
 The Open Software Engineering Journal, 2012, 6, 21-40 21

 1874-107X/12 2012 Bentham Open

Open Access

Formalizing and Automating Use Case Model Development

Marinos G. Georgiades
1,*

 and Andreas S. Andreou
2

1
Department of Computer Science, University of Cyprus, Nicosia, Cyprus

2
Department of Electrical Engineering & Information Technology, Cyprus University of Technology, Limassol, Cyprus

Abstract: This paper proposes an approach that formalizes specific elements and activities of the use case modeling proc-

ess in order to overcome problematic issues common to the conventional use case methods, namely the lack of systematic

elicitation support in the identification of use case elements, the vagueness introduced by the use of informal natural lan-

guage to define use case specifications, and the limited support of dedicated software tools that makes UCDA a time-

consuming and error-prone activity. In particular, with the use of our approach, formalization of the stage for identifying

the use case elements is achieved with the use of predefined types of use cases and actors, specific guidelines to define as-

sociations, relationships and business rules, and formalized sentential patterns. Formalization and clarity of the use case

specification is achieved with the use of specific types of actions and guidelines, on one hand, and natural language-based

authoring rules, on the other. A dedicated software tool supports the automation of the proposed approach including the

automated generation of use case diagrams and specifications. Preliminary empirical evaluation of the proposed approach

indicated its effectiveness and efficiency.

Keywords: Use case modeling, formalization, automation, natural language.

1. INTRODUCTION

Use case driven analysis (UCDA) has gained a wide ac-
ceptance among the many methods in requirements engineer-
ing [1], principally because the UC model—resulting from
UCDA-allows functional requirements to be represented in
an informal, easy-to-use style which appeals to technical as
well as non-technical stakeholders of the software under de-
velopment [2]. UCDA helps cope with the complexity of the
requirements analysis process. By identifying and then inde-
pendently analyzing different use cases, the analysts may
focus on one narrow aspect of the system usage at a time [3].
Since the idea of UCDA is straightforward and use case
specifications are usually compact, textual documents writ-
ten in natural language (NL), the customers and the end us-
ers are expected to easily understand and actively participate
in requirements analysis.

The use case model is composed of use case diagrams
and specifications. Specifically, the UC model comprises
actors, use cases and associations, which are depicted in a
use case diagram. Each use case, according to Cockburn [4],
represents a major piece of functionality that is complete
from beginning to end and is described with a UC specifica-
tion including: the basic flow of the use case, the alternative
flows, involved actors and stakeholders, conditions, and ref-
erence to other related use cases. Finally, the business rules
associated with the use case interactions must be specified
or, at least, referenced [1].

*Address correspondence to these authors at the Department of Electrical

Engineering and Information Technologies, Cyprus University of

Technology, Limassol, Cyprus; Tel: +357 25002204; Fax: +357 25002750;

E-mail: colognet@ucy.ac.cy

Although UCDA offers a more compact framework for
analyzing requirements in contrast to the classical approach,
which is basically performed with the use of a generic SRS
template (e.g., IEEE SRS template [5]), building the UC
model and especially writing use case textual specifications
is still a difficult and time-consuming activity. The struc-
tured, though unrestricted, form of the UC specifications
suffers less from ambiguities than the specifications derived
from the use of the classical approach. However, because UC
specifications remain essentially textual, ambiguities are
inevitable [6]. According to Denney [7] and Jagielska [8],
the produced descriptions usually suffer from problems such
as ambiguities, redundancies, inconsistencies, conflicts with
domain terminology and implementation details (jargon-
contaminated use cases), which make them difficult to be
maintained and understood by customers. El-Attar and
Miller [9] state that these problems produce low quality in-
formation systems (ISs).

The unrestricted textual nature of UC specifications, as
mentioned above, is one of the reasons for ill-defined UC
specifications. In addition, the major difficulties in produc-
ing high quality use case models originate from the elicita-
tion process; as Kim et al. [3] state, the lack of support for a
systematic requirements elicitation process is probably one
of the main drawbacks of UCDA. This lack of elicitation
guidance in UCDA sometimes results in an ad hoc set of use
cases without a consistent underlying rationale. Some exist-
ing approaches use NL parsing techniques to retrieve the UC
elements from pre-existing requirements documents—either
written based on a predefined SRS template (e.g., IEEE) or a
UC template—but this method is not reliable, because of
ambiguities, redundancies and inconsistencies present in
such documents. In other approaches, the analyst tries manu-

22 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

ally, based on his/her own expertise and again from existing
informal textual requirements, to derive the use cases and
their elements. Due to the aforementioned problems in exist-
ing documents, the analyst must be an expert to derive the
UC elements correctly and completely and, irrespective of
the analyst’s experience, this procedure is extremely time-
consuming. A third category of approaches concerns the
development of the UC model from scratch, by using the
classical approach of open-ended questions that lack speci-
ficity and formality [10] and thus again result in a document
with ill-defined requirements that need to be re-organized
and re-adjusted, in order for the analyst to derive efficiently
the UC elements

1
. Additionally, the informality in such

documents is the principal hindrance to the use of automated
tools for UC modeling, since informal NL is inherently com-
plex, vague and ambiguous, and so UC elements are difficult
to identify completely and correctly. Therefore, there is a
lack of approaches that automatically generate UC models.

The current work focuses on three objectives, pertaining
to the three problems mentioned above: (i) to formalize the
elicitation process of UCDA; (ii) to provide an understand-
able and semi-formal way to write use case specifications;
and (iii) to provide CASE-tool support and achieve time-
saving and error-free UCDA. Objective (i) is achieved with
the use of predefined types of use cases and actors, as well as
guidelines to derive their associations, relationships and
business rules. The development of this formalization is
guided and derived from corresponding ideas and formaliza-
tion provided by the NLSSRE (Natural Language Syntax and
Semantics Requirements Engineering) methodology [11-15]
described later. The elicitation process is also facilitated by
the use of formalized sentential patterns—provided by
NLSSRE—which provide a structured and expressive way to
write the UC elements. Objective (ii) is achieved with the
application of adaptation and authoring rules on the identi-
fied UC elements and formalized sentences, in order to eas-
ily construct a semi-formal NL use case specification. The
basic and alternative flows sections of the UC specification
are also formalized with the use of specific types of actions
performed with a specific sequence. Finally, objective (iii) is
achieved with the development of a dedicated case tool that
covers all the stages of the UC model development and re-
sults to the construction of the UC diagram and specifica-
tions. In this paper, we will not expand on the demonstration
of the tool, but we will show its main aspects underlining its
application and usefulness through a few indicative examples.

This paper is organized as follows: Section 2 outlines re-
lated work and describes how our approach differs from oth-
ers. Section 3 illustrates how the UC model is developed
through our approach. Section 4 describes the experimental
evaluation of the methodology, while section 5 provides
conclusions and recommendations for future work.

2. RELATED WORK

Most of the existing approaches attempt to elicit various
UC elements, such as UCs and actors, from existing re-

1 Elicitation approaches, such as NL parsing techniques and open questions, are ap-

plied generally in RE to mainly derive textual requirements. These approaches result
also to ill-defined requirements, since they have the same weaknesses already men-

tioned.

quirements documents or textual descriptions written in in-
formal NL. Then, using some rules or patterns and with the
involvement of the analyst, these approaches utilize the ex-
tracted elements to feed the UC specification templates and
form the UC diagram. NIBA (Natural Language Require-
ments Analysis in German) [16] is a project that parses re-
quirements documents in German, interprets and transforms
the output of the parser to conceptual pre-design schemas,
validates the schemas and finally generates a conceptual
model in UML. Another approach introduced by Dias et al.
[1] uses fragments to describe different types of interactions
that could form a use case. In this approach, the analyst must
first identify the use cases and the actors by using an initial
pre-existing UC model of the IS, and then try to match a set
of interactions, guided by the given fragments, to each use
case. Another approach introduced by Liu et al. [17] uses an
NL parser on a document written in informal NL including
stakeholders’ requests, to identify use cases and actors and
write UC elements as specific NL statements. The analyst
has to be involved in the identification process because the
parser cannot be considered reliable, due to the nature of the
initial requirements document. Then, based on specific NL use
case schemas, the NL statements feed a predefined use case
specification template. All these approaches do not provide:

1) a reliable outcome, since NL requirements documents
are full of ambiguity, vagueness as well as inconsis-
tency, and therefore the identification of the UC ele-
ments from such documents often results in a poorly
defined UC model;

2) the capability for complete automation of the proce-
dure from the stage of UC elements identification to
the creation of the UC model, since the analyst’s in-
volvement is required to identify or clarify the final
set of UCs and Actors. Therefore, the informality of-
ten present in the initial requirements documents hin-
ders the use of automated tools for system modeling,
since informal NL is inherently complex, vague, and
ambiguous; and

3) a time-saving process for identifying the UC elements
and developing the UC model, again due to the diffi-
culties resulting from the existing requirements
documents.

Other approaches that do not use pre-existing require-

ments documents but instead apply a manual, labor-intensive

task, with the use of open-question interviews which lack

specificity and formality, lead also to answers and require-

ments documents with ambiguities and redundancies [10];

these approaches rely on the analyst’s expertise to organize

the requirements correctly and match them to the various UC
elements of a UC specification template.

In working towards the second objective of this work, we
see many drawbacks to describing a use case using informal
natural language, as recommended by Jacobson [18] and
Booch et al. [19]. Although the use of natural language fa-
cilitates communication between the analyst and the domain
expert, natural language, used in its free, informal style, in-
creases the risks of ambiguity, inconsistency and incom-
pleteness of the use case description/specification. In order
to avoid these typical problems with natural language, it is

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 23

important to use a more structured or formal technique for
such a description. In the relevant literature, some structured
techniques for the description of use cases have been pro-
posed. In [20] a tabular representation is used, and in [21] a
structured natural language is presented to describe the use
cases. These structured representations provide a generic
formalization of the UC specification template, hence not a
clear formalism of the use case specification elements, and
especially the transaction flow actions. Ochodek and
Nawrocki [22] provide a semi-formal NL representation of
transaction flow actions, however this formalism is still ge-
neric and does not cover completely all the possible transac-
tion flow actions and the use case elements (e.g., actors) in-
volved in each action. Some formal techniques such as
grammars [23] or statecharts [24, 25] have also been intro-
duced for the description of use cases. Although such formal
representations facilitate formal analysis, they are difficult
for analysts and users to understand and use. In our opinion,
use cases must be described using a semi-formal form of NL,
because such a form may be (a) understandable by both users
and analysts, (b) semantically rich enough so that all perti-
nent description of the use case can be taken into account
without any ambiguity, and (c) implementable.

The formalization of the process of identifying the UC
elements and the formalization of the use case specification
template with the main focus on its transactions flow sec-
tions are the major steps covered by our approach as part of a
series of steps for the development of the UC model, which
will be described in the next sections. Formalization is
mainly achieved with the use of predefined types of use
cases and actors, formalized sentential patterns, formalized
types of transaction flow actions, and specific guidelines and
NL authoring rules. The latter also helps in providing a clear
and understandable semi-formal UC specification. The
automation of the UC model development is supported by
our dedicated CASE tool called NALASS (Natural Lan-
guage Syntax and Semantics) which is also described
through indicative examples.

