
 The Open Software Engineering Journal, 2011, 5, 1-18 1

 1874-107X/11 2011 Bentham Open

Open Access

Quantitative Framework for Managing Software Life Cycle

Anca-Juliana Stoica
1
, Prabhu Babu

2,
* and Peter Stoica

2

1
Department of Computer and System Sciences, School of Information and Communication Technology, Royal Institute

of Technology, Forum 100, S-164 40 Kista, Sweden.
2
Dept. of Information Technology, Uppsala University, Uppsala,

SE 75105, Sweden

Abstract: The paper presents a rigorous and practical way of managing the quantitative yields of new (improved)

software engineering methods in the software life cycle. A meaningful set of metrics and models is used to measure the

value of applying tailored methods. The value-based framework is proposed as a system of integrated models (such as

cost models, productivity models, quality-related models, benefit models, and value-related models) that combine project

data and expert opinion. The framework is proactive, as it allows to estimate the value-based metrics of a software

engineering method in order to monitor it, improve software quality and convince developers and managers that the

method and related investment are worthwhile. To demonstrate the applicability of the proposed framework, the results of

a case study are presented and used as an initial validation of the framework.

Keywords: Software engineeiring models, quantitative models, model systems, software engineering methods, software
measurement and metrics, decision framework, value-based framework.

1. INTRODUCTION

Exploring quantitative yields in the software life cycle
when introducing new (improved) software engineering
methods is a complex problem that needs to be addressed in
a systemic manner [1]. Relevant metrics and models have to
be selected, and their interrelationships have to be expressed
in a formal manner in order to detect possible inconsistencies
or incompletenesses. We defined a model system associated
with a particular software product life cycle as a collection of
models and the interrelations between them. A model system
will therefore contain all the relationships and constraints
between models and model elements contained in different
models. We used this concept in [1] to analyze multiple
facets of software development, and to derive a decision
framework for reasoning and value-based decision-making
in the software process [2].

In this paper we use the model system concept to address
the problem of quantifying the yields of new (improved)
software engineering methods and suggest a value-based
framework (VF). VF entails the application of interrelated
metrics and models from [3-7] for estimating the relevant
costs, the benefits translated into software quality
management and improvement, as well as the resulting
value-related metrics evaluated during the software system
life cycle. The framework is applicable at a high level of
abstraction and offers useful results from a practical point of
view, as our case study indicates.

The paper shows how metrics and models are connected
using a rigorous, consistent mathematical approach. Models
are easy to adapt to different situations and computational

*Address correspondence to this author at the Dept. of Information

Technology, Uppsala University, Uppsala, SE 75105, Sweden;

Tel: (46) 18-471-3394; Fax: (46) 18-511925; Email: prabhu.babu@it.uu.se

programs re-run to get the numerical and graphical results.
Also, the models are applied in a logical sequence by
combining project data and expert estimates within a value
framework. The metrics and models have been used under
actual project conditions: i) with data realistically collected
in an Experience Database, and ii) using the output provided
by static code analysers and formal inspections. The results
of a case study are presented where quantitative yields of the
formal inspection process are combined with the application
of the latest software quality standards (SQuaRE series) in a
hybrid software engineering method that combines agility
and discipline based on software quality management. The
results are obtained in a software division related to mobile
communications which is part of an international company
operating in Nordic and Baltic countries. Lessons learned are
drawn and presented in the conclusion section.

The paper is structured as follows. Section 2 is dedicated
to software engineering models, model systems, and
frameworks. Section 3 is a survey on existing software
engineering methods and some of the trends for the 21

st

century. Section 4 connects the two previously mentioned
sections using relevant high level metrics and measurements
for the software engineering field which are suited for our
purpose of quantifying the yields in the software life cycle.
Section 5 presents quantitative models for estimating the
yields of applying software engineering methods. Section 6
presents the results of a case study in which the models and
metrics are used for estimating the value of introducing new
(improved) software engineering methods. Finally Section 7
draws the lessons learned and concludes the paper.

2. SOFTWARE ENGINEERING MODELS, MODEL
SYSTEMS AND FRAMEWORKS

In the last two decades, it has been largely accepted that
software engineering is about producing models.

2 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

Researchers and practitioners from academia, industry, or
standardization organizations have developed and applied
software engineering models that are covering a broader
scope and are supposed to work interconnected in various
modes. Examples are: [8-12].

Identifying the relevant models (and the relevant aspects
to be considered) is an important task. Regarding the
technical software aspects, the OMG's Model Driven
Architecture view [12], for example, is based on the
Platform Independent Model and the Platform Specific
Model. So the platform is the relevant aspect which
corresponds more or less to a type of middleware (like an
Object Request Broker, a Hub, or an Application Server).
Another example of approach we can refer to is the
component-based view [13] which considers architecture as
the central aspect.

The views cope with the complexity of software systems
and represent abstractions of relevant information for the
models. Many other views are available to represent the
multiple challenging facets of modern software systems.
Frameworks are needed to integrate and analyse views
(models). Redundant information is used to verify
consistency and completeness between views.

Software engineering models associated with a particular
software product life cycle have to satisfy the definition of a
system, namely a collection of interrelating parts which,
when taken together, form a whole, having properties which
cannot be found in the constituent elements. We defined a

model system [1] associated with a particular software
product life cycle as a collection of models and the
interrelations between them (Fig. 1). A model system will
therefore contain all the relationships and constraints
between models and model elements contained in different
models. We defined a model in a similar manner as in [8],
namely a pattern of something to be made, a representation
or an analogy used to visualize and reason about the system
to be developed and maintained and its likely effects. The
model system represented in Fig. (1), shows that during
software system life-cycle, there are many stakeholders like :
system developers, acquirers, users, maintainers that are
involved in defining, developing, and eventually running the
system. Each stakeholder views the system from its own
perspective depending on his role and degree of involvement
in the system development and operation. In Fig. (1),
software engineering models of increasing level of detail and
faithfulness allow compliance of the stakeholders' demands
throughout the software system life cycle. These models can
be classified into the following categories : product, process,
property, and success models. Product models include:
conceptual product models, intermediate product models
(IPMs), and reified product models as ways of specifying
operational concepts, requirements, architectures, designs,
and code, along with their interrelationships. Reified product
models serve and satisfy the stakeholders.
Domain/environment models from Fig. (1), set context for
conceptual product models and provide parameters for
property models. Stakeholders determine relevance of

Fig. (1). Model system.

