
 The Open Software Engineering Journal, 2009, 3, 1-8 1

 1874-107X/09 2009 Bentham Open

Open Access

Alternating Group Coordinator (AGC): An Approach to Improve
eXtreme Programming

Hamid Mcheick
1,*

 and Hassan Artail
2,*

1
University of Quebec at Chicoutimi, Department of Computer Science and Mathematic, Postal Code G7H2B1,

555 Boulevard de l’Université, Chicoutimi (Québec), Canada
2
Electrical and Computer Engineering Department American University of Beirut, P.O. Box: 11-0236, Riad El-Solh.

Beirut 1107 2020, Lebanon

Abstract: Agile development methods such as eXtreme Programming (XP) are increasingly adopted by software organi-

zations and engineers to access its effectiveness and the benefits it promises. However, XP has some limitations in certain

aspects pertaining to inter-group communication and teamwork. This issue is attributed mostly to the isolation among dif-

ferent pair-programmer groups. In this analysis, we study the impact of applying our solution of the Alternating Group

Coordinator (AGC) on the effectiveness of XP. After giving an overview of XP and the issue which we address, we de-

scribe the solution we devise and the method used to evaluate this solution through a statistical questionnaire and using it

to develop a mathematical model that describes it.

Keywords: Extreme programming, agile methods, inter-group coordination, SE case studies.

INTRODUCTION

The pressure of adapting to customer changing require-
ments, producing reliable code, and doing this within con-
strained time schedules are driving software developers and
project managers to devise techniques and solutions which
are proven to be indispensable for other developers. One
such technique that concerns rethinking and reorganizing the
Software Engineering process is the eXtreme Programming
(XP) methodology. This method has gained wide adoption
and is being practiced in academic and industrial settings for
various project sizes [1]. XP is tailored to meet the needs of
adapting to continuously-changing user requirements and the
lack of complete project specifications during the initial
stages of the project [2]. Originally, XP was developed by
Kent Beck in October 1999 at Chrysler Corporation while
working on the C3 project to reduce the software production
cost [3]. It’s based on 12 key practices that characterize it
and distinguish it from other software engineering methods
[4]. Theses practices are described in the next page.

Since its inception, XP has seen several updates. Never-
theless, in order to additionally increase its productivity and
efficiency, some of the XP practices need further develop-
ment in certain aspects mostly pertaining to inter-group
communication and teamwork. That is, despite its most im-
portant characteristic in adapting to the user changing re-
quirements and the high quality code produced from the per-
spective of the customer, and in emphasising deliverables
and milestones [2, 4], XP does not scale properly due to
communication overhead and requires coaching before it can

*Address correspondence to these authors at the University of Quebec at
Chicoutimi, Department of Computer Science and Mathematic, Postal Code
G7H2B1, 555 Boulevard de l’Université, Chicoutimi (Québec), Canada;
Electrical and Computer Engineering Department American University of
Beirut, P.O. Box: 11-0236, Riad El-Solh. Beirut 1107 2020, Lebanon; Tel:
418-545-5011; E-mails: Hamid_mcheick@uqac.ca; hartail@aub.edu.lb

be fully adopted [5]. Moreover, it does not emphasize the

importance of documentation as in traditional development

methods [6], and it does not provide clear mechanisms for

programmers to communicate among each other as well as

between programmers and customers who in turn become

depressed about the lack of clear progress [7]. Also, some

drawbacks relating to pair programming have been observed

in practice such as the requirement of large blocks of unin-
terrupted time [8, 9].

This paper attempts to analyze and resolve problematic

areas associated with certain aspects of XP affecting produc-

tivity and efficiency as part of a complex dimension uncov-

ered in a qualitative approach supported by quantitative

modeling. In our analysis we will setup an experiment on

two groups of third and fourth year (senior) undergraduate

students who had previous experiences in software develop-

ment. We then develop a mathematical model to analyze and
generalize the outcome of this experiment.