3. USE CASE MODEL DEVELOPMENT

For the identification and development of use cases, ac-
tors, associations

2
, relationships, use case modules and use

case subsystems, we utilize specific elements provided by
the NLSSRE methodology [11-13]. NLSSRE focuses on
formalizing and automating the discovery, analysis and
specification of user requirements for the development of
Information Systems. In particular, the methodology handles
user requirements concerned with the operational aspect of
an IS

3
 and builds these requirements with the use of the fol-

lowing IS elements: predefined types of functions, specific
categories of data, user roles, business rules, and functional
conditions (i.e. the circumstances within which each function
is performed), as well as specific patterns for writing re-
quirements as structured, semi-formal NL sentences. In addi-

2 We make a distinction between ‘association’ and ‘relationship’: the former occurs

between actors and use cases, and the latter between use cases (denotes include, extend
and generalization relationships) or between actors.
3 According to Ellison and Moore [26], an Information System is any combination of
information technology and people's activities using that technology to support opera-

tions, management, and decision-making. The application domain of NLSSRE is
mostly concerned with the operational aspect of an IS (also known as transaction

processing – dealing with day-to-day transactions).

tion to the identification of the main UC elements and their
development into use case diagrams (steps 1–6 described
below), our approach uses specific types of actions to for-
malize the transactions flow sections of the UC specification
template, as well as adaptation and NL authoring guidelines
to make the development of the template content easier on
one hand and more understandable on the other. In particu-
lar, the steps of our approach for the development of the use
case model are as follows:

1. Identify UC modules

2. Define use cases of each UC module

3. Identify the actors of each use case, associations, rela-
tionships and complementary use cases

4. Structure identified UC elements as formalized sen-
tences

5. Define UC subsystems

6. Relate business rules with use cases and actors

7. For each use case, write the use case specification
(UCS)

Below we explain each step, including also relevant ex-
planatory references to the NLSSRE elements used each
time.

Step 1: Identify UC modules

A use case module can be conceived as a small UC
model—actually the smallest model of the entire information
system. A UC module is created for each information object
(IO) of the system and contains, in addition to relevant ac-
tors, specific types of use cases that correspond to specific
types of functions related to an IO. According to NLSSRE,
an Information Object (IO) is a digital representation of a
tangible or intangible entity-described by a set of attrib-
utes—which the users need to manage through Creating,
Altering, Reading, and Erasing its instances, and be Notified
by the messages each instance (IOi

4
) can trigger. In the

methodology, the Create, Alter, Read, Erase and Notify
functions are called CAREN functions.

The process of identifying the IOs is a critical step in de-
fining the UC modules, and IO identification is implemented
by the NLSSRE methodology. In particular, NLSSRE pro-
vides techniques and guides for the identification of the IOs,
such as an information flow table, a data flow questionnaire,
IO categories (including business roles, inanimate objects,
procedures, documents, events, and other animate entities)
and specific rules [11, 12]. A detailed description of this
identification step is outside the context of this paper. How-
ever, as a basic example, an indicative list of IOs for a Hos-
pital Information system (HIS)

5
 includes: the doctor, phar-

macist and patient, as business roles; a drug as an inanimate
object; examination, treatment, diagnosis, user authentica-
tion, and payment, as procedures; a patient record, insurance,
x-ray, invoice, receipt, and prescription, as documents; an

4 An IO is conceived and processed at an abstraction level, while an IOi is conceived

and processed at a factual level. Instances of the same IO differ only in the values of
their attributes.
5 Through the paper, to support clearly our arguments, we provide examples taken
from the application of our approach in a real-life project, that is, the development of

the information system of the general hospital of Nicosia, in Cyprus.

24 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

appointment as an event; and blood as an animate entity.
Documents which are collections of attributes of different
IOs, such as a report or a notification, which are created
automatically by the system, are not considered to be IOs.
However, there could be, for example, the rare case where a
business sells its reports. In this case the report would be
considered as an IO. As mentioned before, each IO corre-
sponds to a UC module, therefore for each identified IO, a
UC module needs to be defined. Each UC module will in-
clude specific use cases, actors, associations, relationships, a
use case diagram, and a UC specification for each use case.
Additionally, different UC modules may be grouped together
and compose UC subsystems; and subsystems are then
grouped together to compose the entire IS UC model. All
these issues are described in the next sections of this paper.
Fig. (1) shows an example of a use case diagram (UCD) cor-
responding to the Appointment UC module of an HIS.

Step 2. Define use cases of each UC Module

The principal aim of our approach is to formalize the

identification of UC elements, including use cases and ac-

tors. This step handles formalization of use cases. Use cases

of a UC module are derived from the CAREN functions pro-

vided by NLSSRE. As mentioned in step 1, Create, Alter,

Read, and Erase are the main functions of the IO, while No-

tify is applied (triggered) after the creation, alteration, read-

ing or erasure of an IO instance Fig. (2).

Our focus is on system functions at the user’s level, that
is, we are interested in what the system will do to fulfill the
users’ requirements. User-level system functions are repre-
sented by system use cases. Specifically, a system use case is
conceived at the system’s functionality level, and describes
the function or the service that the system provides for the
actors. The system use case specifies what the system will do
in response to an actor’s actions. System use case names
should begin with a verb (e.g., create appointment, select

payments, cancel appointment) [27]. In contrast, we do not
focus on programmer’s level requirements, that is, how sys-
tem functions will be designed and programmed. The pro-
grammer’s requirements will be defined at a later stage of
the software development cycle

6
. We neither focus on ab-

stract-level requirements, represented by business use cases.
According to Podeswa [27] and de Cesare [28], business use
cases focus on the business processes that the business actors
(people or systems external to the process) use to achieve
their goals (e.g. manual payment processing). Business use
cases may involve both manual and automated processes.
Often business use cases are free of technological terminol-
ogy and treat the system as a “black box”.

The formalization concept is more easily applicable to
the system use cases, because they are applied on electronic
information, while it is hardly applicable to the business
level use cases, due to the complexity of the business envi-
ronment, in both size and terminology.

For example, the use case Enroll in Seminar, which may
be represented or implemented as a system or a business use
case by conventional approaches such as Cockburn’s (2000),
is formalized and represented in our approach through the
system UC modules Enrollment and Seminar, which are both
IOs. The UC module Enrollment includes the system use
cases Create, Alter, Cancel, Erase and Read Enrollment.
The UC module Seminar includes the system use cases Cre-
ate, Alter, Cancel, Erase and Read Seminar. Information
about Seminar will be part of the UCs specifications of the
Enrollment module (e.g., seminar id is used when creating or
altering an enrollment) similarly also to information about
the student who initiates the enrollment. Student will be also

6 For example, a user-level system requirement is to allow the user to alter or read/view

some particular data. However, the way with which these functions/tasks will be im-
plemented, including retrieval and search methods/functions, is outside the users’

requirements.

Fig. (1). The use case diagram of the Appointment module, as created by NALASS.

����������	�

����������������

����������������

���������������

���������

�������

������

���	������������

������

���������

����������������

������������������

������������������

���������

���������

���������

��	���

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 25

a different UC module, as it is a different IO. Fig. (3) depicts
how Enroll in Seminar is conceived and represented by our
approach.

Below we give a description of each UC type, as well as
relationships between use cases. We will also show what
actions can be derived for each basic use case.

Create IO is the most significant use case, because dur-
ing its execution the attributes of an IOi take their initial val-
ues; these values are then processed by other use cases. The
sub-functions Read, Enter data values, Compare and Save,
of the Create CAREN function correspond to actions of the
Create UC specification. This will be elaborated in step 7
(constructing the UC specifications) later on, where we will
see how the sub-functions, data constraints and business rules
of the UC Create IO are used to form its transaction flow.

Alter IO: During the execution of this UC, the actor can
change the existing values of the attributes of an IOi. A sig-
nificant attribute that changes during alteration of an IOi is
the attribute State. When the IO corresponds to a procedure
(e.g., examination) or event (e.g., appointment), the State
value may change from Start to Ongoing/ Pending to Fin-
ished/ Completed or Cancelled, or even Expired or Archived;
when the IO is an inanimate physical object (e.g., book,
drug) then State may change from InStock to Sold/Lent, and
when the IO is an animate object State usually takes values
according to the IOs business role (e.g., Student IOi State
may be new, studying, graduated, suspended, or Patient IOi
State may be ill, under treatment, cured); and when the IO

corresponds to a document (usually in electronic form, e.g.,
prescription, voucher), State may take values such as stored,
archived, cancelled, edited or retrieved. The change from
one state to another (e.g., from Pending to Complete), for a
particular IO, may lead to the creation of a new expanded
alteration use case, such as Cancel IO, Complete IO, etc.
However, if the change of state does not justify the existence
of a new use case, it should be represented through addi-
tional actions in the transaction flow of the specifications of
the basic alteration use case Alter IO. When a change of state
occurs, we should check what new pre-conditions, post-
conditions and actors are involved in the execution of the
new derived use case or in the case of representing the
change of states as actions the existing basic Alter use cases.
Usually when the change of state of an IO results in signifi-
cantly different pre-conditions or post-conditions, or results
in a new group of actions than those provided by basic

7
 Alter

UC, we recommend to represent this self-contained informa-
tion (pre-conditions, post-conditions, actions) as a new ex-
panded alteration use case. For example, cancelling an ap-
pointment, results in a different post-condition than the post-
condition resulting from the normal transaction flow of the
UC Create Appointment, which is to complete the appoint-
ment. In particular, by cancelling an appointment, the State

7 To distinguish the Alter UC from its related use cases derived as a result of
change/alteration of state, we sometimes call it “basic Alter UC”. Additionally, for

simplicity, we call the related use cases (e.g., Cancel IO, Complete IO) “Alter-related”

use cases. In some situations when we refer to the Alter UC, we also mean the alter-

related use cases.

Fig. (2). CAREN - A recommended set of functions and sub-functions applied on an IO, and the notifications produced.

Fig. (3). Conceptual representation of use cases through the proposed approach.

Create IO
- Read

- Enter Data
- Compare

- Save

Alter IO
- Read

- Delete
- Enter Data
- Compare

- Save

Read IO

Erase IO
- Read

- Compare
- Remove

Notify

����������	
��

��������
����
�

�����
���

��������	
��
�	
�����

�����
�

���	���
�

26 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

attribute of the IO Appointment will change to ‘cancelled’,
and this cancellation should create the post-condition “new
empty schedule time slot”. Therefore, we should consider
Cancel Appointment as a new use case. Similarly, complet-
ing a prescription derives the pre-condition “Drug is given
to patient” comparing to the basic UC Alter Prescription
which has the precondition “Prescription is created”. Com-
pleting a prescription is also performed by a different actor
(pharmacist) at a different place (drug store) than the actor
(doctor) that initiates the Create and Alter use cases of the
prescription module, at the hospital or clinic. Therefore, we
should consider Complete Prescription as a new use case.
We may also conceive Erase IO, described below, as a new
use case, where new post-conditions might be “IOi is ar-
chived” or “IOi is removed completely from the system’s
databases”. The State attribute may also result in generaliza-
tion relationships

8
 between use cases, such as those depicted

in the example of Fig. (4) where the student, due to the na-
ture of his/her role, can move to different states during
his/her studies.

