application 
becomes command(s) in the other component. Thus, the 
vulnerabilities lies in the ability of the attacker to inject data 
into the application that is going to be interpreted as a 
command by one of the components used by the application.  

 Let us consider that the application makes use of virtual 
machines, without any assumptions about what these virtual 
machines actually are. A typical virtual machine M accepts 
as input “programs” written in a particular language LM, as 

specified by a grammar GM. Provided with such a valid 
program, the virtual machine executes it. So, for example, 
the “HTML browsers” virtual machine accepts programs 
written in HTML, while the virtual machine “SQL database” 
accepts programs written in SQL. Fig. (1) provides an 
illustration of this concept. 

 As usual (see e.g. [20] for an overview of these classical 
concepts), these programs are words of LM, made of terminal 
symbols of GM that can be derived from the rules of GM. The 
terminal symbols in GM can be split in two categories: the 
keywords of the language LM and the variables (or literals). 
The keywords are the predefined symbols of the language 
that are interpreted by M upon execution of a program, while 
the literals specify values, variable names etc.  

 An application making use of such a machine M has to 
produce a program p recognized by GM and has to send p to 
M for execution. We say that there is a command injection 
vulnerability (more precisely in that case, an LM -injection 
vulnerability) when p is at least partially generated at 
runtime, based in part on some untrusted data ip, and when 
there exists some ip for which the resulting p contains 
elements from ip that are going to be recognized as keywords 
of the language LM by the grammar GM.  

 Fig. (2) provides an overview: an untrusted user sends 
some input to a first application, Application 1. This input is 
processed inside Application 1 in the module Mod 3, where 
it is combined with other data coming from the database 
Data App 1. The resulting data is eventually output to 
Application 2, where it is processed inside module Mod 5, 
combined with data coming from Data App 2. In turn, this 
eventually produces an output that is given as input to 
Application 3. This input is itself processed by module Mod 
6. When we abstract Mod 6 as a virtual machine M accepting 
programs written in the grammar GM, the input received from 
Application 3 is a program p written in the language LM of 
GM. The program p is produced from different sources, 

 
Fig. (1). An application seen as a virtual machine M: the input of the module Mod is a program p written in the language LM, recognized by 

the grammar GM of the virtual machine. Processing this input is the execution of p by the virtual machine. p contains keywords (in red) and 

literals (in blue).  

Application

Mod

Program p in LM

Virtual Machine M
Grammar GM

….
if Something then
   while xxx do
      inc (i);
else
   output(“no”)
…. 

 input  output

INPUT OUTPUT
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including input from the user, data from Data App 1 and 
Data App 2, as well as processing from at least Mod 3 and 
Mod 5. If there is a way for part of the user input to end up 
in p as keywords of the language LM when parsed by the 
grammar GM, then there is an LM-injection vulnerability, and 
the untrusted user can control to some extend the execution 
of Mod 5 inside Application 3. 

Definition 1 (LM-injection vulnerability) An application 
has an LM-injection vulnerability if the application uses a 
virtual machine M and it is possible for a user to provide a 
set of inputs ip to the application that will cause the 
application to generate a program p sent to M such that 
there are in p some elements coming from ip that will be 
parsed by the grammar GM as keywords of the language LM. 

 In other words, a command injection vulnerability is a 
flaw that allows a user to modify the parsed input of a virtual 
machine in such a way that the modified portion of the input 
is going to be interpreted by the machine as a command. It is 
called a command injection because it reflects the ability of 
the user to inject a “command” that will be executed directly 
by the targeted virtual machine.  

2.2. Data Normalization  

 Before the actual validation effort, it is useful to first 
normalize the data. This step is often known as data 
canonicalization

2
 

(see for example [21, 22]). The goal is to 
massage the data to put it in its canonical form, defined as 
“its simplest and standard form”. We prefer to use “data 
normalization”, because the notion of data’s “simplest form” 
is neither well defined nor very relevant to this problem.  