FRAMEWORK
DECISION

MODELS
SUCCESS

CONCEPTUAL
PRODUCT MODELS

MODELS
DOMAIN/ENVIRONMENT

PROCESS MODELS

Set
context
for

IPM 1

MODELS
PROPERTY

Provide parameters for

Concurrent with

Part of

Concurrent with

Provide parameters for

optimizing among
Enabling reasoning,

costs,benefits,
alternatives,
estimate

risks

Identify,

Provide parameters for

Provide parameters for
Provide parameters for

S
e

rv
e

 a
n

d
 s

a
ti
s
fy

Provide parameters for

Enable satisfying among

Provide parameters for

STAKEHOLDERSDetermine relevance of

Impose constraints on

IPM n

PRODUCT MODELS
REIFIED

product models
Intermediate

Are refinements of

Identify, prioritize

Provide evaluations for

Guide progress in selecting

Guide progress in selecting and reifying

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 3

domain/environment models. Process models are used by
software developers to create software. Examples are :
waterfall model, evolutionary developement model, spiral
development, rapid application development, iterative
development, agile development, hybrid development.
Process models guide progress in : i) selecting conceptual
product models ; ii) selecting and reifying intermediate
product models. Property models define the desired or
acceptable level and permissible trade offs for project factors
such as : cost, schedule, performance, reliability/availability,
security, portability, evolvability and reusability. Provide
evaluations for success models. Success models examples
are: stakeholder win-win, correctness proofs, business case,
results chains, stories, mission critical, IKIWISI (I'll know it
when I see it), user-centric. Stakeholders identify and
prioritize success models. Success models enable satisfying
among stakeholders. Sofware system life cycle includes :
requirements, design, implementation, testing, maintenance.
Other components are : forecasting (risk analysis, estimation,
planning), learning (process simulation, decision analysis,
problem solving, training). Decision framework from Fig.
(1), focuses on the complex problem of value-based
reasoning and optimal dynamic decision making among
stakeholders in the software engineering process. Process,
domain/environment, product, and property models provide
parameters for the decision framework. Decision framework
is part of success models and it is concurrent with process

and conceptual product models. Stakeholders identify and
estimate alternatives, costs, benefits and risks used by the
decision framework.

In Fig. (2) examples of software engineering models

included in a model system are given. The terms "model"

and "meta-model" are interchangeably used in this paper. It

is only the level of abstraction that makes the difference.

Model systems define also a notational and semantic

integration. Semantic integration means: i) what information;

ii) how it can be exchanged; and iii) how to detect
inconsistencies between interconnected models.

We used the software engineering models in a broader

context, to incorporate aspects of inter-disciplinary nature

from statistical decision theory, information theory, utility

theory, economics, and optimization theory to derive a

theoretical value-based reasoning and decision framework,

[2], that can be used to dynamically optimize decision

making in the software process when considering the risks

associated with the states of the world. Decision framework

is also an example of using interconnected models, such as:

dynamic decision trees, value of information, net present

value, and dynamic optimization with a net value criterion

defined as difference between the expected benefits and the

costs, evaluated over a defined time horizon. Fig. (3) is a

graphical representation of the decision framework [2].

Fig. (2). Examples of models included in a model system.

Fig. (3). Components of decision framework.

SOFTWARE
ENGINERRING

MODELS

PROCESS
MODELS

PROPERTY
MODELS

SUCCESS
MODELS

PRODUCT
MODELS

Waterfall
Spiral
RUP
Agile development
Hybrid development (agility and

discipline)
CMM's
ISO 9001
ISO/IEC 25000 Software cost models

Quality
Productivity
Performance
Reliability/Availability
Security

UML
Architectural patterns (e.g.

Model-View-Controller)
COTS software components (e.g.

J2EE)
XML / RSS
Product lines
OO analysis and design
Domain models

Win-Win
Results chains
Stories
Mission-critical
User-centric

Decision under Risk
Models

Decision Framework

Decision Methods in the
Software Process

Decision under Risk
Process-

Quantitative Analysis
Techniques

Dynamic Decision
Trees

Net Present Value

Dynamic
Optimization

Probabilities and
information

Expected
Value of Information

4 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

In this paper, for managing and quantifying the yields of

software engineering methods, we show that identifying core

technical and economic aspects are relevant for model

selection, like quality, productivity, costs, benefits, and

value. Having a formal description of these aspects helps to

define their scope, to understand their essence as well as

their interactions. This is also another example of our model

system concept. We consider these models as parts of a

value framework that we define as a collection of

interconnected models such as: cost models, productivity

models, quality-related models, benefit models, value-related

models, evaluated over the software life cycle when using

software engineering methods.

We use a model for each recurrent technical or economic
aspect of software, like quality, productivity, costs, benefits,
and value. These concepts and models are also equivalent
with the non-functional or emergent system properties that
depend on the software engineering method used for
software system development. We also call them "property
models" in the model system concept.

The two complex problems that are solved applying the
model system concept and their associated solution
frameworks, are shown in Table 1.

The two solution frameworks have a number of
interrelated aspects and models, that are shown in Table 2.

Problems from Table 1 may arise at a certain stage in the
software engineering process, namely at: i) a high level of
abstraction or software architecture level, or at: ii) a low
level of abstraction or detailed software implementation
level. Here we propose the use of high-level of abstraction
models to solve our problem from a practical point of view.

As an example, we use the model system concept
instantiation from Fig. (1) which includes decision
framework and value framework applied to web application
projects :

• Stakeholders: software development team, quality
assurance team, project manager, clients

• Decision framework: value-based analysis and
optimization of time-related major software
engineering or re-engineering investment decisions

• Success models: Win-Win [14], agility, quality
assurance (like achieving high usability,
maintainability, availability, efficiency)

• Domain/environment models: set the context for
conceptual product models. Example: Internet
communities of WAP/GPRS mobile phone users that
need new (high quality) multimedia services

• Conceptual/product models: architectural patterns e.g.
Model-View-Controller, commercial off-the-shelf
components (e.g. J2EE components), schedule-
constraint systems

• Process models: feature-driven, iterative, balancing
agility and discipline, formal software inspections

• Property models: quality, productivity, costs, benefits,
and value models included in a value-based
framework.

In Sections 4, 5, and 6 of this paper, we present relevant
quantitative metrics and models for the value-based
framework that satisfy the semantic integration principles
and their application for two projects: a reference project and
a real case project.

3. SPECTRUM OF SOFTWARE ENGINEERING
METHODS

Software engineering methods are structured approaches
to software development that include:

• design advice

• process guidance

• modeling approaches, usually visual and conceptual,

whose aim is to facilitate the production of high-quality
software in a cost-effective way. However, the software
engineering methods of today do not include quantitative
modeling approaches for estimating the IT yields in the
software life cycle. In this paper we use modeling concepts
and high-level models to quantitatively explore the yields of
applying software engineering methods.

A possible way of analyzing the current software
engineering methods, presented in [15], is by considering
their spectrum represented on a horizontal axis that is

Table 1. Complex Problems and Associated Solution Frameworks

 Complex Problem Solution Framework

 Value-based reasoning and optimal
decision making in software engineering process

 Decision framework

 Managing the quantitative yields of software engineering methods in
software life cycle

 Value-based framework

Table 2. Solution Frameworks and Associated Aspects/Models

 Solution Framework Associated Aspects/Models

 Decision framework DDT, VOI, NPV, DO, NV

 Value framework CM, WM, QM, BM, VM

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 5

associated (from left to right) with increased planning effort
(Fig. 4).

Examples of software engineering methods from the
spectrum follow :

Agile methods - adaptive, rather than predictive; people-
oriented rather than process-oriented; code-oriented
methods; have different approaches, such as: Agile Modeling
[16]; Crystal Methods [17]; Dynamic Systems Development
Method [18]; Feature-Driven Development Method [19];
Scrum [20]; Extreme programming [21].

Adaptive Software Development [22]: center-left; based
on the principle of continuous adaptation of the process to
the work at hand.

Milestone risk-driven methods examples are: Unified
Software Development Process, Rational Unified Process
[23]; Model-Based Architecting and Software Engineering,
based on the Spiral Model [8]. These methods incorporate
software engineering practices; the time dimension is
associated with the Inception, Elaboration, Construction, and
Transition phases, their associated major milestones (or
anchor points), and their respective iterations; provide
guidelines for applying software engineering methods that
are characterized by providing support for both discipline
and flexibility using software risk management.