8 Generalization relationship: If two or more use cases are similar, we can extract
similarities into the base use case. Derived use cases can add behavior and modify

behavior defined in the base use case [29].

Read: There are different types of information to be read,
and this information is represented based on its type, as fol-
lows:

a Information to be read only by end-users. Usually, in-
formation is confidential, and the system users need
authentication to read it. We distinguish two types of
information:

i. Forms: IO forms usually need to be read when an
end-user primary actor

9
 creates a new IOi or

changes the state of an existing IOi. The reading
process should be represented as an “include”

10
 use

case Read IO for the use cases Alter IO, Cancel IO,
Complete IO, etc., as depicted in Fig. (5) and
Table 2 action 2 (in step 7), because it is composed
of several actions, including retrieving and checking
the existing information about an IOi, from the da-
tabase, in contrast to the reading procedure for the

9 Primary and secondary actors, as well as actor functional roles, such as notifiee and

intended recipient are defined and explained in step 3.
10 An include relationship between two use cases means that the sequence of behavior

described in the included use case is included in the sequence of the base (including)
use case [30]. Include is used when the same behavior is duplicated in multiple use

cases. A base use case is dependent on the included use case(s); without it/them the
base use case is incomplete. Additionally, the included use case should be self-

contained and cannot make any assumptions about which use case is including it.

Fig. (4). Generalization relationships.

Table 1. Basic flow pattern for UC Create IO.

1. <Creator> selects to create <IO>.

2. System displays new <IO> creation form, including required and optional fields.

3. <Creator>, <Accompaniments> enter(s) <IO> <IO.attribute.value>.

4. System must check <IO> <IO.attribute.value>.

Repeated

5. <Creator> selects submit the new <IO>.

6. System saves the new <IO> in the database.

7. <System> notifies <Actor>, <Accompaniments>, <Intended Recipients> that <IO> is created via UC <UC id>.

Table 2. Basic flow pattern for UC Alter IO

1. <Alterer> selects to alter <IO>.

2. System displays existing <IO> via UC <UC id> “Read <IO>”.

3. <Alterer>, <Accompaniments> deletes <IO> <IO.attribute.valuex>.

4. System must check <IO> <IO.attribute.valuex>.

5. <Alterer>, <Accompaniments> enter(s) <IO> <IO.attribute.valuey>

6. System must check <IO> <IO.attribute.valuey>

Repeated

7. <Alterer> selects to submit the altered <IO>

8. System saves the altered <IO> in the database

9. <System> notifies <Alterer>, <Accompaniments>, <Intended Recipients> that <IO> is altered via UC <UC id>.

���������	�
�

�����������
�

���	�
�

����������
	�	

���	�
�

���������	����	

���	�
�

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 27

UC Create IO, which only concerns building a form
of required and optional empty fields, and thus rep-
resented as one or more simple action(s) in the Cre-
ate IO UC specification, as illustrated in Table 1 ac-
tion 2 (in step 7). This issue is discussed further in
step 7, on constructing the UC specifications.

ii. Reports: reports of the IO per se (intra-reports) or of
the IO in relation with other entities (inter-reports).
Examples of such reports may be about appoint-
ments completed over a specific period (an intra-
report, since it involves only the IO Appointment—
time is an attribute of the IO Appointment), and ap-
pointments for a particular patient (an inter-report,
since it involves two IOs, Appointment and Patient).
The use case Read IO intra-report is part of the IO
module, while the use case Read IO inter-report
may be part of the IO module (e.g., Read Patient
History, which is a report involving information re-
lated to the IO Patient from various IOs, such as
Examination, Diagnosis, Prescription and Treat-
ment, may be considered part of the Patient mod-
ule) or of a more general Report module, because
inter-reports may be used by (i.e., “included in”)
different use cases of different UC modules. Usu-
ally Read use cases about reports, and especially the
inter-report type, are useful for the execution of use
cases of other modules, and so they are represented
as “include” use cases. This relationship usually oc-
curs when an actor creates or alters an IOi, and so
the actor may need to read information about in-
stances of other IOs, related to the IOi the actor cre-

ates or alters. For example, when a doctor (actor)
creates or alters a prescription (IOi), s/he may need
to read information about the patient related to the
prescription. If the information is large and involves
other IOs, then it should be a different UC, such as
Read Patient History (Fig. 5), which it involves in-
formation about examination, treatment, prescrip-
tion, etc., for the patient. Patient history is a report
and not considered as a different IO. Reports are
created automatically by the system. Since they will
not be altered throughout time, but they are only to
be read, we consider that their creation is embedded
in the Read UC. Reports do not need to be stored.

b Information which is usually not important enough to

be processed by or stored in the system. This informa-

tion refers usually to notifications produced by use

cases to notify actors or stakeholders of the system.

For example, the UC Create Prescription produces

notifications for the patient and the doctor (creator of

the prescription) that the prescription is created. Read-

ing a notification is part of Notify or Send Notification

which is represented as a group of actions or as a

separate use case, as described below.

Erase IO: Erasure of an IOi means that the IOi is perma-

nently deleted. All of the particular information in that IO

instance regarding attributes and functions that exist in the

context of the IS is deleted. Erasure usually occurs when the

user does not need to keep an IOi in the system anymore.

However, at system/database level, the erased IOi may be
stored at a separate place/database server.

Fig. (5). Part of the use case diagram of the Prescription module, which is created automatically by NALASS.

������

������	
����������

�����	
����������

����	
����������

���������

������

���������

�����	
����������

���������

�������	
����������
���������

����	
������

�������
���������

������	
����������

���������

28 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

Notify: In a computerized IS, transmission exists at the
messaging level, which we call Notification. In particular,
when an IOi is created or altered (or even read), then a noti-
fication should be sent to the interested parties which are
classified into two groups: the Intended Recipients (IR) who
will have to take an action within the IS as a consequence of
the creation or alteration of the IOi (e.g., a Pharmacist is the
IR of a Prescription IOi, because, after its creation, s/he will
utilize it to create a Drug IOi), and other entities who just
need to be informed about the creation or alteration of the
IOi, these are, Notifiees (e.g., patient in the Prescription IOi
example) or primary actors who created or altered the IOi.

The end of a Create, Alter, Alter-related and Erase use
case specification should include specific actions about send-
ing a notification to the actors or stakeholders interested in
the creation or alteration of an IOi. If sending notifications
involves different actions for the different types of UCs
(Create, Alter, etc.), then Send Notification may be a sepa-
rate UC with specialized UCs (Fig. 6) included in and in-
voked by their including UC.

Step. 3 Identify the Actors of Each UC, Associations and

Complementary Use Cases

For each basic use case identified in step 2, we need to
identify the actors and other stakeholders involved in its exe-
cution. Actors usually refer to system end-users, customers,
or trusted external users (e.g., suppliers). In contrast, other
stakeholders refer to business users, managers, information
users (e.g., a patient’s relative in a hospital IS is an example
of such a user), and shareholders [31]. In NLSSRE, each
user has a business role in the system, which is involved in
each CAREN function of a particular IO. Accordingly, in
UCDA, each actor—in the place of a business role is in-
volved in each use case of a particular UC module.

According to Marsic [32] and Sybase [33], an actor can
be a primary actor for a use case if it triggers the actions per-
formed by the use case; the primary actor is the one who
asks for an action to be performed by the use case. Primary
actors are located on the left of the use case in the UCD. On
the contrary, an actor can be a secondary actor for a use case
if the actor assists the use case in completing the actions but
does not trigger the actions (i.e., a secondary actor is some-
one who participates in the use case but does not initiate it.)
An actor is also considered as secondary when the actor re-
ceives information (e.g., results, reports, documents) pro-
duced by the execution of a use case. Secondary actors are
located on the right of the use case. In a UC subsystem, as

will be illustrated later, a secondary actor can also be a pri-
mary actor in another use case, in the same diagram. Finally,
other stakeholders, as described above, can be represented by
a third category of actors, namely Offstage actors which are
stakeholders with interest in the outcome of the use case, but
not playing an active role in the use case.

To identify the actors involved in each use case, we take
into account the type of the use case—Create, Alter, Alter-
related, Read, Erase—and the functional roles involved in
each UC type. By making questions about the functional
roles, we can identify the actors. A Create use case involves
the functional roles Creator, Accompaniment, Intended Re-
cipient, and Notifiee. An Alter UC, an Alter-related UC and
an Erase UC involve the functional roles Alterer, Accompa-
niment, Intended Recipient, and Notifiee. A Read UC in-
volves the functional roles Experiencer, Accompaniment,
Intended Recipient, and Notifiee. The Creator, Alterer and
Experiencer are played by primary actors, while Accompa-
niment and Intended Recipient are played by secondary ac-
tors. The Notifiee concerns offstage actors. Since primary
actors initiate the use cases, they are usually required to have
authorization to do it. Therefore, a use case “Authorize <Ac-
tor>” should be executed for each primary actor and link the
primary actor to the use cases s/he can execute. Below we
explain four of the functional roles actors can play and some
indicative questions derived from these roles, in order to
identify the actors

11
.

a Creator: the Creator is responsible for setting the val-
ues of a number of particular attributes (required and
optional) of the IO of the use case (e.g., Doctor is the
creator of prescription in the UC Create Prescription.)
To identify the creator in a Create UC, we may ask
the following questions (question patterns and pattern
instances follow instances are taken from the HIS case
study). Questions about notifiees also help to inden-
tify intended recipients.

– Pattern: Who should create an <IO>
12

?

– Instance: Who should create a Prescription?

– Pattern: Who has the responsibility for the crea-
tion of a(n) <IO>?”

– Instance: Who has the responsibility for the crea-
tion of a Prescription?

11 A detailed presentation of all the actors (business roles) and different question sets

provided to derive the actors is outside the scope and size of this paper. These details
are presented in [11,12]
12 Terms inside the “< >” should be replaced by the corresponding values

Fig. (6). UC Send Notification may be specialized according to the type of use case which invokes it (e.g., UC Create IO invokes UC Send

Create Notification).