 Data normalization is the process of transforming the 
data into some predefined format. A very common example 
of normalization is encoding format: there are many different 
ways of encoding the same input, for example using different 
character sets. Therefore, if no preprocessing is done, the 
data validation step will have to guarantee that whatever is 
done during validation is done effectively regardless of the 
format. Otherwise validation would simply be bypassed, e.g.  
 

2Or even C14N, standing for “C, then 14 letters, then N”.  

by using a different character set. This significantly 
complicates the validation process. It is thus more efficient 
to first normalize the encoding format, e.g. by encoding the 
input into some predefined character set prior to the 
validation process.  

 Character sets are just one of the issues that 
normalization concerns itself with. It is relevant when there 
is more than one way to provide an equivalent input to the 
application, and these different ways have an impact on 
validation. For example, in most current operating systems 
there are many different ways of naming a file, using 
absolute or relative paths, mixing up actual path and parent 
path (e.g. dir1/dir2 and dir1/../dir1/dir2 are equivalent on 
Unix), using symbolic links, mixing cases on case-
insensitive operating systems or using Universal Naming 
Convention shares, to name but a few. Another example 
would be protocols allowing that some of the messages, or 
some of the information inside the message, be given in 
different orders, or even repeated several times (see for 
example [23]).  

 It should be noted that the goal of the data normalization 
step is to put the data in a predefined format; the actual 
format chosen, “simplest” or not, is thus not particularly 
relevant.  

3. EXISTING APPROACHES AND LIMITATIONS  

 Data validation has long been identified as an important 
part of software security. However, we will show that the 
current approaches to data validation do lack both 
practicality and clarity.  

 One of the main theories about data validation is that one 
should use “white lists” (permitting what is known as correct 
input) rather than “black lists” (blocking inputs that are 
known to be harmful). This is a fair idea as such, but it does 
not help in understanding what it is that validation is trying 
to protect against, nor does it help understand where to 
validate. As we will see, this approach is still very relevant, 
but cannot be considered a validation technique on its own.  

 The most common validation technique uses the idea of 
“trust boundaries” [24-26]. In this approach, we are 

 

Fig. (2). An overview of the interaction between a user and a sequence of applications. Data entered by the user will be handled by the 

applications 1, 2 and 3, in different contexts each time.  
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supposed to identify various zones inside the application 
within which the level of trust is similar. The main idea is 
that whenever data crosses a trust boundary, that is, crosses 
the frontier between two of these zones, the data should be 
validated. The theory sometimes includes the definition of 
chokepoints [24] that should be used when crossing a trust 
boundary. Chokepoints are the possible points of entries into 
the guarded boundaries, where data must be validated, 
although the scope of this “validation” is usually not very 
clear.  

 Trust boundaries are a natural idea, that fit rather well 
with the natural security intuition of gatekeepers that are 
used to ensure that whatever enters a zone is “safe”. 
Unfortunately, in real life, there are several problems with 
this view:  

• The notion of trust boundaries has no particular 
correspondence to any architectural boundaries. In 
other words, a “trusted zone” may slice the software 
architecture in any way, meaning that the 
chokepoints will have a difficult time integrating 
with the actual software architecture. Having a 
security architecture at odds with the rest of the 
software architecture is surely not a good situation.  

• As a consequence of the previous point, it is very 
likely that a given module can be reached through 
several chokepoints and trust boundaries. In fact, 
the target module for a particular input can be quite 
remote from the chokepoints, and several 
chokepoints might lead to the same module via 
different routes, crossing the trust boundaries 
through different paths. In other words, the 
validation of the data leading to a particular module 
will be done away from that module, and will have 
to be done at different locations, once for every path 
leading to that module and crossing the trusted 
boundary. This is clearly in opposition to good 
software engineering practices, where the same 
work should be done only once. To make things 
worse, because a particular module’s data is 
validated away from that module, at the current 
trust boundary, any extension to the software that 
will reuse the module will likely re-create a new 
trust boundary crossing, and thus a new duplication 
of the verification. And of course, the same 
problems occur if we want to reuse the module: the 
validation will have to be redone in the new context 
for the reused module to be secure.  