Milestone plan-driven approaches examples are:
Personal Software Process / Team Software Process [24, 25],
Cleanroom [26], Capability Maturity Model [27], ISO/IEC
software quality management standards [28-30].

Personal Software Process / Team Software Process are
structured frameworks of: forms, guidelines, and procedures
for developing software; Personal Software Process is
directed towards the use of self-measurement to improve
individual programming skills; Team Software Process
builds on Personal Software Process and supports the
development of industry-strength software done by team
planning and control.

Cleanroom method uses statistical process control and
mathematics-based verification to develop software with
certified reliability.

Software Capability Maturity Model (SW CMM) is a
software engineering method approach, based on highly
disciplined software processes in aerospace and commercial
industries; process improvement framework grew out of the
need for Air Force to select qualified software developers;
collects best practices into Key Practice Areas that are
organized into 5 levels of increased maturity; focuses on
project management, rather than product development; no

rapid application development techniques; no risk
management as key process area.

Capability Maturity Model Integrated (CMMI) - covers a
broader part of the method spectrum and includes:
integration of software and system CMMs; suite of models
and appraisal methods that address a variety of disciplines
using common architecture, vocabulary, and core of process
areas; process areas for risk management, integrated
teaming, and an organizational environment for integration,
to include agile methods.

International Organization for Standardization (ISO) -
the ISO 9001 Quality Management Systems - Model for
Quality Assurance in Design/Development, Production,
Installation, and Service [30], followed by ISO/IEC software
quality management and process standards like : ISO/IEC
90003 [28], and ISO/IEC 25000, the SQuaRE (Software
Quality Requirements and Evaluation) series [29] .

Besides the agile, milestone risk-driven, and plan-driven
methods we can also mention:

Hybrid methods [31, 32] that combine agility and
discipline using software risk management and a unified
process process framework to tailor risk-based processes into
an overall development strategy.

The method application depends on the type of product to
be developed and maintained.

• For large systems, a strictly managed process is
needed.

• For smaller systems, more informality is possible,
without neglecting quality assurance aspects, which
we consider a future need (besides rapid value) to gain
competitive advantage for software organizations.

Our experience also shows that there is no uniformly

applicable method that should be standardized within an

organization. High costs and low value may be incurred if an

inappropriate method is forced on a development team.

Future trends for the 21st century processes and methods

that we can mention here are:

a) In the area of developing large- to very large scale

software-intensive systems and systems-of-systems, the

Emerging Scalable Spiral process model described in [33]

will cope with increasing integration of software and system

engineering; emphasis on users and end value, dependability,

rapid change, global connectivity, interoperability; needs for

COTS, reuse, legacy system and software integration; and

computational plenty.

Fig. (4). The spectrum of software engineering methods, adapted from [15].

6 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

b) In the area of developing small- to medium scale
software systems, future methods will possibly be of a
hybrid nature, in order to scientifically combine agility and
discipline using in addition to software risk management
[32], some other principles, like software quality
management.

In order to get competitive advantage on the market,
rapid value will not be sufficient, and high assurance
compliant with the emerging software quality standards will
be a good solution [34].

Our paper contains results on exploring quantitative
yields when using an improved software engineering
method. The method used is hybrid software system
development and evolution with emphasis on quality
assurance. Hybrid approaches are feasible and necessary for
projects that have a mix of characteristics, like Project 2
from Section 6. Fig. (5) shows the product quality factors
considered here.

4. METRICS AND MEASUREMENTS IN THE
SOFTWARE ENGINEERING FIELD

In this section, we introduce metrics and measurements
that are relevant in our context. The metrics have to combine
the software engineering know-how of measurement experts
with the domain know-how of developers. Our metrics will
refer to software system process, product, and property
metrics.

4.1. General (Basic) Metrics

In order to explore the quantitative yields in the software
life cycle, we identified a number of basic metrics as follows
:

Size (S) related to a software product that can be
estimated as: source lines of code [SLOC], function points
[FP], object points [OP], or use-case points [UCP].

Effort (E) - for software development or maintenance
estimates how many person. months, [PM] or person. hours,
[PH] are needed for the development or maintenance stages
of the software life cycle:

E = f (S) (1)

Cost (C) - is also associated to development or
maintenance stages of the software life cycle:

 C = E * c (2)

where:

• c - unit labor cost, [m.u./ PH], m.u.=monetary units.

 Schedule

(T) - measures the calendar time a process

requires, in [months], or [M]:

T = g(E) (3)

Productivity

(W) - measures software process output per

unit of effort

[output / PM] , under a very important

assumption, namely that the project is well-managed and
does not make a wasteful use of resources. This is an
important responsibility for the project manager and all the
project members :

W =
S

E
 (4)

Quality

(Q) - can be measured with respect to the

number of defects a process yields, relative to the process
output, and is given by:

Q = (1 DD) *100, [%], (5)

where:

• DD- defect density [defects/SLOC].

 There are many definitions of quality. Sometimes,
quality is associated with a large number of attributes, like in
the software quality standards models, such as the ISO/IEC
software quality SQuaRE series.

DD from (5) is not only used for measuring code quality,
but it is also used for managing software projects, as it was
done in our case study from Section 6.

 Reliability, (R), is the probability that the system will not
fail per given unit of time.

 Average Staffing, (A), in full-time software personnel,

[FSP] , for development or for maintenance is given by:

A =
E

T
 (6)

Documentation, (DOC) [pages] is estimated as a function
of the software size:

DOC = h(S) (7)

Remark: Functions (f), (g), (h) from (1), (3), (7) are
determined by applying: i) the algorithmic cost modeling
approaches described in [3, 5]; ii) expert judgement, and iii)
estimation by analogy.

Performance, (P) or effectiveness of a software system
measures the output (e.g.: transactions, for a transaction
processing system) per unit of time: P[tr/sec].

Efficiency - measures system performance or
effectiveness relative to resources consumed.

Customer Satisfaction - measures how well the clients
are served, and can be expressed using ratings that are
associated with a numerical scale.

 Innovation - for modern software products, like Web-
based applications, measures the range and creativity of

Fig. (5). Product quality factors.

PRODUCT QUALITY
PROCESS
QUALITY

COST, TIME AND
SCHEDULE

DEVELOPMENT
TECHNOLOGY

PEOPLE
QUALITY

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 7

products and services that are offered to the clients. Can be
measured in the same manner as the customer satisfaction.

4.2. Specific Quality-Related Metrics

We focus on the following relevant metrics :

 Defect Density, (DD), is measured by the number of
defects ND relative to the software size S, [defects/SLOC]:

DD =
ND

S
 (8)

The defects remaining in the software after the project
was completed can be found in: requirements, designs, code,
or test cases. Therefore, DD it is not only a measure of code
quality, but also a way of properly managing software
projects.

Defect Removal Efficiency,

(DRE) in [%] is given by:

DRE =

DR

DE + DI
*100, [%], (9)

where:

• DR- number of defects removed

• DE- number of defects inherited (existent)

• DI- number of defects injected

 DRE is connected to a specific software appraisal
activity, such as individual reviews, testing, automatic static
and dynamic code analysers, etc. In Section 6 we present the
results obtained by using models for evaluating the
quantitative yields in software life cycle, generated by
applying an improved software engineering method, and
using the above mentioned software appraisal activities.

 DRE can be applied on a phase-by-phase basis, or activity-
by-activity basis in order to evaluate the effectiveness of a
phase or individual activity in the software process.