The rest of paper is organized as follows. The remainder

of this section reviews the rules and practices of XP as well

as the problem we are addressing. The next section describes

our proposed Alternative Group Coordinator (AGC) solu-

tion, and the experiment plus its results. The section that

follows presents qualitative and quantitative analysis models

that characterize the outcome of this experiment. Next, we

present a case study for evaluating the efficiency of the AGC

method based on our experience in developing software.

Finally, in the last section, we conclude the paper and dis-

cuss future work.

MAIN RULES AND PRACTICES OF XP

There are twelve key practices in XP [3, 4, 10], which we
discuss here for completeness:

2 The Open Software Engineering Journal, 2009, Volume 3 Mcheick and Artail

• The Planning Process: The XP planning process allows
the XP "customer" to define the business value of de-
sired features, and uses cost estimates provided by the
programmers, to choose what needs to be done and what
needs to be deferred. The effect of XP's planning proc-
ess is that it is easy to steer the project to success.

• Small Releases: XP teams put simple systems into pro-
duction early, and update them frequently in a very short
cycle.

• Metaphor: XP teams use a common "system of names"
and a common system description that guides develop-
ment and communication.

• Simple Design: A program built with XP should be the
simplest program that meets the current requirements.
There is not much building "for the future". Instead, the
focus is on providing business value. Of course it is nec-
essary to ensure that there is a good design, and in XP
this is brought about through "refactoring", discussed
below.

• Testing: XP teams focus on validating the software at all
times. Programmers develop software by writing tests
first, and then software that fulfills the requirements re-
flected in the tests. Customers provide acceptance tests
that enable them to be certain that the features they need
are provided.

• Refactoring [11]: XP teams improve the design of the
system throughout the entire development. This is done
by keeping the software clean: without duplication, with
high communication, simple, yet complete.

• Pair Programming: XP programmers write all produc-
tion code in pairs, two programmers working together at
one machine. Pair programming has been shown by
many experiments to produce better software at similar
or lower cost than programmers working individually.

• Collective Ownership: All the code belongs to all the
programmers. This lets the team go at full speed, be-
cause when something needs to be changed, it can be
done without delays.

• Continuous Integration: XP teams integrate and build
the software system multiple times per day. This keeps
all the programmers on the same page, and enables very
rapid progress. Perhaps surprisingly, integrating more
frequently tends to eliminate integration problems that
plague teams who integrate less often.

• 40-hour Week: Tired programmers make more mistakes.
XP teams do not work excessive overtime, keeping them
fresh, healthy, and effective.

• On-site Customer: An XP project is steered by a dedi-
cated individual who is empowered to determine re-
quirements, set priorities, and answer questions as the
programmers have them. The effect of being there is that
communication improves, with less documentation - of-
ten one of the most expensive parts of a software pro-
ject.

• Coding Standard: For a team to work effectively in
pairs, and to share ownership of all the code, all the pro-
grammers need to write the code in the same way, with
rules that make sure the code communicates clearly.

THE PROBLEM

From this quick overview of XP, one can infer the lack of
stressing explicit interaction and communication between the
members of the group using this method. This problem could
become severe at the advanced stages of a project, where
project complexity and inter-modular dependencies increase,
and at some point during the lifecycle the allocated tasks
may no longer be independent among programming pairs.

This issue has motivated our work and drove us to look
for a solution that is feasible and could work for all the
members of the project team who are using XP. This is the
Alternating Group Coordinator (AGC).

ALTERNATING GROUP COORDINATOR (AGC)

This suggestion renders a more centralized aspect to the
mainly distributed XP nature. It adds stability, time saving,
and a factor of strength. We recommended that this supervis-
ing entity will enjoy administrative expertise for configuring
and setting up an efficient production environment. Working
with this liaison resembles sending a scout ahead, the AGC,
to minimize any roadblocks ahead of time. His/her role will
entail the organization of functional compatibility.

Pair programming, frequent partner swapping, and part-
ner mixing, command great merit in XP. As a matter of fact,
two programmers working together generate an increased
volume of superior code, compared with the same two pro-
grammers working separately. Yet, coordination among the
different teams forges a problem which routinely disrupts
pairing.