��������	
	���	��

�����������

���	
	���	��

������������	��

���	
	���	��

����������	��

���	
	���	��

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 29

b Accompaniment: Accompaniment participates in close
association with the Creator, Alterer or Experiencer,
depending on the type of use case, to help them in the
creation, alteration (including both alter and alter-
related use cases) or reading of an instance of the IO
(e.g., Patient provides to the Receptionist his/her per-
sonal and other information to create an appointment
for the UC Create Appointment.) The collaboration
between a primary actor and an accompaniment can
derive both include and extend

13
 relationships, where

extending or included use cases are invoked by their
base use cases and triggered by the accompaniments.
These use cases are called complementary. For exam-
ple, as illustrated in Fig. (7), during the creation of a
prescription, the doctor may need to ask for the assis-
tance of another doctor/counselor or of a medical da-
tabase system in order, for example, to choose be-
tween two drugs for the treatment of a patient. In this
case the counselor and the medical system are accom-
paniments that provide feedback, and Give Prescrip-
tion Help extends the behavior of Create Prescription.
Give Counselor Help and Give Medical Database
Help are specialized UCs of Give Prescription Help,
and they occur based on the decision of the doctor. If
the doctor does not need any extra knowledge to cre-
ate the prescription, then the extending UC will not be
executed, but the extended (base) UC will be fully
completed. In the case where the complementary use
cases are not considered to be large, complicated or
worth reusing, then they can be described in the trans-
action flow of the UC Create Prescription specifica-
tion and so they are not defined as separate use cases.
To identify the accompaniments in a use case, we
should ask questions related to that UC type (Create,

13 The extending use case is dependent on the base use case; it literally extends the

behavior described by the base use case. The base use case should be a fully functional
use case in its own right without the extending use case's additional functionality. The

“extends” relationship includes the condition that must be satisfied if the extension is to
take place, and references to the extension points which define the locations in the base

(extended) use case where the extensions are to be made [34].

Alter, etc.) and the functional role of the primary ac-
tor. For example, to identify the accompaniment in a
Create UC, we may ask questions based on the fol-
lowing patterns:

– Who should assist the <Creator> to create an
<IO>?

– How does the <Accompaniment> help the <Crea-
tor> during the creation of an <IO>?

– Does/Should any human or computer system help
the <Creator> to record a new <IO>?

c Intended Recipient: Intended Recipient (IR) takes ac-
tion within the IS after being notified about the crea-
tion, alteration (including both alter and alter use
cases) or erasure of an instance of the IO. The action
to be taken needs to fulfill the purpose of the IO
within the IS, and the fulfillment is achieved by creat-
ing or altering instances of other related IOs. For ex-
ample, in the UC Create Patient, Doctor is an IR of
the Patient IO, because after the creation of a Patient
IOi, the doctor will fulfill the purpose of the patient
within the hospital IS (the purpose of a patient is to
receive examination, diagnosis, etc.) by creating an
Examination IOi, a Prescription IOi, etc. Similarly, in
the example of the UC Create Prescription, Pharma-
cist is an IR of the Prescription IO, because after the
creation of a Prescription IOi, the pharmacist will ful-
fill the purpose of the prescription (the purpose of a
prescription is to provide drugs to the patient) by al-
tering a Drug IOi (the drug provided to the patient
must be removed electronically from the IS). Fur-
thermore, the IR helps in deriving new use cases (e.g.,
Create Drug) and new UC modules (e.g., Drug mod-
ule) in which the IR plays the role of the primary ac-
tor in a use case of the new module, which is linked to
a use case of the previous module, where the IR was a
secondary actor (e.g., Pharmacist who was an IR in
the UC Create Prescription of the Prescription mod-
ule, is an alterer in the UC Alter Drug of the Drug

Fig. (7). Complementary use cases derived from relationships between actors (this is the other part of the Prescription module depicted in Fig. 5).

�����������	�
��
�

��	���

��������

�
�������	�
��
�

����

��������

��������
��

�
�����

�
	�����

�
������
	��

�������������

�
�����������

����

���
	���������

30 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

module). We will see in step 5 how this sequence
helps in constructing subsystems. To identify the IR
in a use case, we may ask the following relevant ques-
tions, based on the purpose of the IO, which is ful-
filled by the actor who plays the IR (examples below
are taken from the HIS case study):

– What is the purpose of the Patient?

– Answer: To receive examinations, diagnoses, pre-
scriptions, treatments.

– Who provides the examination?

– Answer: Doctor

Therefore, as aforementioned, Doctor is the IR of the UC
Create Patient, since s/he fulfills the purpose of the patient
(to receive examinations, etc.) through executing new use
cases (e.g. UC Create Examination).

d Notifiee: Notifiee includes the entities that only need

to be notified about the function applied on an in-

stance of the IO (these entities will not use the IOi or

related information in any way that will cause any in-

teraction within the system). Notifiees may include the

business roles of business users, managers, informa-

tion users (e.g., a relative of a patient in an HIS) and

shareholders who generally do not have a direct inter-

action with the system; these business roles are con-

sidered as Offstage Actors. Notifiees of a use case

may also include the primary and secondary actors in-

volved in the use case, who need to receive a notifica-

tion about the creation, alteration, erasure or reading

of an instance of the IO they interact with. Addition-

ally, the notification (its content or layout) sent to

each notifiee may be different, based on the prefer-

ences of each notifiee, thus resulting to separate noti-

fication use cases (Fig. 6). To identify the notifiees,

but also IRs, in a use case, we may ask the following

relevant questions (examples below are taken from the
HIS case study, for the UC Create Prescription):

– Who receives notification about the creation of a
Prescription in the IS?

– Answer: Patient, Pharmacist, Doctor

– What is the action of the Patient after being noti-
fied about his/her Prescription?

– Answer: To go to the pharmacy (that means Pa-
tient is just a Notifiee, since s/he does not affect
the operation of the system directly)

– What is the action of the Pharmacist after being
notified about the creation of a Prescription?

– Answer: To provide the Drug (in this way the
Pharmacist needs to change the status/state of the
Prescription IOi from Pending to Complete,
therefore s/he is an IR).

Step 4. Structure UC Elements as Formalized Sentences

In the previous steps, the analyst identified and defined
the UC modules, the use cases of each module, actors, asso-
ciations, “include” and “extend” relationships between use
cases, as well as generalization relationships. Additionally,
during these three first steps, the analyst uses the identified
UC elements to develop the UCDs which s/he finally com-
pletes after the application of steps 4-6. Step 4 involves writ-
ing the UC elements as formalized sentences. Such formal-
ization not only helps to make expression of requirements
more disciplined, understandable and organized, but it also
makes easier their conversion into the UC diagrams and
specifications. Additionally, formalization also helps to iden-
tify more easily new UC elements, such as complementary
UCs, as illustrated in step 3 with the use of the accompani-
ment, and subsystems, as mentioned later in step 5. A for-
malized sentential use case pattern FSUC is a structured,
semi-formal way of writing a use case of an IS, based on the
basic syntactic form for writing a sentence in natural lan-
guage, that is, <Subject> <Verb> <Object><Adverbial>. An
FSUC is defined as follows:

IO

F
FSUC

=<A><F><IO><FC>::SendNotification<IR><No><FC>

Where

UC function type F acts on the Information Object IO;

the Actor group A refers to the primary actor and its accom-

paniments (secondary actors) if any, IR refers to the intended
recipients, which are secondary actors, (No)tifiees are off-

stage actors, and Functional Condition FC is a clause that

adds further information about the function, commonly by
establishing the circumstances (temporal, locative, instru-

mental, and others) within which the function takes place.

The syntax of the notification function, which is triggered
after the execution of F, is placed after the symbol “::”. Fi-

nally, the accompaniments’ involvement is elaborated

through separate complementary sentences. Below we pre-
sent the FSUC Create Prescription example with a comple-

mentary sentence.

The FSUC Create Prescription above indicates the pri-
mary actor Doctor who executes the use case Create Pre-
scription with the help of the accompaniment Patient who
provides relevant data. While the doctor creates the prescrip-
tion, s/he may need help from a counselor (accompaniment
in this case, too) in filling some specific data values, such as

PatientDoctorPharmacistfiesSystemNoti

styluskeyboardComputerDoctOffice

dayonprescripti
escriptionCreatePatientDoctorFSUC e

Cre

,

::
,

,/10min,5,00:1400:8
Pr,

Pr
=

ByFormByEmailByPhoneHelpescriptionGiveCounselor Pr

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 31

drug dosage; therefore the UC Create Prescription may be
extended by the UC Give Prescription Help.

Functional conditions may derive business rules that in-
fluence the actions of the UC specifications (e.g., the FC
type time point may derive the business rule Doctor can cre-
ate a prescription from 8:00-14:00) or they may also derive
“include”, “extend” or “generalization” relationships (e.g.,
Counselor Gives E-mail Help and Counselor Gives Form
Help are specialized use cases of Counselor Gives Prescrip-
tion Help).

Below we provide two indicative rules that illustrate how
the FSUC can assist in creating the UC diagrams:

1. In a Create, Alter, Alter-related, Erase, or Read
FSUC, the first actor in the Actor group is the primary
actor (Creator, Alterer, or Experiencer) and should be
positioned on the left of the use cases of the UCD.

2. The actors on the right of the first actor (primary), in
the Actor group are accompaniments and are therefore
secondary actors and should be positioned on the right
of the use cases of the UCD.

Fig. (8) shows a screenshot which depicts the procedure
for developing the UC requirements as formalized sentences
using the NALASS tool. The tool [14] automatically creates
the FSUC patterns for each UC module (Fig. 8a). The UC
modules correspond to the IOs provided to the tool by the
analyst, as a part of an earlier activity. For the UC elements
of each UC pattern, the tool creates relevant questions (Fig.
8b), and the answers (Fig. 8c) to these questions form the
final complete sentences (Fig. 8d). Then the tool uses con-
version rules, such as the ones explained above, to read the
complete formalized sentences and produce their corre-
sponding UC diagrams and modules, as depicted in Fig. (5)
earlier above, with the Prescription module and its UCD.

Step 5. Define UC Subsystems

UC modules of IOs created by the same actor may be
possibly related and thus compose a UC subsystem which
facilitates better organization and understanding of the UC
elements and model. Such a subsystem supports related du-
ties and responsibilities of mainly the same actor. Usually,
the different modules of a subsystem are linked with an “ex-
tend” or an “include” relationship, but in some cases they
may not be linked at all. Fig. (9) below shows a part of the
subsystem Hospital Reception composed of the UC modules
Patient and Appointment

14
. The Hospital Reception subsys-

tem supports the duties of the hospital receptionist. The re-
ceptionist is the IS primary actor in creating patient ap-
pointments and recording new patients, which are two of
her/his duties we indicatively present for the purpose of this
paper. The receptionist is also involved in the other use
cases—apart from creating appointments and patients, e.g.,
Cancel Appointment, Read Patient—of the UC modules Ap-
pointment and Patient. Patient and Doctor are secondary
actors; the former provides his personal and other informa-
tion to the receptionist, upon arrival and/or by phone, in or-
der to create or alter an appointment. The latter provides
information to the receptionist, such as confirming his/her
availability for an appointment, so as to create or alter an
appointment. Additionally, the doctor, as a primary actor, is
authorized to read the appointment on his/her computer
screen.

The grouping of different UC modules into a UC subsys-
tem drives the analyst to investigate if this grouping derives
any extend, include, or generalization relationships. For ex-

14 For simplification, we haven’t included the UCs Erase IO and other possible UCs,

such as Cancel IO, Complete IO, and Archive IO. Furthermore Send Notification is
conceived as a small sequence of actions at the end of each UC specification, and

therefore it is not conceived as an “include” UC.