Defect Removal Model -

(DRM) ,

[defects] , is given by:

 DRM = DE + DI DR (10)

An important observation here which connects metrics
from subsections 4.A and 4.B is that effort, cost, and
schedule (E, C, T) basic metrics are linked to the software
quality metrics, in the sense that if software quality targets
are not achieved, all the three basic metrics will be exceeded
significantly.

Measurements in software engineering and the associated
quantitative models and analyses are an integrated discipline,
rather than stand-alone processes. Some relevant examples
are: software quality, software reliability or availability,
software structure and design metrics, software system cost
estimation, or software security metrics.

Despite its importance, most software organizations do

not perform any software engineering measurement at all,

and do not collect their past project data in experience

databases in order to use quantitative models and analyses

and gain competitive advantage on the market. Only world-

class software organizations or organizations that aim at

achieving peak operational efficiency and competitivity are

using these techniques. Project from Section 6 is an example
of software development in such an organization.

5. QUANTITATIVE MODELS FOR ESTIMATING
COSTS, BENEFITS, AND VALUE OF SOFTWARE
ENGINEERING METHODS

In this section we present a value-based framework
consisting of related quantitative models for estimating costs,
benefits, and business value of a subset of software
engineering methods that share common characteristics such
as: i) emerging and industry standards for improving product
quality, productivity, and performance, as well as software
management performance; ii) defined, repeatable,
measurable, highly beneficial, and in common use; iii)
requiring specific training to apply and relatively expensive
to use.

The framework is instantiated for the formal software
inspection method (SIM) as being one of the most used
software engineering method. SIM consists of special type of
meetings held to objectively identify the maximum number
of defects in software work products and to improve
software quality. Basic principles that govern SIM are:
technical peers identify defects; defects must be corrected
without suggesting solutions or interference from the
originator of work product; technical experts cannot suggest
design alternatives or subjective improvements to the
product.

Formally, SIM consists of six stages:

1) Planning (schedule, announce, coordinate)

2) Overview (communicate, educate, learn)

3) Preparation (study, analyze, examine)

4) Meeting (facilitate, identify, record)

5) Rework (search, repair, finalize)

6) Follow-up (verify, measure, report).

The net result of applying these formal stages is the
transition from an initial draft, pre-baselined, and high-
defects product, to a final, baselined, and low-defects
product. The six stages are designed to: add value, structure,
repeatability, measurability; optimize the number of defects
identified, thus optimizing software quality.

SIM can be applied: at the end of software life cycle
(SLC) phases; after work products have been completed
within individual phases; at critically important decision
points within SLC; as a scheduled event in software project
plans, not as an ad-hoc activity subject to preemption.

5.1. Quantitative Models for Estimating Costs

5.1.1. Cost Components

C

SIM
= C

D
+C

M
+C

T
+C

I
+C

TR
 (11)

where:

•

C

SIM
 - complete cost when applying SIM

•

C

D
 - software development cost

•

C

M
 - software maintenance cost

8 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

•

C

T
 - software testing cost

•

C

I
 - cost of implementing SIM

•

C

TR
 - cost of training

5.1.2. Total life Cycle Cost

TLC

SIM
= (S * K T

I
*99 T

T ,a
*9) * c (12)

where:

 •

TLC

SIM
 - total software life cycle cost, that includes

software development and maintenance costs, and reflects

the effects of applying models for estimating: defect density,

software quality, defect removal, and defect removal

efficiency

• S - estimated software size, [SLOC]

• K - average software development and maintenance
effort per SLOC [PH/SLOC], without using formal
inspections or testing

•

T

I
 - calculated (planned) time for inspections, [H]

•

T

T ,a
 - calculated total time for testing, after applying

the inspections, [H]

• c - labor cost per hour [m.u./PH], m.u.= monetary
units

TLC is based on a model suggested in [7] and applying

the economics of SIM, software testing and software

maintenance. Conservative assumptions are that a defect

may be repaired in: 1 hour using SIM, 10 hours using

software testing, and 100 hours using software maintenace.

In [7] it is suggested that K=10.51 for modern intermediate-

to medium scale software systems, but equation (12) can be

calibrated as a function of: development and maintenance

effort, defect removal efficiency, and inspection and testing

efficiencies.

We estimate first the the components of the total cost,
from (11).

Cost of training:

C

TR
= c

TR
* N (13)

where:

•

c

TR
 - cost of training per person [m.u./P]

• N - team size for development, persons [P]

Cost of implementing SIM:

C

I
= (n

M
* t

SIM run
) * c (14)

where:

•

n

M
 - number of meetings to implement SIM

•
SIM run

t - time per SIM run (given by the activities

included in a SIM run: planning, overviews,

preparation, meetings, rework, and follow-up)

Number of meetings to implement SIM:

n
M

=
S

ir

 (15)

where:

• ir - average inspection rate [SLOC/meeting]

Calculated (planned) time for inspections can be

estimated using two alternative methods, and we denote the

results by
(1)

I
T and

(2)

I
T :

T

I

(1) = n
M

* t
SIM run

 (16)

T
I

(2) =
i=1

p ps
i

rr
i
* 2

* (N * 4+1) (17)

where:

•
i

ps - work product size per phase (ex.: number of
requirements, number of diagrams, number of SLOC,
or number of test cases)

•
i

rr - review rate per hour and phase (req/H, diagr/H,

SLOC/H, or tc/H)

Based on
(1)

I
T and the time required to find a defect

using software inspections, the number of defects that are
detected by formal inspections is given by:

n
D ,I

=
T

I

(1)

t
D ,I

 (18)

where:

•
(1)

I
T - calculated (planned) time for inspection

•
,D I

t - average time to find a defect by inspection

If we assume that
,D S

n is the number of defects existent
in the software before inspections (relative to the estimated
software size), then the remaining defects after applying the
inspections are:

n

D ,R
= n

D ,S
n

D ,I
 (19)

where:

•

n

D ,R
 - number of remaining defects after applying

SIM

•

n

D ,S
 - number of defects existent in the software

•

n

D ,I
 - number of defects detected by SIM.

Now suppose that we apply software testing to deal with
the remaining defects, and that the effectiveness of the
testing process is estimated by the

T
e parameter. Then the

number of defects that software testing is detecting is given
by:

n

D ,T ,a
= e

T
* (n

D ,S
n

D ,I
) (20)

where:

•

n

D ,T ,a
 - number of defects detected by software

testing, after applying the inspections

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 9

•

e

T
 - effectiveness of software testing

Assuming that we can estimate an average time to find a
defect by testing,

,D T
t , the cost of testing for the remaining

defects is given by the formula:

C

T
= (n

D ,T ,a
* t

D ,T
) * c (21)

where:

•

C

T
 - cost of testing for the remaining defects

•

t

D ,T
 - average time to find a defect by testing

If

t

D ,T
 is the estimated time to find a defect by testing,

then the total time for software testing after inspection is:

T

T ,a
= n

D ,T ,a
* t

D ,T
 (22)

Now we have all the necessary components to estimate
the total life cycle cost by applying (12). The maintenance
cost

M
C can be obtained using:

C

M
= TLC

SIM
(C

D
+C

I
+C

T
) (23)

We have estimated all the cost components

C

D
,

C

M
,

C

T
,

C

I
,

C

TR
 when using the improved software engineering

method to help develop a software system:

•

C

D
 is estimated using software cost estimation

models and averaging techniques [3-5]

•

C

M
 is estimated using formulas (23), (12), (14), (21)

•

C

T
 is estimated using formula (21)

•

C

I
 is estimated using formula (14)

•

C

TR
 is estimated using formula (13).