With this new scheme, pair programming should produce
positive short-term and long-term results. Consequently, one
can achieve rapid code generation with redundant expertise
and an error filter in the coding phase and enable the cross-
pollination of skills that the group needs for the long haul.
Our idea introduces the random selection of a team of two
programmers already working on the software project to play
the role of the AGC for a specified period of time. In this
way, the flat hierarchy that basically characterizes XP is
maintained with an additional centralized flavor. This cen-
tralized component sustains flexibility in order to avoid de-
pendencies and possible failure of the project. The elected
coordinating team will keep the other pairs more up to date
in terms of the current progress of the project. An evident
outcome of this scheme would be to motivate the program-
mers as they participate in the management process and per-
haps receive a slight financial bonus in return for the extra
work they are providing.

This idea could be emphasized by the actual rules that
promote XP: interactive communication. The elected team
could make use of white boards, positioning and sharing of
desk facilities, and stand-up meetings to coordinate the pro-
gress of the other teams. On the other hand, the job of the
AGC could be facilitated by the use of documentation, which
is not advocated by XP. Hence, their stand-up meetings will
take much less time and the self sufficiency of the other pair
programmers is protected. The customer can also help with
the regular production and revision of written requirements,
commentary, and the review of work in progress, as well as
the ongoing editing of the team’s documentation to synchro-
nize results with the customer’s efforts.

Alternating Group Coordinator (AGC) The Open Software Engineering Journal, 2009, Volume 3 3

Each working pair is composed of a coder and a tester.
According to Beck, the latter is “responsible for helping the
customer choose and write functional tests” and running
them regularly. The tester seems to be the most appropriate
person to take on the job of analyst responsible for documen-
tation and management. In this proposed XP perspective,
documentation would enhance the project’s scope and effi-
ciency. Continuous design changes would have been hope-
lessly inefficient without the attributes of this new scheme:
the perpetual backtracking, review, and the ability to orga-
nize the different programmers contributing to the design
effort.

EXPERIMENT SETUP

To test the effectiveness of our proposed change to XP,
we used the Software Engineering four-month course given
during the spring term of 2008 at the American University of
Beirut to third year Electrical and Computer Engineering
students. As part of the course requirements, students are
supposed to complete a practical software application devel-
opment project for a real organization. Students had to actu-
ally meet with “customer” representatives to get require-
ments, discuss progress, and hold demonstrations (an aver-
age of four meetings per group during the semester). They
were divided into groups of 6 and required to apply the soft-
ware engineering methodology and skills acquired during the
course. Students generally had the same educational back-
ground as they were majoring in the Computer and Commu-
nication Engineering (CCE) program. They were fully aware
of how important it is to manage time, space, and other re-
sources in order to achieve a successful job, and most impor-
tantly, deliver the project by the assigned deadline. Conse-
quently, there was a grave need to develop techniques within
the group to combat possible failures. However, students had
no prior knowledge of extreme programming practices or
other methodologies (although they were proficient in pro-
gramming, most notably C++). For this purpose, they started
developing techniques that could help them achieve their
objectives in a synchronized manner.

Having established the idea of improving extreme pro-
gramming through the use of the alternating group coordina-
tor (AGC) technique, we asked two of these groups to ana-
lyze this idea. Actually, both of these groups used pair pro-
gramming informally without having prior knowledge about
it being one of the building block of extreme programming.

The first group (Group 1) worked on part of a final year
project that was carried out by three fourth-year engineering
students. The work of Group1 was coordinated by two of the
three students working on their final year project (one at a
time). Consequently, Group 1 conducted their project while
applying the improvement that we introduced to extreme
programming; that is, they had two alternating coordinators
who had knowledge of what the subgroups are doing and
how the overall project is progressing. On the other hand, the
second group (Group 2) on which we conducted the experi-
ment had no centralized coordination. Both of the groups
were working on equally important projects, and were des-
perate for ideas that could enhance the progress of their
work.