Fig. (8). Based on the FSUC patterns for each IO (a), a number of predefined questions are created (b), and based on the answers to the ques-

tions (c) the complete FSUCs are finally produced. (d) Screenshots are taken from our software tool—for the IO Prescription of the HIS case

study—which automates and supports the proposed approach.

<Creator, Accompaniment> <Create> <Prescription> :: <System><Notifies> < Intended Recipient><Creator, Accompaniment, Notifiee>

<Alterer, Accompaniment> <Alter> < Prescription> :: <System> <Notifies> < Intended Recipient <Alterer, Accompaniment, Notifiee>

<Erasor> <Erase> < Prescription> <System> <Notifies> <Erasor, Creator, Notifiee>

<Experiencer> <Read> <Prescription>

<Alterer, Accompaniment> «Complete ><Prescription> :: <System> <Notifies> < Intended Recipient > <Alterer, Accompaniment, Notifiee>

<Alterer, Accompaniment> «Cancel > < Prescription> :: <System> <Notifies> <Intended Recipient> <Alterer, Accompaniment, Notifiee>

<System> < Archive > <Prescription>

1. Who creates the Prescription?

2. Who accompanies the <Creator>?

3. Who is the Intended Recipient of the Prescription?

4. Who else is notified about the creation of the Prescription?

5. Who alters the Prescription?

6. Who accompanies the <Alterer>?

7. Who else is notified about the alteration of the Prescription?

8. Who erases the Prescription?

9. Who else is notified about the erasure of the Prescription?

10. Who Reads the Prescription?

11. Who completes the Prescription?

(a) Creation of FSUC patterns > (b) Questions

1.Who creates the Prescription?

2. Who accompanies the Doctor?

3. Who is the Intended Recipient of the Prescription?

4. Who else is notified about the creation of the Prescription?

11. Who completes the Prescription?

1. <Doctor, Patient > <Create> <Prescription> <System> <Notifies> <Pharmacist> <Doctor, Patient>

2. <Doctor> <Alter> <Prescription> :: <System> <Notifies> < > <Doctor, Patient>

3. <Doctor> <Erase> <Prescription> :: <System> <Notifies> <> <Doctor >

4. <Doctor > <Read> <Prescription>

5. <Pharmacist> <Read> < Prescription >

6. <Pharmacist> <Complete> <Prescription> :: <System> <Notifies> < > <Pharmacist>

7. <Doctor> <Cancel> <Prescription> :: <System> <Notifies> <> <Doctor, Patient, Pharmacist>

8. <System> <Archive> <Prescription

(c) Answers > (d) Complete FSUCs

32 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

ample, in the Hospital Reception subsystem, the UC Create
Patient extends the UC Create Appointment. This occurs
when the receptionist is creating an appointment for a new
patient who will be registered for the first time in the system.
When the patient is already stored in the system, the extend-
ing use case will not be executed.

Different subsystems can be linked together. As men-
tioned in step 3, a good way to link subsystems is through an
actor who plays the role of an IR (secondary actor) in mod-
ule A of subsystem A and the role of a creator or alterer
(primary actor) in module B of subsystem B, which results
from module A. In this case, subsystem A may be linked
with subsystem B. This is illustrated with the example of the
Prescription module of the subsystem Hospital Practice

15

and the Drug module of the Pharmacy subsystem, in which
the Pharmacist plays the role of IR in the Prescription mod-
ule (in UC Create Prescription) and alterer in the Drug
module (in UC Alter Drug). Another example related to the
Hospital Reception subsystem is the relationship of its Ap-
pointment module with the Examination module of the Hos-
pital Practice subsystem, where Doctor is an IR in UC Cre-
ate Appointment of the former module, and doctor is a crea-

15 Hospital Practice is composed of the modules Prescription, Examination, and Diag-

nosis, since doctor, as a primary actor, is the creator of all three of them

tor in UC Create Examination of the latter module. There-
fore the Hospital Practice Subsystem is linked with the Hos-
pital Reception subsystem, as shown in Fig. (10) above.

Step 6. Relate business rules with use cases and actors

Business rules associated to the use case interactions
must be specified or, at least, referenced [1]. Business rules
are never "owned" by a use case, since a business rule may
be implemented by more than one use case. On the other
hand, a business rule can be incorporated in a use case. As
illustrated later in step 7 on use case specifications, some UC
specification actions may need to comply with business
rules. Failure to comply may lead to the termination of a use
case or to alternative flows. Business rules can also deter-
mine new extend or generalization relationships. There are
different types of business rules, such as general policies of
an organization about data compliance standards (e.g., cod-
ing of clinical elements must comply with specific clinical
data standards) or business rules derived from the functional
conditions, as mentioned previously in step 4. Here we focus
on two major types of business rules, as provided by
NLSSRE:

(i) Inter-related business rules. These rules are created
from combinations of two or more attributes between differ-
ent interrelated participants (actors and IO). In particular, the

Fig. (9). Hospital Reception Subsystem UCD developed from 2 different modules: Patient and Appointment.

Fig. (10). Different subsystems are linked together to construct the entire system’s UCD.

����������	�

�����������

�����������

���������

����
����������

����
����������

���������

�������	�

�������

������������

������
����������

����������	������	��

�������������������

�������������

������

����	
���
�

�����	�
	��

�����

������

���	�
�

������

�����
�

������

����	
��	�

������

�	��
��	�

������

�����	��	�

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 33

values of one or more attributes of one or more participants
determine the values of one or more attributes of one or
more related participants. The interrelated participants can be
identified easily through their co-involvement in the same
use case, and of course, in the same FSUC. For example,
using the UC Create Admission:

FSUC=<Ward Clerk, Patient> <Create> <Admission>

<Doctor><Ward Clerk>

we should examine if there are any special relationships
between the actors involved during the execution of Create
Admission. This examination takes place by checking com-
binations of attributes of the actors and the IO. For example,
if Admission.time (where time is an attribute of the IO Ad-
mission) is more than one night, then Patient will be allotted
a bed, whereas if Admission.time is zero nights, then Patient
will not be allotted a bed (except only temporarily). In this
case, two new specialized UCs (Create Outpatient Admis-
sion, Create Inpatient Admission) may be created, or the
relevant business rule may be incorporated in the specifica-
tion of UC Create Admission.

(ii) Intra-related business rules. These rules refer only to
a particular IO, where the value of one attribute of an in-
stance of the IO determines the value of another attribute of
the same instance of the IO. An example of intra-related
business rules in the form of questions, which may apply to
the UCs Create Doctor and Create Schedule, are the follow-
ing:

–How does the rank of a doctor affect his/her schedule?

 Possible answer: If Doctor = Consultant (First) then
Doctor’s Work Time is no less than 18 mornings/month.

Else: If Doctor = Specialty Registrar (Second) then
Doctor’s Work Time is no less than 24 mornings/month.

Intra-related business rules are usually incorporated in
the transaction flow of the UC specification. For example,
when the UC Create Schedule is executed, one of its actions
will be to check the doctor’s rank and based on it to deter-
mine the doctor’s schedule.

Intra-related business rules may also lead to the devel-
opment of generalization relationships between actors, like
in the example of the Doctor.rank attribute, which, when
taking different values such as consultant or registrar, may
lead to the specialized actors Doctor Consultant and Doctor
Specialty Registrar.

If a business rule applies to a single use case, it may be
attached as a note in the use case itself in both the use case
diagram and its specification; if a business rule applies to
multiple use cases, it may be written only once as a global
note linked to every relevant use case in the UCD and UC
specification [35].

Step 7. For Each Use Case, Write the Use Case Specification

Previous steps have illustrated how the UC elements are
identified through formalization of use case types and actor
roles, and how the UC modules, subsystems and the entire
UC model is constructed, including UCDs. We have also
presented screenshots and description of our CASE tool.
Within this step, our approach also intends to formalize and

automate the process of completing the UC specification
template, and to provide clear and precise specifications. To
achieve these aims, our approach applies (i) adaptation
guidelines on the identified UC elements or/and on the for-
malized sentences, and (ii) NL authoring guidelines.

The UC specification template contains entries such as
use case name, identifier, description (a couple of sentences
or a paragraph describing the basic idea of the use case),
preconditions (list of the state(s) the system is into before the
use case starts), basic flow of actions (description of the
“normal” processing path), alternate flow of actions or ex-
ception conditions, post-conditions (list of the state(s) the
system can enter when this use case ends), actors (list of
primary and secondary actors that participate in the use
case), stakeholders (offstage actors), included use cases (list
of use cases that the template use case includes), extending
use cases (the use case(s) that extend the template use case),
and any business rules which concern the template use case.

The UC specification, similar to the construction of the
UCD, may be developed incrementally, through the applica-
tion of the steps of the proposed approach. However, com-
plete UCDs and FSUCs are useful to facilitate the construc-
tion; therefore a significant part of UC specifications is con-
structed after the completion of the previous steps. Here we
present the adaptation and authoring guidelines of our ap-
proach, and we mainly focus on the most significant parts of
the use case specification, which are the basic flow and al-
ternative flow/exception conditions of actions:

Guideline 1. The name of the use case consists of a verb

followed by a noun phrase. Our approach provides specific

use cases with specific names, such as Create IO, Alter IO,

Read <IO report> (e.g., Create Prescription, Read Patient

Record).

Guideline 2. Preconditions refer to the list of the state(s)

the system is into before the use case starts. A good way to

identify preconditions is to check if the primary actor A of

the template use case is an intended recipient in another use

case, described as essentially preceding use case (EPUC).

EPUC is normally about the creation or alteration of an

IOEPUC which is used by actor A to execute the template UC.

The state of IOEPUC, defined after the execution of EPUC,

determines this type of precondition. The syntax of this type

of precondition is as follows:

“<IOEPUC> is in < IOEPUC.state> state (from UC <EPUC>).”

For example, a precondition of the UC Create Prescrip-

tion is “Examination is in Complete state (from UC Create

Examination).” as shown in Table 1.

Regarding the automation part of detecting the precondi-

tions from the elements identified in the previous steps, our

CASE tool reads the FSUCs and matches the actors that both

play the role of IR in one use case and primary actor (usually

by reading the IOEPUC) in another use case, and then it pro-

vides to the analyst the possible cases of preconditions to

select from.

Another type of precondition refers to the primary actor
that initiates the use case, that is, the creator, alterer or expe-
riencer. Normally, the system must check that the primary

34 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

actor has the access rights/credentials to initiate the use case.
For example, for the UC Create Prescription, “Doctor is
authenticated” is a pre-condition. The syntax of this precon-
dition type is as follows:

 “<Actor> is authenticated (from UC <Actor> Creates
Authentication)”

For example, a precondition of the UC Create Prescrip-
tion is “Doctor is authenticated (from UC Doctor Creates
Authentication).” as shown in Table 4.

 Guideline 3. A post-condition usually refers to the re-
sulting state of the IO after the execution of its use case. For
example, for the UC Create Prescription, the result will be
the prescription in a Pending state, which should have the
following syntax:

“<IO> is in <IO.state> state.”