5.2. Quantitative Models for Estimating Benefits

5.2.1. Gross Benefit

GB = TLC

b
TLC

a
 (24)

where:

• GB- gross benefit

• TLCb - total life cycle cost before applying SIM

• TLCa - total life cycle cost after applying SIM

TLC

b
= (S * K T

T ,b
*9) * c (25)

where:

•
,T b

T - total time for testing without applying SIM

TLC

a
= (S * K T

I
* 99 T

T ,a
* 9) * c (26)

where:

•
,T a

T - total time for testing after applying SIM

,T b
T is different from

,T a
T because basically applying

SIM reduces the number of defects remained to be detected
by testing:

T

T ,a
< T

T ,b
 (27)

If we estimate the following input variables:

•
,D S

n - number of defects existent in a software

system of size S

•
T

e - effectiveness of software testing

•
,D T

t - average time to find a defect by testing

then we compute the defects detected by testing before
applying SIM as:

, , ,
= *

D T b T D S
n e n (28)

It follows that
,T b

T can be calculated as:

, , , ,
= *

T b D T b D T
T n t (29)

We can now apply (25), (26) and calculate total life cycle
cost before and after applying the SIM based on:

•

T

I
 - that was previously calculated using (16) or (17)

•
,T a

T - which is calculated using the same reasoning
as

T

T ,b
, but with the number of defects detected by

testing after applying software inspections and given
by (22).

So, using (26) we can compute the total life cycle time
after applying SIM, and then using both (25) and (26) we get
the gross benefit from (24).

5.2.2. Net Benefit

NB = GB AC, (30)

where:

• GB- gross benefit [m.u.]

• AC- additional cost due to using SIM [m.u.]

AC = C

I
+C

TR
, (31)

where:

•

C

I
 - cost of implementing SIM [m.u.]

•

C

TR
 - cost of training [m.u.]

5.3. Quantitative Models for Value Estimation

The following models are useful in this context:

5.3.1. Benefit-to-Cost Ratio

BCR =
GB

AC
 (32)

where:

•

GB = TLC

b
TLC

a
 is the gross benefit

• TLC- total life cycle costs before applying SIM, given
by (25)

• TLC- total life cycle costs after applying SIM, given
by (26)

• AC - additional cost, due to using SIM, given by (31).

10 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

5.3.2. Return on Investment

ROI =

NB

AC
*100, [%] (33)

where:

• NB- net benefit, given by (30)

5.3.3. Net Present Value

 Net present value of gross benefit, or discounted gross
benefit is today's value of future gross benefit GB , which is
going to be generated during the software life cycle:

NPV (GB, r, n) = GB
D

=
GB

(1+ r)n
, (34)

where:

• r - discount rate per year

• n - estimated life cycle time, [years]

 Based on

GB

D
, we can also compute the discounted net

benefit:

NB

D
= GB

D
AC, (35)

where:

 • AC- is the additional cost, due to using SIM, given by
(31) [m.u.]

 The return on investment using the net present value of
net benefit is given by:

ROI

D
=

NB
D

AC
*100, [%] (36)

 The quantitative model (36) is a more accurate estimate
of the ROI, taking into account the time value of money:

ROI

D
< ROI (37)

5.3.4. Breakeven Point

The breakeven point is used for economic forecasting
because it shows when the profits will begin to flow, or
when profits will be above some level of expenditures (in
units of time or units of work products). It helps the
decision-making process and allows us to optimize the value
of applying a software engineering method. We use the
following model for estimating the breakeven point in
[m.u.]:

BEP =
AC

1 W
b

/ W
a

, (38)

where:

• AC - additional cost, due to using SIM, given by (31)

•

W

b
 - software productivity before introducing SIM,

[SLOC/PH]

•

W

a
 - software productivity after introducing SIM,

[SLOC/PH]

W
b

=
S

E
LC ,b

 (39)

E
LC ,b

=
TLC

b

c
, (40)

where

TLC

b
 is given by (25). Similarly,

W

a
 is the software

productivity after introducing SIM:

W
a

=
S

E
LC ,a

, (41)

where:

E
LC ,a

=
TLC

a

c
, (42)

and

TLC

a
 is given by (26).

Another way of expressing BEP is in units of time, e.g.
hours [H], after the project start, when the benefits will
become larger than costs:

T

BEP
=

BEP AC

N * c
, (43)

where:

• N is the project team size, persons [P]

• c is the cost per person and hour, [m.u./PH]

5.4. Input Parameters for Using the Quantitative Models

• S - software size, [SLOC]

• N - average team size for the project, persons [P]

• cTR - cost of training per person, [m.u./P]
*

•
SIM run

t - time per SIM run, [H/run]
*

• ir - inspection rate, [SLOC/meeting]

•
i

ps - product size per phase (number of

requirements, or diagrams, or SLOC, or number of

test cases)

•
i

rr - review rate per hour and phase [product size/H]

• c - labor cost per hour, [m.u./H]

• tD.I - average time to find a defect using formal

inspections, [H/defect]

• nD.S - estimated number of software defects before

using SIM, [defects]

•
T

e - software testing efficiency, [%]

• tD.T - average time to find a defect by testing,

[H/defect]

• ED - software development effort [PH], obtained from

several cost estimation models averaged together

using a Delphi method

• r - discount rate per year [%]

• n - estimated life cycle time [years]

• T - schedule [hours]

• nM - number of meetings [meetings]

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 11

• K- average software development and maintenance
effort per SLOC [PH/SLOC]

• *
TR

c and
SIM run

t are method-specific parameters

6. RESULTS

The models and framework presented in previous
sections have been used to manage and evaluate the
quantitative yields in the software life cycle when applying
new (improved) software engineering methods.

The results are presented for two projects : Project 1 is an
illustrative example for our value-based quantitative
framework; Project 2 is a case study developed using a
hybrid software process balancing agility and discipline with
software quality management.

Our framework is instantiated for projects having
common characteristics such as: web-based small to
intermediate size projects; stakeholder commitment based on
Theory W principles; incremental development and delivery;
balancing agility and discipline; quality management done
through the whole software life cycle; use of a tailored
software engineering method.

6.1. Case Study

The company-based case study focus is on managing
small agile projects with project deliverables for
telecommunication sector users. The company is a leading
software development company specialized in software
product engineering services with many years of experience
with solutions covering the whole product life cycle. The
vision is to capture a larger market size and become more
attractive to customers by developing better software quality
products and managing better software development
processes.

1). Project Description

The goal of this project is to publish Web Logs (Blogs),
via WAP or GPRS to the customers of software owner
(telecommunication company). Publications are delivered to

application by RSS (RSS is a family of XML file formats for
web syndication used by weblogs) and server creates pages
that are suitable for mobile stations to read.

Personnel Details

Three persons: project manager between Cockburns [17]

level 1A and 2, developers Cockburns level 1B. Scheduling
and planning: iterations-driven development.

Refactoring and re-usage of components was considered
when project estimation was done.

Estimating size of source code was done based on

previous experience (similar projects). Since a lot of
components were the same, the analogy was possible.

Development was feature-driven. Project manager
divided tasks (features) and programmers started working on
it. Project manager took care of daily problems and most of
the customer communication. Programmers and project
manager had several meetings in a week (quality related
meetings and status meeting). In the beginning of iteration,
there was a kick-off meeting, where the requirements were
discussed and tasks divided between developers.