• Last, but not least, there is just no reason to assume 
that when crossing the trust boundary, the data is in 
its final form. If it is not, then it means that we are 
attempting to validate partial information, a futile 
exercise without much doubt. And here again, even 
in the favorable case where the data is reasonably 
complete when crossing the boundary, validating it 
here requires an understanding of the expected valid 
format. When looking at a simple application, that 
seems to be fairly doable. But when the data is part 
of a large, complex application, it is often the case 
that the data can not be simply validated by looking 
at a simple value range. Instead, a complex 
evaluation is required, which basically requires the 

application logic to be restated at the validation 
point. This is again at odd with any good software 
engineering practices, which states that the logic of 
the application should be coded once and 
maintained at that one place. Following the trust 
boundaries paradigm means that the logic of the 
application must be duplicated and maintained at 
every chokepoint, a situation that is clearly to be 
avoided.  

 Another common approach to data validation, 
particularly popular with Web applications, is to perform 
field by field the validation of the data entered in a form. 
This idea is presumably common because the current 
programming environments offer excellent support for it, 
with advanced field-level and form-level validation functions 
that can be used to easily enforce some input formats (see 
e.g. [27, 28] for SUN’s J2EE [29] and [30, 31] for 
Microsoft® .NET [32]). This approach, however convenient, 
suffers from the same flaws as the trust boundaries approach: 
the validation occurs outside the module that handles the 
data, leading to a duplication of logic, a duplication of code, 
poor modularity and maintenance problems. In addition to 
these very serious problems, we are faced with an overall 
strong limitation of what can actually be validated since a 
very limited amount of data is available at the validation 
point. Basically, one has to validate based on the data present 
in the current form (or current screen). This approach can 
only work with simple applications (such as most current 
Web applications) but will not scale to more complex 
scenarios

3
. Finally, this approach is typically only available 

in the limited context of inputs via the user interface. If the 
application is extended to provide other types of interactions, 
these other types of input may not have this solution 
available.  

 Pushing the logic even further, in some contexts it is 
sometimes suggested to validate data through an application 
firewall, such as [33]. This obviously suffers from the very 
same problems as the techniques described above, since an 
application firewall is situated outside the application, even 
further away from the end module that will process the data. 
Note that in some cases, application firewalls are the only 
option available (e.g. when the application source code is not 
available or cannot be changed) but that does not change the 
fact that application firewalls are a very poor solution to data 
validation

4
.  

 In [34], Stephen de Vries proposes a validation approach 
which attempts to solve some of the issues outlined above. 
This is the only such attempt that we are aware of at the time 
of writing. Recognizing the fact that, with real, large 
applications, validation cannot be done just about anywhere, 
de Vries proposes a framework with a “validation” step in 
the “business object”, that is, where the context of the data  
 

3We are not suggesting not to use these types of tools; good defense-in-

depth security suggests that an additional layer of security is always a good 

thing. However, we argue that one should not rely purely on these tools to 

validate untrusted inputs in an application.  

4Here again, we are not suggesting not using application firewall. In fact, we 

believe application firewalls support should be part of any secure 

distribution, since they are a very efficient way to quickly react to a problem 

and secure an installation until a proper, fully tested patch can be 

distributed.  
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usage is known, and an “encoding” step at the data access 
layer. His approach is compatible with the one proposed in 
this article. However, de Vries does not clearly define, 
formally or informally, the precise goals of the “validation” 
step and the “encoding” step. Moreover, the suggestion that 
the encoding step should be “performed close to where the 
data is processed” [34] does not seem precise enough. The 
closer we move to where the data is processed, the more 
likely user-provided data and application provided data will 
be mixed together, and thus the less likely it will be that 
injection attacks will be caught. Finally, the suggestion to 
use a specific data access object to “encode” the data for 
each target “processing context” ignores the problem of 
multiple processing contexts, where the data is aimed at a 
series of contexts (e.g. the data is sent to a database (SQL 
context) to be eventually rendered in an HTML browser 
(HTML context) with scripting support such as a JavaScript 
interpreter (JavaScript context)).  