For example, the post-condition of the UC Create Pre-
scription is “Prescription is in Pending state.” as shown in
Table 4.

Guideline 4. Actors that participate in the use case in-
clude at least one primary and zero or more secondary actors.
From an FSUC, as shown in step 4, we can derive the pri-
mary actor, which is a creator, alterer or experiencer, and the
secondary actors which play the roles of accompaniment or
intended recipient. Each actor should be named with a singu-
lar noun; if actors are specializations of a general actor or if
they refer to a system, they may be represented by a noun
phrase, e.g., eye-doctor, medical system.

Guideline 5. According to Meyer et al. [36], a typical use
case is described as a sequence of actions, and each action is
expressed in natural language (if needed, one can extend a
given action with an alternative behavior). That makes use
cases readable for end-users. To maintain a high-degree of
readability and understandability and to minimize ambiguity,
our approach intends to formalize the use case actions by
providing specific types of actions, written in a structured
form of NL, as well as to automate their specification. The
formalization is achieved by utilizing the sub-functions of
each CAREN function, the attributes of each IO

16
, functional

conditions, data constraints and business rules. The automa-
tion is facilitated by our CASE tool.

In particular:

– The sub-functions Enter Data, Check, and Save
are used as main actions in the basic flow of the
Create UC specification (e.g., Table 1 actions 3,
4, and 6; Table 4 actions 3–12.3).

16 The NLSSRE methodology provides different types of IOs and attributes that help in

the identification of the attributes of each IO.

– The sub-functions Delete, Enter Data, Check, and
Save are used as main actions in the basic flow of
the Alter UC specification (also for any form of
alteration, such as cancel, complete, etc.) (e.g.,
Table 2 actions 3–6 and 8).

– The sub-functions Delete, and Check are used as
main actions in the basic flow of the Erase UC
specification.

– Read IO is a basic use case which is included in
the use cases Alter IO, Erase IO, and Alter-
related UCs (cancel, complete, etc.), and it is in-
voked by the first action in the basic flow of the
above UCs (e.g., Table 2 action 2).

– Read is decomposed to a sequence of actions in
the UC Create IO. It has to do with reading a
form with empty fields (required, optional) to be
filled (e.g., Table 1 action 2).

– Send Notification is normally executed as the last
action in the flow of the use cases Create IO, Al-
ter IO (also Cancel IO, Complete IO, etc.), and
Erase IO. It can be decomposed to small actions
or defined as a separate use case (Table 1 action
7; Table 2 action 9; Table 4 action 13).

– Select or Click are secondary actions.

Normally, request actions are executed by an actor (in-
cluding any involved accompaniments too), and respond
actions are executed by the system. Usually an actor’s action
is followed by a system’s action. In Tables 1-3 below, we
present the sequence of actions for the basic flows of the
UCs Create IO, UCs Alter IO and Read IO, whereas in Table
4 (actions 1-14, flow of events section) we can see the basic
flow of the UC Create Prescription. NALASS reads each
IO, its attributes and its FSUCs and creates the UC specifica-
tions flows based on the below patterns and by replacing the
elements in “< >” with their corresponding values.

Alternative flows or exception conditions are easily de-
fined by the use of data constraints. For each IO attribute
entry in the UCs Create IO or Alter IO, or for each IO attrib-
ute deletion in the UCs Alter IO or Erase IO, an exception
condition is applied with reference to its possible triggering
point in the basic flow, after a system check is applied. The
syntax of this kind of exception condition is as follows:

The system displays ‘Invalid <IO> <IO.attribute>’ mes-
sage, if <IO> <IO.attribute> is incorrect. <IO> cannot be
saved.

Table four shows examples of implementing various ex-
ception conditions, regarding the UC Create Prescription
(actions 1.1-5.1, exception conditions section).

Table 3. Basic flow pattern for UC Read IO

1. System receives the <IO> identification from <Actor>.

2. System checks its data store for the <IO> based on the identifiers.

3. System converts the <IO> into the relevant format for viewing.

4. System displays <IO> mandatory and optional fields.

5. System notifies < Actor> that <IO> is displayed on screen.

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 35

Guideline 6. Extension Points of a Use Case show ex-
actly where in the basic flow an extending use case is al-
lowed to add functionality. Extension points can be derived
easily from the UCD. The extends relationship, as shown in
Fig. (9), includes the condition that must be satisfied if the
extension is to take place, and references to the extension
points which define the locations in the base (extended) use

case where the additions are to be made. For example, as
shown in Fig. (9), UC Create Appointment is extended by
UC Create Patient, under the condition “Patient does not
exist in the system”, at the extension point “Enter Patient
ID”. Our CASE tool reads the extension point “Enter Patient
ID” of the UCD and matches it with the corresponding ac-
tion of the extended UC (UC Create Appointment, in this
example). On the right of the corresponding action, a rele-
vant message is written, with the following syntax:

[Extension point: UC <UC id> <UC name>]

Table 4 includes two extension points at actions 6.1 and
7.1 of the basic flow.

4. EVALUATION

In order to prove the usefulness of our approach, we
compared it to the Cockburn’s widely-used use case ap-
proach [4], by applying both in 3 different real settings. A
preliminary evaluation of the methodology preceded the sec-
ond and third evaluations, the latter of which is presented in
this paper. The first evaluation concerned the application of
the approach for the RE task for the development of a Bank-
ing IS in Cyprus, and it was conducted by a postgraduate
student with extensive knowledge in the field of software
engineering. Relevant training was given to her to become
familiar with the proposed approach and the dedicated soft-
ware tool provided at the time of the evaluation. The evalua-
tion assisted in clarifying and establishing several concepts
of the approach, such as the overall application framework,
the identification of primary and secondary actors, the alter-
related use cases, and other issues. The second evaluation
concerned the application of our approach for a Dentistry IS,
and it was conducted by a novice software engineer, cur-
rently working in the software industry, at the same time
with carrying out the evaluation described in this paper; the
same engineer examined both approaches to investigate the
experience of the same person using two different methods
and tools. The second evaluation produced rather similar
results to those obtained from the third evaluation presented
in this paper

17
.

As aforementioned, the methodological guidelines by
Cockburn which we shall call classical approach for sim-
plicity were chosen, because, besides their wide acceptance,
they provide detailed and straightforward guidance for iden-
tifying the use case elements and constructing the use case
specification. Two novice software engineers (for evaluation
purposes we will call them SE1 and SE2) were assigned to
test the two approaches. They were both graduate students of
the University of Cyprus who attended several courses in
software development over a period of three years prior to
the experiment. Additionally, a specific one-week training
and lecture were given to SE1 regarding the use of our ap-
proach and the NALASS tool, and a similar one-week course
was given to SE2 in the form of a knowledge refresher on
the classical UC approach—SE2 was already familiar with
UML classical methods from corresponding courses in his
studies. We assigned SE1 and SE2 the requirements engi-
neering task for the development of a subsystem of the Li-
brary Information System (LIS) of the University of Cyprus.

17 All case studies are available upon request from the corresponding author.

Table 4. Use Case Specification Example for UC Create

Prescription

Use Case Name Create Prescription

ID UC 4

Description The doctor fills out the form for a new prescrip-

tion.

Preconditions Examination is at Complete state (from UC Create

Examination).

Doctor is authenticated (from UC Doctor Creates

Authentication).

Actors Doctor (Primary), Patient (Secondary), Pharmacist

(Secondary)

Stakeholders Patient’s Relative

Post-Conditions Prescription is in Pending state

Flow of Events Doctor selects create Prescription by clicking on

‘create prescription’ button.

System displays new prescription creation form,
including required and optional fields.

Doctor Patient enter(s) Patient ID.

The System checks Patient ID.

Doctor enter(s) Drug Name.

The System checks Drug Name. [Extension point:

UC 22 Get prescription help]

Doctor enter(s) Drug Dosage.

5.1 The System checks Drug Dosage. [Extension
point: UC 22 Get prescription help]

Doctor clicks on the Submit button.

The Doctor adds Doctor’s digital signature to the
Prescription (BRU.001)

The System adds a unique identifier to the Pre-

scription. (BRU.002)

The System saves the Prescription in the database.

The System notifies the Doctor, Pharmacist, and

Patient that Prescription is created via UC 15.

Use case ends.

Exception condi-

tion

3.1. The System displays ‘Invalid Patient ID’ mes-

sage, if patient ID is incorrect. Prescription cannot

be saved.

4.1. The System displays ‘Invalid Drug Name’
message, if Drug Name is incorrect. Prescription

cannot be saved.

5.1. The System displays ‘Invalid Drug Dosage’

message, if Drug Dosage is incorrect. Prescription
cannot be saved.

12. The System does not take any action if Doctor

clicks on the Cancel button. Use case ends.

Includes UC 15: Send Notification

Extended by UC 22: Get Prescription Help

Extending other

UCs

Business rules BRU.001: The Doctor signature follows NEHTA

specifications.

BRU.002: The Prescription identification number

must comply with the format specified by NEHTA.

36 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

Our evaluation, based on the method proposed by Geisser
et al. [37] for evaluating RE methodologies, tested the fol-
lowing for each approach (including its underlying tools):

• The efficiency in terms of the output/effort ratio. Study
of efficiency is beyond the scope of this paper. However it is
worth noting that preliminary results indicated the applica-
tion of our formalized approach with the automated support
of NALASS to be much faster than the application of the
classical approach, mainly due to the automatic generation of
use case diagrams and specifications, examples of which

18 This metric is applied to comparable use cases between each approach and the

reference model. The denominator of the fraction in parenthesis refers to the number of
elements existed in the reference model for the comparable use cases. For example, 68

is the number of primary actors existed in the reference model for the comparable use

cases (57) between the reference model and our approach. Accordingly, for the classi-
cal approach this number is 58 (for 48 comparable use cases)
19 For correctness we took into account the non-missing and redundant use cases and
their elements provided by each approach, that is, 57 use cases from our approach and

55 use cases from the classical approach (7 use cases were defined twice). We did not
take into count superfluous use cases.
20 With 14 appearances of the same mistake, not different mistakes.

were illustrated previously in this paper, as well as small
references to the automation provided, later in this section.

• The effectiveness in terms of the achieved quality of the
use case model produced by the application of each ap-
proach. The use case model included use-case elements (use
cases, actors, associations and relationships), use-case dia-
grams and use-case specifications.