Functional compatibility, rapid code generation, up-to-
date feedback, and financial bonus (in terms of time and
space resources) were compared between the two groups.
Efficiency of the idea was analyzed based on results of sta-
tistical and mathematical models.

Our methodology for measuring effectiveness relied
mostly on asking each member of the two groups a set of
question, some of which were common to the two groups,
while others were specific to each group, based on the qual-
ity of coordination they had received. The questions were
divided into two sets. The first set included common ques-
tions to both groups and consisted of 12 questions (Ques-
tions 1 through 12), while the second set included few
group-specific questions: Question 13 for Group 1 and Ques-
tions 14 through 17 for Group 2. In turn, the first set com-
prised two subsets: one about the students background as it
relates to the general aspects of XP (Questions 1 through 8);
and another subset that is specific to our introduced change,
i.e., AGC (Questions 9 through 12).

The objective behind asking the first subset of the first
set of questions along with the second set was to provide a
qualitative analysis of the students’ background and knowl-
edge. Before revealing these questions to the two groups, no
one had yet been introduced to XP through the course itself.
On the other hand, the goal from asking the second subset of
the first set was to provide a quantitative analysis. The dif-
ference here is that before revealing the questions to the stu-
dents, the concept of XP and that of the proposed idea for
improving XP were explained to them. Lastly, we note that
in our quantitative analysis we make use of mathematical
models driven from the domain of information theory.

EXPERIMENT RESULTS

In this section we present the results that represent per-
centages of answers to each possible answer for the particu-
lar question, and then we elaborate on them in the next sec-
tion. For the first set of questions, each graph includes two
donuts to depict the percentages. The inner donut corre-
sponds to Group 1 while the outer donut corresponds to
Group 2. For enhanced readability of the results, we include
the questions and the corresponding possible answers in the
graphs themselves. For the second set of questions, naturally
each of the graphs includes a single donut to illustrate the
answers. Finally, we note that we did not assign figure num-
bers to the graphs since we can refer to them by question
number.

Common Questions

Are you familiar with the
0.83

0.17

0.83

0.17

Yes No

Q1: Are you familiar with the
extreme programming concept?
a) Yes
b) No

4 The Open Software Engineering Journal, 2009, Volume 3 Mcheick and Artail

0.68
0.16

0.16

0.68

0.16

0.16

Highly Effective Effective
Moderate Not Effective

Q2: How much effective is pair
programming in a distributed
environment?
(a) Highly effective
(b) Effective
(c) Moderate
(d) Not Effective

0

0.49

0.17

0.17

0.17

0.49

0.34

0.17

Very Important Important
Moderate Not Important

Q3: Rate the importance of group
communication in software
development, in your opinion.
(a) Very important
(b) Important
(c) Moderate
(d) Not important

1

0.17

0.83

Yes No

Q4: Did you have problems in
coordination within your group?
a) Yes
b) No

0.17

0.17

0.83

0.17

0.330.33

Choice (a) Choice (b)
Choice (c) Choice (d)
Choice (e)

Q5: How can you describe the
difficulties you had when trying to
combine the individual parts of
your project?
a) Time Consuming
b) Causes a decline in the overall

quality of the project
c) Parts of the written code turned

out to be useless
d) Big parts of the code need to be

rewritten.
e) There were no difficulties

0.16
0.32

0.68

0.16

0.68

Highly Effective
Effective
Moderate
Not Effective
Very Bad

Q6: Rate the overall efficiency of
individual parts combination
during your software
development?
a) Highly effective
b) Effective
c) Moderate
d) Not Effective
e) Very Bad

0.16

0.16

0.68

1

At least once a week
Less than once every 2 weeks
Less than once a month
Only once

Q7: During the process of
development, how often did you
have meetings with the entire group
members to discuss the overall
progress?
(a) At least once per week
(b) Less than once every two weeks
(c) Less than once every month
(d) Once during the sequence of

development of the code
(e) Never

0.83

0.17

0.17

0.17

0.33

0.33

Never
Only once
Twice
Three times
> three times

Q8. While working on the project,
how often during the sequence of
development of the project have
you looked at the code of the other
groups in order to evaluate the
overall project functionality?
a) Never
b) Only once
c) Twice
d) Three times
e) More than three times