Customer was always available. Not on-site, but via
messenger, phone or email.

Technical Details

Design was kept as simple as possible. The design was
done in the beginning of iteration and it took into
consideration only requirements that the iteration had.
Testing was scenario based and took place at the end of
iteration. Documentation was mainly in company's WIKI (a
website that allows the creation and editing of any number of
interlinked webpages via a web browser using a simplified
markup language). Only important documents were
published (Administrator and Configuration Guide, User
Guide, Project Quality Evaluation Plan). The source code
was committed to SVN repository and it had to compile. The
SVN repository always contained the latest working source
code, because developers integrated their code one at a time

Fig. (6). Case study project dimensions.

���������
���������	
� ����������������

	���

����

	�
�
��
��
������������������������������

����
	
��

	
��
�
����

����
��
���� �
����
�����

�����������

�������
��������������� �!�"�#����!�

�
��
�$��%���������������� 	������

���&!�����"�����!�����'�������

��

��

� ��

��

��

��
��

��
� �

�

��

��

���

���

��

 �

��

��

��

!�
��
"���#��
���

���((�)�**�����+������,�������+������

12 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

after finishing a feature. The decision was to use SVN,
because it is a promising technology and the company vision
and goal is to always use the best technology.

2). Polar Chart

The polar chart represents the project dimensions in 5
different areas: size, criticality, personnel, dynamism, and
culture and gives a good overview of the project. The main
reason for this graphical representation is to see whether the
project is characterized as an agile, plan-driven, or hybrid
(Fig. 6).

The five areas correspond to the five critical factors
involved in determining the relative suitability of an agile,
plan-driven, or hybrid method in a particular project
situation and are described in [32].

As seen from the chart in Fig. (6), not all results in

different axes are close to the centre. It means that this

project should use a hybrid software development method to

achieve the best results, with application of ISO/IEC

SQuaRE quality standards that add plan-driven activities.

This is a concise graphical representation of the project

dimensions, that has to be accompanied by a list of practices

and techniques used in the project as well.

3). “4*4” Softwear Project View Model

Our “4*4" view model applied to the case study project is

shown in Fig. (7).

In Fig. (7), software project view model has 4 areas:
application, management, technical, and personnel

Fig. (7). The ``4*4" software project view model applied to the case study.

Table 3. Estimates Per SIM Run

 SIM Stage Participants No. of Persons [P] Time [H/P]

1. Planning moderator 1 0.5

2. Overview all N 1

3. Preparation inspectors N-1 1

4. Meeting all N 2

 5. Rework workauthor 1 1

6. Follow-up moderator 1 0.5

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 13

characteristics and each area is divided into 4 sub-
characteristics.

A. APPLICATION CHARACTERISTICS

1. Rate of Change

How often the requirements and stakeholders needs
change over time?

2. Project Size

Number of persons in the project. The smaller the
number the better is to adopt an agile method. If the number
of persons is high, scalability is low and vice versa (if the
number of persons is low, scalability is high). Different
sources use different numbers about the number of
participants that is best or the upper limit for agile projects.
In case of Crystal Clear agile method [17] the number is up
to 8, but [32] describes even an agile project that had 50
persons. This number depends a lot on communication skills
of the development team. We suggest 20 people as a
reasonable team size to hold a meeting and to have a
meaningful communication process.

3. Criticality

How large is the loss due to the impact of software
defects?

4. Number of Iterations

If customer has rapid need of software and if there are
more than one software releases (product oriented), then it is
not one project release, which illustrates most of the plan-
driven (process controlled) methodologies.

B. MANAGEMENT CHARACTERISTICS

1. Planning

Does the project have detailed plans in the beginning or it
plans iteration by iteration. There are differences between
agile and plan-driven software development planning. Plan-
driven prefers highly detailed schedules, which cover the
whole project. Agile processes prefer planning one iteration
at a time. They have general plan for the whole, but they
plan only necessary amount.

2. Level of Trust

How much team members trust each other. If project
members prefer to get the information on documents (web,
specifications, etc.), instead of asking from the others, then it
is a sign of not trusting the other one (it also indicates
problems with communication and team building).

3. Communication Type

How is team communication specified? If there are

separate project teams and each of them has a team leader,

then how do members of separate teams communicate? Do

they speak to their team leader or directly to each other?

4. Knowledge Type

Tacit knowledge or documented knowledge? Even

agilists write documents, but they draw a line between

necessary and exhaustive.

C. TECHNICAL CHARACTERISTICS

1. Importance of Non-Functional Requirements

The importance of non-functional requirements shows

circumstantially the criticality. It describes how reliable,

secure, safe, well performing, usable, efficient, portable and

ethical the software system is.

2. Design

Is the design as simple as possible and changeable when
necessary or is there an extensive design done at project start ?

3. Overall Time Spent for Documentation

How much time the team spends for documentation and
reviews.

4. Testing

Which approach did the project follow: test-driven
development (executable test cases) or documented test plans
and procedures ?

D. PERSONNEL CHARACTERISTICS

1. Organizational Culture

How does the team perform best: thriving on chaos or on
order?

2. Level of Personnel

Has the team more high skill level people or team
members have both high and low skill levels?

3. Customer Communication

How and how often did the development team
communicate with the customer? Agile methodologies prefer
on-site or at least retrievable customer. Plan-driven
customers usually are retrievable during requirement
specification but not so much after it.

4. Attitude Towards Programming

The development team members view to programming.
Are they thinking that programming is an art or developers
think that programming is an industrial process?

Table 4 summarizes the “4*4" software project view
model instantiated for agile and plan-driven methods.

How to apply the “4*4" software project view model:

In Fig. (7), on the left side there are agile characteristics
and on the right side plan-driven characteristics. From the
project description and for each characteristic in the “4*4”
model mark one side that is more appropriate (agile/plan-
driven). It is possible to mark both sides as well, if project
description requires it. In the end if all choices are made, the
“4*4”software project view model will show whether the
project will make best use of an agile, plan-driven, or a
hybrid method.

The purpose of this model is also to reveal the different
facets of the software development project.

After applying the model, it is easy to see that there are

agile characteristics and few plan-driven characteristics, thus

14 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

Table 4. The ``4*4" Software Project View Model

 Software Project Characteristics Agile Software Development Plan-Driven Software Development

 A Application characteristics

 1 Rate of change High Low

 2 Project(team) size Smaller (up to 20 persons) Larger (more than 20 pers.)

 3 Criticality Low Highly critical projects

4 Number of iterations Product-oriented Given by project plan

 B Management characteristics

 1 Planning Based on practices Documented project plan

 2 Level of trust High Low

3 Communication type Mixed type Hierarchical

4 Knowledge type Tacit knowledge Explicit knowledge

 C Technical characteristics

 1 Importance of non-functional requirements Lower Higher

 2 Design As simple as possible Detailed initial design

 3 Overall time spent for documentation Low High

 4 Testing Test-driven development Documented throughout the project

 D Personnel characteristics

1 Organizational culture People thrive more in chaos People thrive on order (policies and proce-

dures)

2 Level of personnel More highly qualified members Vary with the project complexity

3 Customer communication On-site customer Refined communication by the book (formal

relationship with customer)

4 Attitude towards programming Programming is an art Programming is an industrial process

Fig. (8). Project case study quality model.

this project will use a hybrid software development
method: agile with influences from plan-driven
development.