In order to objectively evaluate the output, we used a
high-quality UC model as the reference. This UC model in-
cluded UC diagrams and specifications and was derived
from an existing, high-quality object-oriented SRS docu-
ment, created by the analysts of the fully functional (cur-
rently in daily operation) LIS. The SRS document had been
refined several times during the LIS initial development and
implementation, and was known to reflect the desired per-
formance of the existing LIS and the high satisfaction of its
users. The UC model therefore served as a benchmark for the
quality assessment of the specification developed by each
student. We performed additional processing on the bench-
mark to achieve a clearer focus on atomic requirements, and

Table 5. Objective Quality Metrics Used to Determine the Effectiveness of the Approach

Quality Factors Metrics Our Approach Classical Approach

Percentage of missing Use Cases (UC) 5% (3/60 UC) 20% (12/60 UC)

Percentage of superfluous Use Cases 7% (4/57 UC) 17% (8/48 UC)

Percentage of missing Primary Actors (PA) 0% (0/68 PA) 10% (6/58 PA)

Percentage of missing Secondary Actors (SA) 2% (4/188 SA) 14% (22/158 SA)

Percentage of missing use-case specification actions (Ac) 2% (18/855 Ac) 32% (232/720 Ac)

Percentage of missing pre-conditions (Pre) 0% (0/66 Pre) 9% (5/55 Pr)

Percentage of missing post-conditions (Pos) 6% (4/61 Pos) 10% (5/51 Po)

Percentage of superfluous pre-conditions 0% (0/57UC) 6% (3/48UC)

Percentage of superfluous post-conditions 0% (0/57UC) 6% (3/48UC)

Percentage of superfluous Actors 0% (0/57UC) 8% (4/48UC)

Percentage of superfluous use-case specification actions 0% (0/855) 20% (90/720)

Number of missing associations and relationships 6 (for all 57 UC) 79 (for all 48 UC)

Percentage of superfluous associations and relationships 0% (for all 57 UC) 12 (for all 48 UC)

Completeness18

Percentage of missing business rules (BR) 14% (5/35 BR) 41% (12/29 BR)

Percentage of use cases with no identifier 0% (0/57 UC) 5% (3/55 (UC)

Percentage of use cases and actors with no names 0% 1%

Percentage of incorrect associations and relationships 0% 3%

Number of other violations to Use Case modeling standards 0 6

Correctness19

Number of Spelling errors 1620 38

Percentage of redundant use cases 0% 12% (7/55 UCs)

Percentage of redundant actions (per use case) 0% 10%

Occurrences using words from more than one language 0 2

Percentage of redundant business rules 0% 10% (3/29)

Consistency

Number of requirements referring to elements which are not present (e.g., use

cases, use case diagrams)
0 6

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 37

especially on UC actions of each UC specification, with the
aim of ensuring a high degree of comparability. The existing
UC elements, diagrams and specifications were compared
with those derived from both our approach and the classical
UC approach. SE1 used the proposed approach and its corre-
sponding CASE tool, while SE2 employed the classical UC
approach.

4.1. Evaluation Criteria and Analysis of Results

To evaluate the quality (and therefore, the effectiveness)
of each produced UC model, we formed quality factors
based on the quality frameworks of Moody [38], Moody and
Shanks [39], and Sharma [40], as well as on the IEEE Rec-
ommended Practice for SRS [5]. Each factor was objectively
measured against quality metrics. In this paper we make ref-
erence to what we and others [41, 42] consider the most sig-
nificant quality factors, namely completeness, correctness,
and consistency. Table 5 shows the summarized results for
the quality of each produced specification, followed by dis-
cussion only on completeness, due to space limitation. To
achieve a higher level of objectivity in the comparison, espe-
cially for measuring completeness, the comparison metrics
were applied on equivalent elements. We found this equiva-
lent-element comparison more meaningful when, for exam-
ple, determining the percentage of missing actors from all
the comparable use cases of each approach rather than the
total number of missing actors from all the use cases of each
approach and thus also including superfluous and redundant
use cases. The comparison would not have been that objec-
tive if we compared the actors identified by each approach to
the actors of the 60 use cases of the reference model, which
include a number of incomparable use cases since some of
them were not identified by the two approaches. Similarly,
we are interested in the average percentage of missing ac-
tions in each comparable use case rather than the total num-
ber of missing actions in all use cases which also include
superfluous and redundant use cases. With the term compa-
rable use case, we mean the use case of our approach or the
classical approach that has equivalent functionality with a
use case of the reference model. For example, the compara-
ble use case Create Book in our approach was Add Book
Details in the classical approach and Record New Book in
the reference use case model. Superfluous or redundant use
cases are not included in the set of comparable use cases of
each approach. The number of comparable use cases was 57
for our approach and 48 for the classical approach, compared
to the 60 use cases proved by the reference model.

a. Completeness. Completeness refers to the extent to
which the requirements model contains all necessary re-
quirements [39] which for a UC model are use cases, actors,
associations and relationships, use case diagrams, use case
specifications including actions (in both normal and excep-
tion flows), pre-conditions, post-conditions, and business
rules related to use cases. To assess the completeness of each
UC model, we check for necessary information which is
missing or information which is superfluous. Completeness
is mainly focused on the content of the use-case model and
not in the way it is written. In our experiment, we observed
that the use-case model of the classical approach included
several missing and superfluous use cases, actors, associa-
tions and relationships, actions, pre-conditions, post-

conditions, and business rules. One of the major problems
that arose from the use of the classical UC specification tem-
plate was the omission of system response actions (e.g., a
notification sent by the system to the librarian about a pur-
chase of a new book was omitted). Another problem was the
grouping of atomic actions in one transaction (e.g., Librarian
fills authorization form instead of Librarian adds username /
Librarian adds password / etc.) which also led to omissions
of system response actions. All these problems mainly oc-
curred due to the lack of formalized methods for identifying
and specifying the UC elements. In contrast, our approach
produced significantly better results. Our approach missed
many fewer use cases. Also significantly, our approach
tended to include all the elements inside each use case, in-
cluding actions, pre-conditions, post-conditions, actors, ref-
erences to “included” and “extending” use cases and busi-
ness rules. These better results are due to the formalization
provided by our approach for identifying the UC elements,
with the use of predefined use case types and actors and
guidelines to identify related associations and relationships,
as well as due to the formalization of the UC specification
actions of the transactions flow, rules for identifying pre-
conditions and post-conditions, and an understandable way
of expressing the content of UC specifications. However,
although the error rate was lower, our approach was not
100% complete. The very small number of superfluous use
cases resulted from the inclusion of one superfluous IO; in
our approach the identification of IOs (and therefore, UC
modules) is the first step and is performed manually by the
analyst with the help of a relevant guide (provided by the
NLSSRE methodology), which, although providing specific
steps for the identification of IOs, could be enriched further.
Moreover, the use case specification actions missed by our
approach concerned notifications to four secondary actors
the analyst failed to identify, therefore this issue did not oc-
cur because of a weakness in the proposed method of
formalizing the actions of the UC specification transaction
flows. Additionally, the application of our approach omitted
three lower priority use cases, related to the reading of
reports. Such use case types are not provided directly by our
approach—although we give specific guidance as illustrated
in step 2—and it is up to the analyst to identify them.
Furthermore, the use of NALASS helped avoid missing the
UC elements. As the results show, the analyst who applied
the classical approach missed considerably more (as a
percentage) preconditions and post-conditions than the
analyst who applied our approach. The use of NALASS
helped to minimize missing these elements because it
automatically provided the preconditions of each use case
and also different options for each use case regarding the
new state (post-condition) of the IO, such as Pending,
Completed, etc., so the analyst could decide accordingly. The
two missing post conditions occurred, because the
identification of post-conditions is not yet a fully automated
process.

b. Correctness. Correctness refers to the extent to which
the model conforms to the rules and conventions of the writ-
ing/modeling technique [41], which are, in our case, the
naming rules, definition rules, diagrammatic conventions,
etc. for the creation of the use case elements, use-case dia-
grams and use-case specifications. Since the NALASS tool
automatically provides the use case types and also uses spe-

38 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

cific conversion and authoring rules for writing and drawing
the use-case model, very minor problems appeared when
using our approach, most of which were spelling mistakes
from the analyst’s input. The spelling mistakes mainly oc-
curred from the manual entry of elements such as IOs, actors
and IO attributes indicate that dictionary verification of the
input data is an important future step. When compared with
the error rate of the model produced by our approach, many
more errors were found in the model produced by the classi-
cal approach, including spelling and grammatical mistakes as
well as use cases with no identifiers. The language knowl-
edge level of SE2 (as well as of SE1) was checked before the
experiment and proved to be good. Therefore most of the
mistakes are considered to be due to the analyst’s oversight.

c. Consistency. Consistency assessment involves finding

contradictions/conflicts between requirements, such as two

or more use cases describing the same functionality with

different terms, or two use cases with the same identifier, or

missing use cases specification for use cases depicted in a

use-case diagram and vice-versa. In our approach, contrary

to the classical one, for each IO identified by the analyst, the

NALASS tool provides clearly and automatically the use

cases for each IO identified by the analyst and also guides

the analyst in defining additional use cases, such as Alter-

related (e.g., Cancel IO, Complete IO) or complementary use

cases (e.g., the extending use case Give Prescription Help, as

illustrated in one of our previous examples, in step 3). The

NALASS tool also provides the specification template for

each identified use case, with specific types of actions as

defined earlier in step 7. In contrast, the use-case model of

the classical approach used different wording/terminology

for the same type of use case elements; for example, for the

creation use case of each UC module, different verbs were

used, such as ‘create’, ‘record’, ‘fill’, and ‘complete’.

4.2. Threats to External Validity

Two main threats to external validity are relevant to our

experiment, and are typical when running controlled experi-

ments within time constraints: i) Are the subjects representa-

tive of software professionals? ii) Is the experiment material

representative of industrial practice?

In our context, the main difference between students and

professional requirements engineers is that the latter have

more experience, and therefore we assume that they would

apply the approaches more effectively than students given

the same amount of training. Nevertheless, we consider valid

the evidence that, given the same level of training and expe-

rience of the analysts, our approach produced more com-

plete, correct and consistent results than the conventional

approach. Additionally, the evaluation shows that one week

of training with our tool (and approach) is sufficient to pro-

duce moderate- to high-quality results.

As for the second validity threat mentioned above, the
application of the two approaches to larger scale systems
seems likely to demonstrate at least a proportional increase
in the differences between the two approaches. The involve-
ment of more actors, information objects, use cases, relation-
ships, use-case specification actions, pre-conditions, post-
conditions, and business roles would be more easily handled

by a structured, formal and understandable approach, such as
ours, than from the classical approach. An experiment on
larger scale systems is in our future work plans.

5. CONCLUSIONS AND FUTURE WORK

Use case driven analysis (UCDA) is one of the most
common approaches in requirements engineering. However,
existing UCDA approaches often result in poorly defined use
case models due to the following reasons: (i) lack of specific
support in identifying the use case elements, including use
cases, actors, relationships, associations and business rules;
(ii) use of generic use case specification templates that do
not guide the analyst clearly how to identify each element of
the template; (iii) use of free natural language to express the
content of use case specification, which leads to inevitable
ambiguity; (v) finally, the lack of a software tool makes
UCDA a time-consuming and error-prone activity.