 A few other papers have been published on the topic, but 
they typically focus on a very specific sub-problem and one 
possible solution. As such, these techniques are typically 
compatible with our proposal, which focuses on what should 
be done and where it should be done, rather than how it 
should be done (for which we refer to existing techniques). 
Among others, we can refer to [35, 36], where a systematic 
way of dealing with user inputs with filtering techniques can 
be found. In [18, 37, 38], we can find solutions based on the 
static analysis of the code to automatically link the command 
injection points to user inputs. These solution are not perfect 
and can miss some of the links, and even once the path from 
the user input to the injection point is detected, much is left 
to be done in order to decide whether the data can be trusted. 
The solution provided by Su and Wassermann in [19] is to 
tag what we have called the variable terminal symbols of GM 

and to then simulate a parser for GM. If that parser infers the 
existence of keywords of LM within tags, then a command 
injection has been detected. The solution is the only one to 
our knowledge that would provably prevent any possibility 
of command injections in the tagged data. Unfortunately, this 
method seems to be somewhat limited in practice, since it 
requires the ability to properly tag the data and moreover 
assume the availability of a GM parser simulator, which is 
perhaps possible with simple grammar but much more 
difficult with complex and in practice poorly standardized 
languages such as HTML.  

 In the following sections we provide our own solution to 
the validation problem.  

4. DATA VALIDATION  

4.1. Goals of the validation steps  

 In our framework, we split the overall untrusted data 
validation process into two steps, each having a well 
identified purpose. The first step, called the validation step, 
is there to protect the application itself, and only the 
application, against potentially harmful untrusted data. The 
second step, called the neutralization step, is there to protect 
other applications being utilized by ours. It is described in 
Section 5.  

Definition 2 (Data Validation) The data validation step is 
the process by which we ensure that the untrusted data is of 

the form that is expected by the application for proper 
processing, and will not cause the application to behave in 
an insecure way.  

 This definition is a strong departure from the usual 
approach, since at the data validation step, we do not attempt 
to protect against injections of any kind. Instead, we have a 
more focused and better defined scope, which is solely about 
the application itself.  

 It should be noted that with this definition, the data 
validation step is closely related to classical good software 
engineering practice. The goal is to ensure that the input data 
is within the expected types and range, which one would 
assume is already done by the application anyways. As such, 
the effort required for that step is minimal, at least if the 
application was engineered correctly to begin with. It still 
departs from the expected existing checks in place in at least 
two ways: first, our data validation should be concerned with 
denial of service attacks (an attempt by an attacker to prevent 
legitimate users from using the application, see e.g. [7]), and 
thus may act on inputs that are not invalid but would cause 
the application to consume too much of some restricted 
resource (such as CPU, memory or storage). Second, the 
checks must be “paranoid” and not assume anything about 
that data coming in, for example not assume that the data has 
been entered normally via the user interface.  

4.2. Where to Validate  

 As we have seen in Section 3, the temptation of 
disconnecting the validation from the application logic is 
strong, with a “natural” tendency to block potentially 
harmful data as early as possible, typically just as it enters 
the application. We argue that one should not yield to this 
temptation, because this does more harm than good: first, the 
data is either validated without context, which can work only 
for the simple case, or the context has to be re-coded at the 
validation point. Second, the data might be incomplete or 
partial, in which case the validation cannot be very effective. 
And third, the same data should be validated along every 
possible path, leading to a duplication of the same validation 
process along each path and the production of modules that 
are not safe to re-use as such, since they do not contain the 
validation step.  

 The conclusion is clear, and the validation step should 
only be performed within full context, inside the module that 
is going to use the data. In this way, the application logic and 
validation steps are not duplicated, safe reusable modules are 
produced and the data validation step can be integrated with 
the existing input validation steps of the modules. In Fig. (2), 
it means that within Application 1, the data shown should be 
validated as it enters module Mod 3, where it is processed; at 
that point (and only at that point) data coming from Data 
App 1 is known and a context-aware validation can be 
performed.  