4). Quality Model

Quality model used is based on the ISO/IEC quality

model (see Fig. 8). Dark colours represent the case study

quality model and light grey colours indicate ISO/IEC
quality characteristics that were not considered.

5). Techniques and Practices

The real-life case study used a hybrid software
engineering method characterized by a number of specific
techniques and practices such as:

Iterative Development - Project had several iterations.
Iteration length was from 2 weeks to 5 weeks

Small Team - Lead developer, project manager and a
developer

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 15

Documentation - only the following documents were
produced: initial requirements specification , administrators
guide, architecture and design document, and quality project
plan. Tacit knowledge - agility is achieved with tacit-
knowledge instead of documenting everything

Osmotic, Real-Time Face-To-Face Communication -

Communication was picked up already by hearing others talk

about something related to the project. Most of the time

discussions were made in a room where all project

participants were working

Feature Driven Development [32] - Tasks for
development were not divided by stories or cards.
Implementation tasks were divided by features of new
software

Spiking, Walking Skeleton [17] - Before designing, a
spike had to be made to be sure that it is possible. This was
to eliminate technological risks

Simple Design - Incremental re-architecture. Design was
developed step by step

Estimation using Comparison and Analogy - Estimates
were done based on experience using comparison and
analogy technique

Information Radiators - While discussing, drawing on
design whiteboards was used

Access to Expert User - Team members had direct
access to the customer via email

Frequent Delivery - SVN was used to keep compiling
code. Always when a feature was implemented, it had to be
implemented with the code in SVN. Repository usage
offered the possibility to apply continuous integration, but
then the automated unit tests would have been needed to
complete or maximize the benefits of continuous integration.
The automated tests were not in the scope of this project so
continuous integration was implemented only at very high
level each time somebody added something to the repository,
one had to check compilation and test main features

Kick-Off Meeting - Kick-off meeting was held in the
beginning of iterations

Status Reporting - After every week there were a status
meeting. Daily stand-up meetings were unnecessary because
project team was small and the information was always
available to everybody

Code Reviews - There were two different activities: code

review and code inspection. Code review is a brief

inspection were the project manager divided source files

between reviewers and the reviewers were looking at the

general problems of source code (following the coding

standard, monitoring, safety and names of classes,

parameters and methods). Code inspection is applied when

reviewers are looking more deeply into the source code

functionality

Measurements of Quality Characteristics - The

measurement activities are activities where somebody has to

measure a quality characteristic specified in the quality plan.

Whether there was a tool to measure a characteristic or not,

the responsibilities were the same: first take the

measurement; second write a short report about it to WIKI

(when was the measurement taken, why was it taken, who

took it, which method was used to measure a characteristic)

Burn Charts - Burn charts are effective way to present

project status. Burn charts are graphical charts e.g. earned

value vs. scheduled value [17]. This project used earned

value graph in time (see Fig. 9). As seen from the graph, on

February 16th the project had not achieved its estimated

goals. Some features were missing by that time. In this

project developers could easily see the value that they had

produced compared to the expected value. Features still to

complete axis values were calculated using experience and

analogy. All features got a relational weight and the total

weight was the sum of all weights. After a feature

completion , the total weight at that moment was increased

and the corresponding line was represented in Fig. (9).

Fig. (9). Burn chart for the case study.

�������$�
��
��$���%����

��&$'��&���

(&$��)&���

�(&$��)&���
�*&$��)&���

��&$'��&���

+
����&��&���

��&��&���

��&��&���

	�����, ������$%���� �-%�����$%����

'�-��������������+��.����������

16 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

6). Case Study Conclusions

First, the case study used a hybrid software development

method adapted to: i) project main characteristics, and ii)

software development organization objectives of delivering

high quality systems applying software quality standards and

improved software development methods. It turned out that

there were no major clashes applying the principles of

ISO/IEC standards compared with the principles of agile

manifesto. The only conflict area is the agile principle:

responding to change following a plan, as ISO/IEC SQuaRE

principles add some plan-driven characteristics to the agile
foundations.

Second, a program was elaborated for applying an
improved software engineering method. The guidelines for
the program application are summarized as follows: creating
an evaluation group ; creating a Quality Evaluation Project
Plan; following the plan by appropriate quality activities.

Third, measurements, metrics, and models from Sections
4 and 5 that are inter-related in a systemic quantitative
framework have been used. These allowed testing and
validation of agility together with the ISO/IEC software
quality standards in real life following the guidelines and
achieving the expected quality goals.

Remarks:

a) Software quality metrics are measured with Research

Standard Metrics (RSM) tool.

b) Quantitative economic yields of applying new

(improved) software methods are calculated (estimated)

using the value-based framework.

In the next paragraph we present the final results of

applying the value-based framework.

6.2. Quantitative Framework Application

Metrics, models and formulas from Sections 4 and 5 are

used to calculate quantitative yields of improving software

engineering methods and therefore the quantitative yields of

the improvement that will be made into the software

development process. These formulas take into consideration

the actual costs and benefits before (using an old software

development process) and after a new improved software

development process is applied and with some assumptions

all economical indicators are calculated.

Before looking at the results, the assumptions made
before applying the models, must be outlined. These
formulas need different input parameters and different
assumptions. First assumption is that the improvement made
to software development process is similar to applying the
Software Inspection Method (SIM). It must be mentioned
that the guidelines of ISO/IEC SQuaRE quality standard are
quite similar.

The input parameters for applying the quantitative
(value-based) framework are summarized in Table 5 for
Project 1 (illustrative example for our VF application), and
Project 2 (case study).

The results obtained for the two projects by applying the
models included in the value-based framework for managing
software life-cycle when a new (improved) software
engineering method is used are presented in Table 6.

The main results from Table 6 can be summarized as
follows: the return of investment (ROI); the gross benefit
(GB) or the difference between life cycle costs before and
after applying the new software engineering method - related
to the number of defects that were actually found in the
software; the net benefit (NB) by applying a new (improved)

Table 5. Input Parameters for the Quantitative Models

 Parameter Unit Project 1 Project 2

S [SLOC] 10000 3020

N [P] 4 3

c

TR
 [m.u./P] 100 38.5

t

SIM run
 [H/run] 17 12

 ir [SLOC/meeting] 240 1510

 c [m.u./H] 100 38.5

t

D ,I
 [H/defect] 1 1

n

D ,S
 [defects] 1000 30

e

T
 [%] 66.67 50

t

D ,T
 [H/defect] 10 10

E

D
 [PH] 5088 360

 r [%] 5 10

 n [years] 4 4

 T [hours] 400 120

n

M
 [meetings] 42 2

 K [PH/SLOC] 10.51 10.51

Quantitative Framework for Managing Software Life Cycle The Open Software Engineering Journal, 2011, Volume 5 17

software engineering method; benefit to cost ratio (BCR);
breakeven point (BEP) in units of cost [m.u.]; breakeven
point in units of time TBEP [H].

7. CONCLUSIONS

Exploring the quantitative yields of software engineering

methods in the software life cycle is a complex management

problem that can be solved in a number of stages : i)

designing or selecting an appropriate software engineering

method; ii) elaborating a program for its application that is

adequate for a particular software organization; iii) applying

measurements, metrics, and models that are related in a

systemic framework and iv) using a proactive approach to

the achievement of the value-based results, instead of a

reactive one.

We have theoretical and practical results applying hybrid

software development method that combines agility and dis-

cipline using software quality management and ISO/IEC

International Standard 25000 (SQuaRE)[29] on software

product quality requirements and evaluation.