This paper presented an approach that is intended to
solve the aforementioned problems through (i) formalizing
the elicitation stage of UCDA by providing specific types of
use cases and actors, specific guidelines to define associa-
tions, relationships and business rules, and formalized sen-
tential patterns which provide a structured and expressive
way to write the UC elements. (ii) formalizing the UC speci-
fication by providing specific types of actions performed
with a specific sequence, for the normal and exception flows
of the UC specification, and guidelines to complete the other
parts of the UC specification template, such as pre-
conditions and post-conditions. Additionally, authoring rules
are applied on the identified UC elements and formalized
sentences, in order to easily construct a semi-formal NL UC
specification; (iii) a dedicated software tool that supports the
automation of the proposed approach including the auto-
mated generation of use case diagrams and specifications.

To evaluate the effectiveness and efficiency of our ap-

proach, we performed a short-scale experimental study

through which we compared our approach to the classical

UCDA approach, by applying both of them in a real-life set-

ting. The results showed that the proposed approach per-

formed much better than the classical approach in the various

objective quality metrics established, proving superior in

terms of completeness, correctness and consistency. Addi-

tionally, the evaluation showed that our approach and tool

can easily be learnt and applied in practice. The difference

was also significant in regard to efficiency, although exam-

ined only briefly in this paper, where our approach per-

formed much faster than the classical one.

It is our belief that this novel work has achieved

significant steps toward providing straightforward and auto-

mated support for the development of the use case model.

However, it remains to be tested on large scale projects, and

such an experiment will be part of future work. Other issues

to be addressed in future research will include enriching the

guidelines for facilitating more precise and straightforward

identification of alter-related use cases including Cancel IO,

Complete IO, etc., as well as extending the approach and its

CASE tool in order to support the requirements design

phase, with easy creation of interaction and state diagrams

from the use case model. Additionally, the use of a diction-

Formalizing and Automating Use Case Model Development The Open Software Engineering Journal, 2012, Volume 6 39

ary to check user’s input for spelling will be a future feature

of the NALASS tool.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENT

Declared none.

REFERENCES

[1] F. Dias, A. Schmitz, M. Campos, A. Correa, A. Alencar, “Elabora-

tion of use case specifications: an approach based on use case
fragments” In: ACM Symposium on Applied Computing (SAC),

Fortaleza, Ceara, Brazil, 2008, pp. 614-618.
[2] R. Pooley, and P. Stevens, Using UML - Software Engineering with

Objects and Components. Addison Wesley Longman: Harlow
1999.

[3] J. Kim, P. Sooyong, and S. Vijayan, “A Linguistics-Based Ap-
proach for Use Case Driven Analysis Using Goal and Scenario

Authoring”, In: Proceedings of Applications of Natural Language
to Data Bases, 2004, pp. 159-170.

[4] A. Cockburn, Writing Effective Use Cases. Reading, Addison
Wesley: Massachusetts 2000.

[5] IEEE IEEE Recommended Practice for Software Requirements
Specifications, ANSI/IEEE Standard 830-1998. Institute of Electri-

cal and Electronics Engineering: New York 1998.
[6] B. Dano, H.Briand, and F.Barbier, “A Use Case Driven Require-

ments Engineering Process”, Requirements Engineering, vol. 2,
No. 2, 1997, pp. 79-91.

[7] R. Denney, Succeeding with Use Cases Working Smart to Deliver
Quality. Addison-Wesley Professional: Boston 2005.

[8] D. Jagielska, P. Wernick, M. Wood, and S. Bennett, “How natural
is natural language? how well do computer science students write

use cases?” In: Conference on Object Oriented Programming Sys-
tems Languages and Applications (OOPSLA’06), Portland, Oregon,

USA, 2006.
[9] M. El-Attar and J. Miller, “Matching antipatterns to improve the

quality of use case models”, In: Proceeding of the 14th IEEE Inter-
national Requirements Engineering Conference (RE'06)”, pp. 99-

108, 2006.
[10] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in

natural language requirements”, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 14, 2005, pp. 277-

330.
[11] M. Georgiades and A. Andreou, “A novel methodology to formal-

ize the requirements engineering process with the use of natural
language”, In: Proceedings of the IADIS Conference on Applied

Computing, Timisoara, Romania, IADIS Digital Library, 2010, pp.
11-18.

[12] M. Georgiades and A. Andreou, “A methodology to formalize and
automate the requirements engineering process with the use of

natural language” [Under preparation for journal submission. Ex-
tended version of [11]].

[13] M. Georgiades, A. Andreou, and C. Pattichis, “A requirements
engineering methodology based on natural language syntax and

semantics”, In: Proceedings of the 13th IEEE International Con-
ference on Requirements Engineering (RE'05) (Paris, France,

August), IEEE Computer Society, Washington 2005; pp. 73-74.
[14] M. Georgiades and A. Andreou, “A novel software tool for sup-

porting and automating the requirements engineering with the use
of natural language”, In: Proceedings of the ICSCT International

Conference on Software and Computing Technology, Kunming,
China, IEEE Press, , 2010, pp. 256-263.

[15] M. Georgiades and A. Andreou, “Automatic generation of a soft-
ware requirements specification (SRS) document”, In: Proceedings

of the Intelligent Systems Design and Applications Conference,
Cairo, Egypt, IEEE Press, 2010, pp.1095-1100.

[16] G. Fliedl, C. Kop, W. Mayerthaler, H. Mayr, and C. Winkler, “The
NIBA workflow: From textual requirements specifications to

UML-schemata”, In: ICSSEA '2002 - International Conference

‘Software & Systems Engineering and their Applications’, Paris,

France, 2002.
[17] D. Liu, S. Kalaivani, E. Armin, and F. Behrouz, "Natural language

requirements analysis and class model generation using
UCDA", Lecture Notes in Computer Science, Innovations in Ap-

plied Artificial Intelligence: 17th International Conference on In-
dustrial and Engineering Applications of Artificial Intelligence and

Expert Systems, IEA/AIE, Springer: Berlin, vol. 3029, pp. 295-304,
May 2004.

[18] I. Jacobson, “Use cases - Yesterday, today, and tomor-
row”, Software and System Modeling, vol. 3, No.3, pp. 210-220,

2004.
[19] G. Booch, J. Rumbaugh, and I. Jacobsen, The Unified Modeling

Language User Guide. 2nd ed. Addison-Wesley: Massachusetts
2005.

[20] M. Eriksson, K. Börstler, and K. Borg, “Marrying features and use
cases for product line requirements modeling of embedded sys-

tems”, In: Proceedings of the Fourth Conference on Software En-
gineering Research and Practice (SERPS'04), Sweden, 2004,

pp.73-82.
[21] J. Leite, G. Rossi, M. Balaguer, G. Kaplan, G. Hadad, and A.

Oliveros, “Enhancing a requirements baseline with scenarios”, In:
Proceedings of Requirements Engineering, Annapolis, USA, 1997.

[22] M. Ochodek, J. Nawrocki, “Automatic transactions identification in
use cases”, In: Second IFIP TC 2 Central and East European Con-

ference on Software Engineering Techniques, CEE-SET 2007,
Poznan, Poland, October 2007, pp. 55-68.

[23] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen,
“Formal approach to scenario analysis”, IEEE Software, vol. 11,

No.2, March 1994.
[24] M. Glinz, “An integrated formal model of scenarios based on state-

charts”, In: Proceedings of 5th European Software Engineering
Conference, Sitges, Spain, Springer (Lecture Notes in Computer

Science 989), Sept 1995, pp. 254-271.
[25] C. Seybold, S. Meier, and M. Glinz, “Scenario-driven modeling

and validation of requirements models”, In: 5th ICSE International
Workshop on Scenarios and State Machines: Models, Algorithms

and Tools, Shanghai, May 2006, pp. 83-89.
[26] J. Ellison and P. Moore. “Trustworthy Refinement Through Intru-

sion-Aware Design (CMU/SEI-2003-TR-002)”. Technical Report.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon

University, 2003. Available: http://www.sei.cmu.edu/publications-
/documents/03.reports/03tr002.html .

[27] H. Podeswa. “UML for the IT Business Analyst: A Practical Guide
to Object-Oriented Requirements Gathering”. Course Technology

PTR: USA, 2005.
[28] S. de Cesare, M. Lycett, and R. Paul, “Actor perception in business

use case modeling”, Communications of the AIS, vol 12, pp. 223-
241, 2003.

[29] P. Zielczynski, “Requirements Management Using IBM. Rational
RequisitePro”. IBM Press: USA, 2007.

[30] D. Coleman, “A use case template: draft for discussion”, Fusion
Newsletter, April 1998. [Online]. Available: http://www.hpl.hp.-

com/fusion/md_newsletters.html
[31] D. Avison and G. Fitzgerald, Information Systems Development:

Methodologies, Techniques and Tools, 3rd ed. McGraw-Hill:
UK2003.

[32] I. Marsic, “Software Engineering”. Rutgers, The State University
of New Jersey, 2009. [E-book]. Available: http://www.ece.rutgers.-

edu/~marsic/books/SE/
[33] Sybase, PowerDesigner Object Oriented User's Guide. Sybase:

Dublin, 2002.
[34] R. Malan and D. Bredemeyer, Functional Requirements and Use

Cases, June 1999. [Online]. Available: http://www.bredemey-
er.com/use_cases.htm

[35] S. Alhir, Guide to Applying the UML. Springer: Berlin, 2002.
[36] B. Meyer, J. Nawrocki, B. Walter, “Balancing agility and formal-

ism in software engineering”, In: Second IFIP TC 2 Central and
East European Conference on Software Engineering Techniques,

CEE-SET 2007, Poznan, Poland, October 2007, [“Revised Selected
Papers”, in Proceedings of CEE-SET, 2008].

[37] M. Geisser, T. Hildenbrand, F. Rothlauf, and A. Atkinson, “An
evaluation method for requirements engineering approaches in dis-

tributed software development projects” In: Proceedings of the
Second International Conference on Software Engineering Ad-

40 The Open Software Engineering Journal, 2012, Volume 6 Georgiades and Andreou

vances, Cap Esterel, French Riviera, France, IEEE Computer Soci-

ety Press, 2007, pp. 39-39.
[38] D. Moody, “Measuring the quality of data models: an empirical

evaluation of the use of quality metrics in practice”, In: Proceed-
ings of the Eleventh European Conference on Information Systems,

Naples, Italy, June 2003.
[39] D. Moody and G. Shanks, “What makes a good data model? evalu-

ating the quality of data models”, Australian Computer Journal, pp.
97-110, 1998.

[40] A. Sharma, Requirements Quality Assessment for Outsourcing.
Master’s thesis, Eindhoven University of Technology, Eindhoven,

Netherlands, 2009.

[41] S. Espana, N. Condori-Fernández, A. González, and O. Pastor, “An

empirical comparative evaluation of requirements engineering
methods”, Journal of Brazilian Computer Socity, vol 16, No. 1, pp.

3-19, 2010.
[42] I. Menzel, M. Müller, A. Groß, and J. Dörr, “An experimental

comparison regarding the completeness of functional requirements
specifications”, In: Proceedings of the 18th IEEE international Re-

quirements Engineering Conference, Sydney, Australia, September
2010.

Received: April 07, 2012 Revised: May 20, 2012 Accepted: May 21, 2012

© Georgiades and Andreou; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