0.16

0.68

0.16
0.17

0.83

10% 30%
50% 60%
80% 100%

Q9: AGC is thought to add
functional compatibility to XP
programming. How much do you
think the opportunities out of 100.0
that this goal is achieved with
AGC?
a) 10%
b) 30%
c) 50%
d) 60%
e) 80%
f) 100%

Alternating Group Coordinator (AGC) The Open Software Engineering Journal, 2009, Volume 3 5

Group Specific Questions

Group 1

Group 1

0.68

0.32
0.68

0.32

10% 30%
50% 60%

80% 100%

Q10: AGC is thought to provide
rapid code generation to XP
programming. How much do you
agree with this (out of a 100)?
a) 10%
b) 30%
c) 50%
d) 60%
e) 80%
f) 100%

0.83

0.17
0.5

0.33

0.17

10% 30% 50%

60% 80% 100%
Q11: AGC is thought to provide an
up-to-date feedback for the project
progress in XP programming. How
much do you think the
opportunities out of 100.0 that this
goal is achieved with AGC?
a) 10%
b) 30%
c) 50%
d) 60%
e) 80%
f) 100%

0.68

0.16

16

 Suppose you weren’t working

0.17

0.33 0.33

0.17

Choice (a)
Choice (b)
Choice (c)
Choice (d)
Choice (e)

Q14: What problem(s), if any, have
you encountered while working in a
distributed environment?
a) Difficulty in finding common

structure for the final project.
b) Increased complexity at the

end, i.e. when trying to
combine the individual parts of
your project.

c) Inter-groups disagreement and
dissatisfaction

d) Increased work pressure with
advent of the deadline, i.e.
when it is time to combine
individual project parts

e) No problems

1

Yes No

Q17: If you were to redo this
project, would you assign a
coordinator?
a) Yes
b) No

0.33

0.170.5

Time limitations
Space l imitations
Bad planning

Q16: If yes, what limitations
prevented you?
a) Time limitations
b) Space limitations
c) Bad planning

0.50.5

Yes No

Q15: Have you thought of
assigning a coordinator to ensure
interactive communication among
all the groups?
a) Yes
b) No

0.83

0.17

0.17

0.17

0.49

0.17

10% 30% 50%

60% 80% 100%

Q12: AGC is thought to provide a
financial bonus (in return of extra
work) for the software developers
in XP programming. How much do
you agree with this (out of a 100)?
a) 10%
b) 30%
c) 50%
d) 60%
e) 80%
f) 100%

0.68

0.16

0.16

Choice (a)
Choice (b)
Choice (c)
Choice (d)

Q13: Suppose you weren’t working
on a project that was coordinated
by a certain person, how would
you have managed coordination
within your team?
a) We would have asked an

outside person to supervise
our work

b) We would have assigned one
member of the group to
coordinate our work

c) We would have assigned two
members of the group to
coordinate our work

d) We wouldn’t have needed a
coordinator

6 The Open Software Engineering Journal, 2009, Volume 3 Mcheick and Artail

ANALYSIS OF THE RESULTS

Qualitative Analysis

When analyzing the first set of questions for both groups
we can deduce the following:

• Both groups were not initially familiar with extreme
programming.

• Both groups were not in favour of pair programming in
a distributed environment.

• Both groups had a positive attitude toward the idea of
communication within a group.

• Group 2 faced all kind of problems expected in a dis-
tributed environment. These problems included diffi-
culty in finding common structure for the final project,
increased complexity at the end, i.e., when trying to
combine the individual parts of the project, disagree-
ments and dissatisfaction among groups, and increased
work pressure with approaching deadlines, i.e. when it is
time to combine individual project parts.

• In contrary to Group 1, Group 2 faced problems in coor-
dination within the group.