 The apparent drawback is having “unsafe” data traveling 
around the application for a long time (within modules Mod 
1 and Mod 2 in the example of Fig. (2)). Security-minded 
programmers might feel uncomfortable with this, but there is 
no real problem from the security viewpoint of having 
unvalidated data simply passed along. The data will still be 
validated from the viewpoint of Mod 1 and Mod 2, which in 
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this case may simply mean to check that enough storage is 
allocated to accommodate the data as it passes through the 
modules.  

4.3. How to Validate  

 Now that we know what to do when validating untrusted 
data and where to do it, we still need to know how to do it. 
For this, we do not suggest anything outside classical 
techniques, since they seem very appropriate: precise type 
checking, bounds verifications and any relevant application-
level logic should be used to ensure that the data can be 
safely processed by the module being protected. As 
previously stated, no assumptions should be made regarding 
the untrusted data, in particular, it should not be assumed 
that the data has not been tampered with, unless strong 
cryptographic techniques have been used to guarantee or 
verify it. If one is concerned with efficiency and wants to 
avoid duplicating validation (for data that is used in different 
objects), again no assumption should be made and 
application-level checks should be implemented to ensure 
that validation has indeed occurred. In addition, clear 
guidelines should be established regarding what steps to take 
when validation fails (rejection of the data, reformatting to 
an acceptable form etc.).  

5. DATA NEUTRALIZATION  

5.1. Goals of the Neutralization Steps  

 Since the data validation step was solely about protecting 
the application itself, we still need to protect against all 
possible command injection attacks. It means that, when 
using a virtual machine M, we want to remove the possibility 
for untrusted data to contain an element that is going to be 
recognized as a keyword of the language LM by the grammar 
GM. This is the purpose of the neutralization step, which 
protects the other applications (the “virtual machines”) 
against attacks carried through our application.  

Definition 3 (Data Neutralization) The data neutralization 
step is the process by which we ensure that the untrusted 
data can be safely passed along to the various virtual 
machines M used by our application and is free of any LM-
injection attacks.  

 This clear separation between validation and 
neutralization allows to properly cover the various issues that 
must be addressed with untrusted data. It also helps 
clarifying an apparently widespread misconception 
suggesting that this particular area of software security boils 
down to good software engineering practices. In other words, 
if sound engineering practices are followed, then everything 
that needs to be done around data validation will be done and 
security problems will come only from glorified bugs. We 
have already identified some aspects of the validation step 
that are not typically covered by the typical software 
engineering steps; the data neutralization actions are even 
less likely to be addressed by proper software engineering 
techniques, since this side of the problem is not about bugs in 
the application but about protection of other applications [39].  

5.2. Where to Neutralize  

 Much like the data validation step, the data neutralization 
step should be done only once the context is fully clarified. 

This is typically only once the data is ready to be sent over to 
the target virtual machine, which we call the injection point. 
Injection points do not necessarily imply a direct 
communication with the target virtual machine. It is the point 
at which the data that will eventually reach this virtual 
machine leaves our application.  

 Thus, as opposed to current approaches which tend to 
handle the threat as early as possible, in our framework the 
neutralization is a “late” step, we neutralize the data as close 
to the injection point as possible. In the example of Fig. (2), 
in App 1 the neutralization step, which neutralizes the user 
input from command injections in module Mod 6, is done at 
the output of module Mod 3, where maximum contextual 
knowledge as been accumulated (for App 1) and the most 
informed decision can be taken. Note that if we have control 
over App 2 as well, then a similar (and potentially better) 
neutralization would be performed at the output of module 
Mod 5.  

 There is an exception to this situation, which is when 
some previous computation makes it impossible to 
distinguish the untrusted data from the other data at the 
injection point. This happens typically because the untrusted 
data is mixed with trusted data at some point in the 
computation. When this is the case, we simply would not be 
able to neutralize at the injection point and we have to apply 
that step earlier (before the information is lost). It is however 
best, if at all possible, to modify the code to allow 
neutralization to happen close the injection point instead.  