Our results on applying the above mentioned stages can

be used as a basis for further experiments to gather empirical

data in the area of exploring quantitative yields of software

engineering methods and using the developed value

framework for managing software life cycle.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers and the
Editor in Chief for their constructive suggestions and
comments on a former version of this paper.

CONFLICT OF INTEREST

None Declared.

SOME ACRONYMS

VF Value Framework

CM Cost Models

WM Productivity Models

QM Quality Models

BM Benefit Models

VM Value Models

DF Decision Framework

DDT Dynamic Decision Trees

VOI Value Of Information

NPV Net Present Value

DO Dynamic Optimization

NV Net Value

Table 6. Quantitative Yields in the Software Life Cycle for Two Projects Using Improved(New) Software Engineering Methods

Metric Unit Project 1 Project 2

C

D
 [m.u] 508 800 13 806

C

M
 [m.u] 973 422 1100288

C

T
 [m.u] 194 444 1150.5

C

I
 [m.u] 70 833 920.4

C

TR
 [m.u] 11240 115.05

C

SIM
 [m.u] 1758740 1116280.18

TLC

b
 [m.u] 4510000 1165867.23

TLC

a
 [m.u] 1747500 1116165.63

 GB [m.u] 2762500 49701.6

 AC [m.u] 82073 1035.45

 NB [m.u] 2680426 48666.15

 BCR 33.66 48

 ROI [%] 3266 4700

GB

D
 [m.u] 2164491 33946.8

NB

D
 [m.u] 2082417 32911.41

ROI

D
 [%] 2537 3178

W

b
 [SLOC/PH] 0.22 0.0994

W

a
 [SLOC/PH] 0.57 0.1038

 BEP [m.u] 133991 24288.9

T

BEP
 [H] 129 202.12

18 The Open Software Engineering Journal, 2011, Volume 5 Stoica et al.

SIM Software Inspection Method

CMM Capability Maturity Model

CMMI Capability Maturity Model Integrated

COTS Commercial Off The Shelf

XP EXtreme Programming

SW SoftWare

RUP Rational Unified Process

ISO International Organization for Standardization

IEC International Electrotechnical Commission

UML Unified Modeling Language

J2EE Java 2 Enterprise Edition

XML Extensible Markup Language

RSS Rich Site Summary

OO Object-Oriented

OMG Object Management Group

WAP Wireless Application Protocol

GPRS General Packet Radio Service

SVN Social Venture Network

REFERENCES

[1] A.J. Stoica, “Facets of Software Development Represented by
Model Systems: Analysis and Enhancement,” 14th International

Forum on COCOMO/Software Cost Modeling, USC, CSE, 1999.
[2] A.J. Stoica, “A Decisional Framework in Software Design,” Inter-

national Conference on Software Engineering, ICSE 99, EDSER-1,
1999.

[3] B. Boehm, et al. “Software Cost Estimation with Cocomo II”.
Prentice Hall, 2000.

[4] I. Somerville, Software Engineering, 9th ed. Addison-Wesley,
2010.

[5] C. Kemerer, (Ed)., Software Project Management: Readings and
Cases. Irwin, McGrew Hill, 1997.

[6] L. Franz, and J. Shih, “Estimating the Value of Inspections and
Early Testing for Software Projects,” Hewlett-Packard Journal,

1994.
[7] D. Rico, ROI of Software Process Improvement. Ross Publ., 2004.

[8] B. Boehm, and D. Port, “Conceptual Modeling Challenges for
Model-Based Architecting and Software Engineering,” USC, CSE,

1998.
[9] J. Fisher, “Model-Based System Engineering: A Paradigm,” IN-

COSE INSIGHT, 1998, pp. 3-16.

[10] A. Gargaro, and A. Peterson, “Transitioning a Model-Based Soft-

ware Engineering Architectural Style to Ada 95,” SEI Technical
Report CMU/SEI, Tech. Rep. 96-TR-017, 1996.

[11] Honeywell, Model-Based Software Development, Honeywell
Technology Center, Minneapolis, 1998.

[12] OMG, “Model Driven Architecture,” http://www.omg.org/mda, last
updated on 05/31/2011.

[13] D. Garlan, and M. Shaw, “An Introduction to Software Architec-
ture,” Advances in Software Engineering and Knowledge Engineer-

ing, vol. 1, pp. 1-40, 1993.
[14] B. Boehm, and R. Ross, “Theory W software project management :

principles and examples,” IEEE Transactions on Software Engi-
neering, vol. 15, no. 17, pp. 902-916, 1989.

[15] B. Boehm, “Get ready for agile methods, with care,” Computer,
2002, pp. 64-69.

[16] S. Ambler, Agile Modeling. Wiley, 2002.
[17] A. Cockburn, Agile Software Development. Reading, MA :

Addison-Wesley, 2002.
[18] J. Stapleton, DSDM: Dynamic Systems Development Method. Har-

low: Addison-Wesley, 1997.
[19] S. Palmer, and J. Felsing, A Practical Guide to Feature-Driven

Development. Englewood Cliffs, NJ: Prentice Hall, 2002.
[20] K. Schwaber, and M. Beedle, Agile Software Development with

Scrum. Englewood Cliffs, NJ: Prentice Hall, 2001.
[21] K. Beck, and C. Andres, Extreme Programming Explained: Em-

brace Change (2nd ed.). Addison-Wesley, 2004.
[22] J. Highsmith, Adaptive Software Development. Dorset House,

2000.
[23] P. Kruchten, The Rational Unified Process (2nd ed.) . Addison-

Wesley, 2001.
[24] W. Humphrey, Managing Technical People. Addison-Wesley,

1997.
[25] W. Humphrey, Introduction to Team Software Process. Addison-

Wesley, 2000.
[26] H. Mills, M. Dyer, and R. Linger, “Cleanroom Software Engineer-

ing,” IEEE Software, vol. 4, no. 5, pp. 19-25, 1987.
[27] M. Paulk, C. Weber, B. Curtis, and M. Chrissis, The Capability

Maturity Model. Addison-Wesley, 1994.
[28] ISO, “90003 Software Engineering: Guidelines for the Application

of ISO 9001:2000 to Computer Software,” 2004.
[29] ISO, “25000: Software Engineering–Software Product Quality

Requirements and Evaluation (SQuaRE)–Guide to SQuaRE,” 2006.
[30] ISO, “9001 Quality Systems - Model for Quality Assurance in

Design/Development, Production, Installation, and Servicing,”
1994.

[31] T. DeMarco, and B. Boehm, “The agile methods fray,” IEEE Com-
puter, vol. 35, no. 6, pp. 90-92, 2002.

[32] B. Boehm and R. Turner, Balancing Agility and Discipline: A
Guide for the Perplexed. Addison-Wesley, 2003.

[33] B. Boehm, “Some Future Trends and Implications for Systems and
Software Engineering Processes,” Systems Engineering, Wiley Pe-

riodicals Inc, vol. 9, no. 1, pp. 1-19, 2006.
[34] A.J. Stoica, and M. Nael, “Agile Software Development and

ISO/IEC Software Quality Standards : Measuring Economic Bene-
fits and Calculating Quantitative Yields,” 25th International Forum

on Software and System Cost Modeling, USC, CSE, 2010.

Received: April 20, 2011 Revised: June 26, 2011 Accepted: July 7, 2011

© Stoica et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