• Almost all members of Group 1 had no problem when
they tried to combine the individual parts of the project.
However, the members of Group 2 described this task as
time consuming, non-effective, and non-efficient. Group
2 had to rewrite code and spend more time on refactor-
ing during the combination of the code.

• Both Groups did not spend much time in meetings and
reviewing each other’s code. However, this had more
negative effects on Group 2 than Group 1. This is attrib-
uted to the fact that Group 1 was coordinated through
the AGC who was providing each pair a feedback of the
other pairs’ work.

• Half of the members of Group 2 were eager for a mem-
ber to operate as an AGC, but bad planning and time
limitations prevented them from doing so.

• Members of Group 1 would certainly assign at least one
member to operate as an AGC if there was no coordina-
tor in the project.

• After explaining the concept of AGC to Group 2, we
asked the members of the group if they were to redo
their project and assign a coordinator. The answer was
definitely yes.

The outcome was that Group 1 excelled over Group 2 in
terms of performance and satisfaction due to the presence of
the AGC.

Quantitative Analysis

Only one member of the two groups had an idea about
eXtreme Programming. Therefore, we had to describe this
method as well as our proposed improvement to the groups.
This enabled them to apply XP and afterwards answer Ques-
tions 9 through 12 of the questionnaire.

Mathematical Analysis of the Gathered Data

By making use of some statistical tools that are based on
the domain of information theory, we evaluate the applica-

tion of the survey to the proposed AGC. The theory of en-
tropy, relative entropy, and mutual information are defined
as functions of probability distributions. They characterize
the behaviour of random variables and allow us to estimate
the probabilities of rare events (large deviation theory) and
find the best error exponent in hypothesis tests. Hence, it is
both appropriate and perhaps necessary to briefly describe
these probabilistic concepts.

Entropy

The entropy, as a concept, is a measure of the uncertainty
of a random variable. Let X be a discrete random variable
with alphabet and probability mass function:

p(x) =Pr(X=x), x .

Then the entropy H(X) of the discrete random variable X
is defined by:

H(X) = - p(x) log [p(x)].

The log here is base 2, and entropy is expressed in bits.
As we have noted, entropy is a function of the distribution of
X. It does not depend on the actual values taken by the ran-
dom variable, but only on the probabilities.

Next, we examine two useful properties of the entropy
function, and then provide a proof to the second one since
this will give an insight into this important measure:

• Since 0 p(x) 1, so log (1/p(x)) 0. It follows that H(X)
 0.

• H(X) log| |

Proof

To begin the proof, it is necessary to introduce the con-
cept of relative entropy between two probability distributions
p and q. This is given by:

D (p//q) = p(x) log [p(x)/q(x)]

Which can be shown to be positive 0 based on Jensen’s
inequality: for a concave function f and any random variable
X, E[f(X)] f(E[X]), where the notation E[X] means the ex-
pected value of X. Then, if we assume q to be a uniform dis-
tribution over then:

q(xi)=1/| | where i=1,2,…,| |.

Thus we get:

D(p//q) = p(x)log[p(x)/q(x)]

 = p(x) log [p(x)] - p(x) log [q(x)]

= -H(X) - p(x) log [1/| |]

= -H(X) - log [1/| |] p(x)

= -H(X) - log [1/| |],

and since D (p//q) 0, then,

H(X) - log [1/| |] 0, and consequently,

H(X) - log [1/| |], or H(X) log (| |)

We note also that D (p||q) =0 in the case the original as-
sumption hold, that is if q is uniform, which occurs if and
only if p=q. Thus at that point H(X)=log(| |) and p is a uni-
form distribution.

Alternating Group Coordinator (AGC) The Open Software Engineering Journal, 2009, Volume 3 7

Applications of the Entropy Function to the Effect of AGC

After introducing the concept of the entropy function and
the main properties that are useful in evaluating AGC, we try
to derive the probability distribution of the effect of the AGC
on the following variables:

• Adding functional compatibility

• Rapid code generation and error filtering in the coding
phase

• Members are up to date on the progress of the project

• Financial bonus for the extra work the AGC is doing.