5.3. How to Neutralize  

 Again, how to best neutralize, and what to do with faulty 
data, is context dependent and should be adapted to the 
application being secured. In practical terms, it seems that 
the usage of simple neutralization rules making use of usual 
white lists mitigated with black lists is appropriate: allow 
only known good, and if necessary, filter out, escape or 
encode known bad (see e.g. [35, 40]). Clearly, the 
neutralization step is greatly simplified by the usage of our 
framework, which helps understand precisely what this step 
is all about.  

 If the machine M against which the data is neutralized 
works with a relatively simple grammar GM, then it is 
possible to look at systematic approaches that would 
provably prevent LM-injections. For example, Su and 
Wassermann describe in [19] a method consisting of tagging 
what we call the variable terminal symbols of GM and then 
simulate a parser for GM to see if it derives the existence of 
keyword of LM within tags. Other approaches are based on 
static analysis of the code and automatic inference of 
monitoring tools [18, 37, 38].  

 Ideally, the need for neutralization can be mostly avoided 
by interacting directly with the virtual machine to safely 
construct the statements by passing the variables as such and 
avoid any possible confusion between code and data (such as 
using prepared statements when building an SQL query). 
Unfortunately, this interactive solution is not always 
available with the virtual machine at hand, and in some cases 
will perhaps not be available any time soon (e.g. to construct 
HTML pages or XSL Transformations [15]). And even when 
such an interactive construction is possible, it is possible that 
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using it is not an option, for example to avoid dependency on 
a particular implementation of the virtual machine.  

 When neutralizing data, one important thing is to identify 
all the target virtual machines for the data and to neutralize 
for each of them. In the following example, a JavaScript 
code is built partially from the untrusted data Evil:  

<HTML>  
...  
<BODY>  
...  

<SCRIPT language="JavaScript">  
var unsafe = ’<%Evil%>’;  
...  

 This code is very insecure, since the value of Evil is 
used as is inside the JavaScript code. In order to secure that, 
we should clearly neutralize Evil against JavaScript 
injections, since JavaScript is the target virtual machine. 
However, this would not be enough. Indeed, the JavaScript 
code is inside an HTML page, and thus we should also 
neutralize against HTML injections, since the resulting page 
will be send to an HTML virtual machine (the user’s 
browser). If we fail to do that, then a value such as 
</SCRIPT>... for Evil will give the attacker control 
of the HTML engine. We should thus neutralize against both 
JavaScript injections and HTML injections (and in that 
order) to properly neutralize that code. And if the data was to 
be stored in an SQL database before, then Evil should also 
be neutralized against SQL injections.  

6. DATA FOOTPRINT  

 If the framework described above has been correctly 
implemented, then the result should be an application free of 
untrusted data attack problems, protected against attacks to 
the application logic, as well as against attacks sent to other 
applications via the protected application.  

 However, that does not mean that we are fully safe, even 
after having done the best possible job at data validation and 
data neutralization. There are at least three reasons for that:  

• The virtual machines will evolve. Our application 
has been designed with a set of existing possible 
implementation for the virtual machines (e.g. a set 
of existing SQL-based databases or a set of existing 
web browsers). If our application is successful, then 
it will outlive these existing applications, and will 
end up being used in conjunction with virtual 
machines that did not exist at the time of 
development (e.g. a new SQL-base database will be 
popularized, a new HMTL browser will be 
introduced, new version of existing ones will be 
used etc.). Each one of these new virtual machine 
can implement a slightly modified grammar, and 
thus be vulnerable to new command injections that 
were not present at the time of development. 
Clearly, there is not much we can do against such 
future unknown threats, and clearly once these 
future threats are actually available, our application 
is not secure anymore.  