The following chart reflects the responses of both groups
of students. The four values were obtained from the answers
of Questions 9, 10, 11, and 12 (as implied by the name of
each shown category in the graph below). Basically, each
shown value was computed as follows (refer to the charts of
Questions 9 through 12):

Considering a particular category c (e.g., “Rapid Code
Generation” corresponding to Question 10), if pci represents
percentage i, which is one of the answers (i.e., 10%, 30%,
50%, 60%, 80%, or 100%), and agci is the corresponding
answer (as shown in the figures of Questions 9 through 12),
where the subscript g relates to the group number, then the
value vc for this category (as shown below in the graph) can
be computed as follows:

2

2

1=
=

g i

gcici

c

ap

v , where again c refers to Question 9,

10, 11, or 12.

Next, we normalize each value to get a sum that is equal
to 1. Specifically:

()1211109/ vvvvvv cc +++= , where the numeric sub-

scripts were used to relate each value to one of the four ques-

tions (i.e., vc can be v9, v10, v11, or v12).

In our application, the alphabet will be:

 = { - adding functional compatibility,

- rapid code generation and error filtering in the
coding phase,

- up-to-date member awareness of the current
progress of the project,

- financial bonus for the extra work as the AGC}

For simplicity, we assume that ={X1, X2, X3, X4}, where
X1, X2, X3 and X4 are the four elements listed above.

From the chart above, we infer the following:

• The probability of the occurrence of X1 due to imple-
menting the AGC approach is 0.5

• The probability of the occurrence of X2 due to AGC is
0.1

• The probability of X3 being true is 0.1

• The probability of X4 happening is 0.3

Hence:

PX(x) = { {0.5 if x=X1}

 {0.1 if x=X2}

 {0.1 if x=X3}

 {0.3 if x=X4}}

Then we can write:

H(X) = - p(x) log [p(x)]

 = -0.5log0.5 -0.1log0.1 -0.1log0.1 -0.3log0.3

 = 1.685 bit.

But since | | = 4, and so log | |=2 (remember, this is
log-base 2). Therefore, H(X) is close to log | |, which shows
that has a close distribution to the uniform one. This in turn
illustrates that once we ensure the presence of the AGC in
some entity practicing the XP, a great advantage will be
reached in a quasi-uniform fashion with respect all the vari-
ables in question. As a result, this will offer a better ap-
proach to doing the work, and should improve quality, job
satisfaction, productivity, and predictability.

CASE STUDY

Following the results of the experiment above, which

were in favour of the AGC idea, the next step was to conduct

a case study on Group 1, mentioned above, to evaluate the

efficiency of AGC in software development based on a lim-
ited test case.

The customer in this case was a local distributor of dairy

products. The software was to create a web application and a

graphical user interface that would make use of certain trav-

eling salesman algorithms to manage a company’s limited

resources. Thus, the project was made of two parts. The first

was about developing the web application and the graphical

user interface, while the second part was to encode the avail-

able traveling salesman algorithms (based on neural net-

works techniques) and test them in order to choose the opti-

mum algorithm that would manage the limited resources

efficiently. We had two choices: one was to have all the

members of the group working on both parts of the project,

and the other was to divide students into two groups each

working on a part, and then have two of the three senior stu-

dents (see the earlier description about the composition of

the groups) alternate the role of the AGC. After brainstorm-

ing both ideas and analyzing the impact on the project

schedule and required effort, all members of the group were
in favour of the second option.

0.16

0.27 0.42

0.14

Adding func tional
c ompatibility

R apid c ode
generation

Up to date on the
c urrent progres s

F inanc ial bonus

8 The Open Software Engineering Journal, 2009, Volume 3 Mcheick and Artail

The authors of this paper have taught Software Engineer-
ing multiple times and therefore, they are in a position to
comparatively assess the value of using AGC by contrasting
the results of this experiment with that of Group 2 and as a
matter of fact to those of the other groups:

• Having an AGC coordinating the group noticeable in-
creased the throughput of the developers, as they had to
inquire less about every little detail from others working
in different subgroups.