• The application might be used in an unforeseen 
environment. The data that is stored by our 
application might be redirected to an unexpected 
virtual machine, creating unforeseen injections 
opportunities. For example, the data stored in a 
database might be later used as input to another 
application. Or, the log file created on-the-fly by 
our application can be redirected by some of our 
users to a log formatting tools that creates HTML 
reports out of it, creating unexpected HTML 
injection opportunities through logged information. 
Again, there is not much that can be done against 
that ahead of time, since we cannot possibly 
neutralize against everything “just in case”, but 
once the problem occurs our application is a threat 
despite our efforts.  

• We could also simply have made some mistakes. If 
the application is large enough and complex 
enough, and is interacting with enough virtual 
machines, then we are looking at a complex task. 
Even if our framework simplifies the problem, it 
remains that the task is difficult, and thus error 
prone. It is not reasonable to expect creating a 
vulnerability free application just using a good 
framework, just as it is not reasonable to expect 
creating a bug free application just using good 
software engineering methods.  

 Against these problems, at first we seem to be powerless, 
since we cannot anticipate them precisely enough to act. Our 
suggestion is then to be upfront about how the application 
interacts with its surroundings, identify and document what 
it is writing and where, so that after having made the best 
possible efforts to produce a safe application, we can also 
give to the application’s user the necessary information to 
decide whether a particular evolution of the system (new 
version, new virtual machine, new usage) is safe or not. This 
is what we call the application data footprint map. A data 
footprint map will thus identify where the application stores 
data (e.g. this database, this table, this field) and provide in 
each case the possible form of the data that can be stored, as 
a regular expression. This is the stored data footprint. We 
need to also list the volatile data footprint, capturing direct 
interactions between the application and the virtual machine, 
typically command invocations. In the example of Fig. (2), it 
is shown that App 1 has a direct interaction (in this picture 
with App 2, although it might be that in a different context, 
App 1 interacts with some other application App’ 2). Thus, 
the data footprint map of App 1 will record this volatile 
interaction, describing with a regular expression all the 
possible values that can sent there by App 1. App 1 is also 
reading from a database Data App 1. If what is read was 
written by App 1, then this stored data footprint will also be 
included in the map, along with the possible values.  

Definition 4 (Data Footprint) The application data 
footprint is an exhaustive “map” of the application’s 
interaction with the outside, identifying precisely where and 
under what possible form the application stores data, as well 
as how it interacts with virtual machines. The possible form 
of the stored data and virtual machines interaction is 
typically specified using regular expressions.  
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 Armed with such as data footprint map, we are now able 
to mitigate the three problems identified above: looking at 
the bare information might help identify overlooked 
injection possibilities with existing virtual machine. 
Moreover, when the environment in which the application 
evolves, either because new virtual machines or new usage is 
introduced, we are now able to look at the data footprint of 
the application and decide in an informed way whether or 
not the new situation constitute a security risk. Without the 
map, we would have had no way of deciding, and we would 
have had to embark into a costly evaluation for every 
possible evolution. With the footprint map, we can assert 
that the new situation is not introducing new security risks, 
or on the contrary we can identify new vulnerabilities and act 
accordingly.  

7. CONCLUSION  

 In this paper, we have presented a framework that can be 
used to handle untrusted input in a secure manner. Unlike 
most of the current techniques, our approach can be used 
with large, complex applications and is compatible with 
current software engineering best practices.  

 We have identified a three step process, where each step 
has a precisely defined goal, and indications are provided for 
where to implement these steps in the application. The first 
step, data validation, protects the application itself against 
malicious input. The second step, data neutralization, 
protects the other applications used by the application being 
secured. The third step, the data footprint, addresses the 
question of the evolution of the environment in which the 
application will evolve, and the fact the vulnerabilities will 
be created in the future due to these evolutions. This is, as far 
as we know, the first precise, realistic and complete solution 
to the problem. Experiments done with earlier version of this 
framework on real life, large web applications were reported 
in [14].  

 The next step will be to provide tools to help creating the 
data footprint, or even to automate the production of such a 
map. This tool will help trace backward from the injection 
point back to the untrusted data insertion point, and to help 
automatically inferring the possible syntactic forms of these 
interactions.  
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