• Less time was lost in group meetings because the AGC
was providing each subgroup with feedback frequently
and on-demand.

• The problems that we encountered in combining the
work of the two subgroups were minor, because each
subgroup had a “good” understanding of the require-
ments of the other subgroup.

• A synergy was formed between the two subgroups. This
was attributed to the fact that the expectation of each
member of the group was outlined and adjusted through
the AGC.

• The quality of output was seemingly better. The AGC
had the full picture and was the guide who led the pro-
ject to a successful ending. The approach resulted in
worrying less about the work and progress of others.

• With AGC, the developers gained functional compatibil-
ity in their work.

• Rapid code generation and errors filtering were uncom-
mon in this particular project.

• All members were up to date on the current progress of
the project.

CONCLUSIONS

The eXtreme Programming (XP) methodology has re-
ceived significant attention from both researchers and practi-
tioners in the business of software development. XP aims to
adapt to very dynamic situations, mostly dealing with fre-
quent and unexpected changes in the customer requirement
specifications. Nevertheless, XP has certain aspects that
could be improved, and one of them deals with inter-group
communication and coordination. Our work aimed to address
this issue by introducing the concept of Alternating Group
Coordinator (AGC) who has the responsibility of keeping the
subgroups “on the same page”. This scheme introduces some
centralization to the mainly distributed XP nature. We have

proven in our limited study that AGC adds stability, time
savings, and robustness to the developed code.

An experiment was conducted to analyze the impact of
AGC on the software developers. To this end, qualitative and
quantitative analyses were performed. The latter involved the
development of a mathematical model to study the “meas-
ured” data. The model’s output was consistent with the con-
clusions drawn from the qualitative analysis, in that it
showed that AGC can improve software quality and produc-
tivity.

For future work, we will pursue setting up experiments in
concrete industrial settings involving larger groups and dif-
ferent types of projects. Such an expanded study will yield
statistically significant results and will serve to increase the
confidence in the drawn conclusions about AGC in relation
to XP.

ACKNOWLEDGMENTS

This work was sponsored by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, by the
University Research Board (URB) of the American Univer-
sity of Beirut (Lebanon), and by the University of Quebec at
Chicoutimi (Canada).

REFERENCES

[1] O. Olagbegi and H. M. Haddad, "Agile Development: Do advantages

outweigh shorts comings?", Proceedings of Sofwtare Engineering
Reaserch and Practice (SERP2008-WorldComp08), 2008, pp. 46-52.

[2] J. Newkirk, "Introduction to Agile Processes and Extreme Program-
ming", 24th International Conference on Software Engineering, 2002,

pp. 695-696.
[3] K. Beck, Extreme Programming Explained: Embrace Change. Addi-

tion-Wesley Longman, 2000.
[4] K. Beck, "Embracing Change with extreme programming", IEEE

Computer, vol. 32, pp. 70-77, October 1999.
[5] M. Muller and W. F. Tichy, "Case Study: Extreme Programming in a

University Environment", 23rd International Conference on Software
Engineering, May 2001, pp. 537-544.

[6] L. Cao and R. Balasurbramiam, "Agile Software Development: Ad
hoc Practices or Sound Principles", IT Professional, vol. 9, pp. 41-47,

March 2007.
[7] A. Cockburn, Agile Software Development. Addison-Wesley, 2007.

[8] S. R. Schach, Object-Oriented Software Engineering. McGraw-Hill
Companies, 2008.

[9] J. Drobka, D. Noftz, and R. Raghu, "Piloting XP on Four Mission-
Critical Projects", IEEE Software, vol. 21, pp. 70-75, November

2004.
[10] R. Jeffries, C. Hendrickson, A. Anderson, Extreme Programming

Installed. Addison-Wesley, 2001.
[11] M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1997.

Received: November 24, 2008 Revised: January 01, 2009 Accepted: January 23, 2009

© Mcheick and Artail; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

