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Abstract: The goal of this study is to explore how fault-proneness of open source software (OSS) could be explained in 
terms of internal quality attributes and maintenance process metrics. We reviewed earlier studies and performed a multiple 
case study of eight Java-based projects based on data available in the Source Forge repository. Overall, we studied 342 re-
leases of those systems. As is usual, software quality was regarded as a set of internal and external quality attributes. A to-
tal of 76 internal quality attributes were measured from the source code of the selected systems via the tool SoftCalc. Two 
external quality attributes contributing to fault-proneness were in turn obtained from the Source Forge Issue Tracking Sys-
tem. The framework for assessing the maintenance process was adopted from our previous studies. Its distinguishing fea-
ture is that it takes into account the peculiarities of OSS development. We included 23 maintenance process metrics to this 
study. Relationships between the metrics under study were identified by means of correlation analysis, multiple regression 
analysis and factor analysis. The obtained results give an interesting insight into interpretation of the earlier results of 
other researchers, regarding especially their generalizability. The strengths of our study include the following: 1) we stud-
ied a greater number of metrics than most of the related studies, 2) we studied a greater number of OSS-systems than most 
of the studies, and 3) we focused on the fault-proneness of modern Java-based systems and investigated them as an aggre-
gated sample.  
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1. INTRODUCTION 

Software quality is becoming increasingly important for 
modern society; software faults and other quality problems 
can have severe consequences. The problems are caused by 
inadequate quality management, the human factor and other 
reasons in all stages of the software development process 
and in particular in the maintenance stage. Revealing the 
causes of quality problems is extremely important from the 
practical viewpoint, but there is still a gap in the research in 
this area. The majority of the existing studies focus either on 
software quality or on the software maintenance process 
alone. Most of them do not study the relationships between 
those two aspects.  

The aim of this study is to explore how external quality 
attributes contributing to fault-proneness of open source 
software (OSS) can be explained in terms of internal quality 
attributes and maintenance process metrics (maintenance 
being a phase of the OSS life cycle). 

We understand an attribute as a measurable physical or 
abstract property of an entity [1]. A quality attribute is a 
management-oriented attribute of software that contributes to 
its quality [1]. Software quality is a collection of quality  
attributes, such as portability, efficiency, reliability,  
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functionality, usability, maintainability and testability [2, 3]. 
Internal quality attributes are those that can be measured 
purely in terms of the software product itself, i.e., by exam-
ining the software product on its own, separately from its 
behaviour [4]. External quality attributes are those that can 
be measured only with respect to how the software product 
relates to its environment. Here the behaviour of the software 
product is important rather than the product itself [4]. Fault-
proneness is sometimes defined e.g. as the probability that 
an artifact contains a fault [5]. We will give a detailed defini-
tion of this attribute later in the paper. 

Software maintenance is the modification of a software 
product after delivery to correct faults, to improve perform-
ance or other attributes or to adapt the product to a modified 
environment [1]. There are four types of software mainte-
nance, i.e. corrective, adaptive, perfective and preventive. 
The corrective maintenance includes diagnosis and 
correction of errors. The adaptive maintenance includes 
modifications of a software product to properly interface it 
with a changing environment. The perfective maintenance 
covers enhancements of a software product to add new 
capabilities or modify existing functions. Finally, the 
preventive maintenance consists of changes which are made 
to improve future maintainability of the software system. 
Source code or some of its parts may be reengineered to 
achieve this. Various reverse engineering techniques may be 
applied to improve the safety of making changes to source 
code related to all four types of maintenance. In our study we 
have focused on small and medium-sized OSS projects. The 
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maintenance process activities performed in those projects 
are related mostly to corrective and perfective types of 
maintenance.  

We chose the maintenance process as our target because 
of its importance. From the 1970s to the 1990s the costs of 
maintenance ranged from 49% [6] to 75% [7] of the total 
software costs. Nowadays the proportion of costs caused by 
system maintenance and evolution may in some cases be 
more than 90% [8], and about 75% of the maintenance costs 
are caused by enhancements, i.e., adaptive and perfective 
maintenance [9-11]. Although those numbers represent 
closed source software (CSS), there is no doubt that mainte-
nance issues are very important for OSS as well.  

There were three main reasons for choosing OSS as the 
target of our study: 1) Importance of OSS - Open source has 
gained a strong position, e.g., in some countries the Linux 
operating system is prescribed for governmental organiza-
tions. 2) Lack of studying OSS. There is relatively little pre-
vious research on OSS, as compared to conventional proprie-
tary software. It is a particularly open question how OSS 
project activities influence OSS quality. 3) Potential for 
studying OSS. There exists a huge amount of source code 
and related documents that can be studied. 

Today many OSS projects are becoming more organized 
efforts as companies initiate and lead them to gain business 
advantages. Full-time company employees often participate 
in managing and developing these projects [12]. For in-
stance, the office suite OpenOffice [13] and the integrated 
Java development environment Netbeans [14] are successful 
OSS projects carried out by Sun Microsystems. OpenOffice 
is a case in which a parallel version of an originally proprie-
tary software product (StarOffice, recently renamed to Ora-
cle Open Office) has been released to the OSS domain; and 
there are many others. In such cases, the initial implementa-
tion and early evolution of the software has probably con-
formed to the normal process of the company. We have 
therefore chosen for our study only ‘pure’ OSSs, i.e. systems 
which have been developed by an open source community 
without significant participation of any company.  

In this study we use an enhanced version of the research 
method used in our previous studies [15, 16]. Firstly, we raise 
a number of hypotheses based on a literature review. Those 
hypotheses concern specific metrics and quality attributes to 
be analyzed. Secondly, we test the relations between the metrics 
under study by means of statistical methods. We use a combina-
tion of correlation analysis and multiple regression analysis.  

The rest of the paper is organized as follows. Firstly, we 
give an in-depth analysis of the research background in Sec-
tion 2. The research objectives and methods used are pre-
sented in Section 3. Section 4 presents the results of the 
study. In Section 5 we discuss the results and the limitations 
of the study. Finally, Section 6 summarizes the paper and 
suggests some issues for future research. The acronyms that 
are used for several metrics in this paper are explained in 
Appendix A. 

2. RELATED WORKS 

This section reviews the studies that are the most relevant 
ones to this paper. Firstly, we summarize those studies that 
discuss the relationships between various internal quality 

attributes and fault–proneness, either in OSS or CSS. Sec-
ondly, we provide an overview of the major studies about the 
peculiarities of the OSS maintenance process, including pa-
pers relevant to fault-proneness. Thirdly, we summarize the 
main characteristics of all these studies in Table 1. 

2.1. Relationships between Internal Quality Attributes 
and Fault-Proneness 

2.1.1. Open Source Software Systems  

Briand et al. [17] carried out a case study on quality fac-
tors of object-oriented design based on an analysis of the 
open multi-agent system development environment LALO. 
They found out that a number of metrics from the Chidamber 
and Kemerer (CK) metrics suite [18] were statistically re-
lated to the fault-proneness of classes. Later Briand et al. 
performed a replication of this study [19]. The results dif-
fered in some aspects, including the relations between DIT, 
NOC and fault-proneness of classes. In both studies logistic 
regression analysis was used. 

Ferenc et al. [20] used their framework called Columbus 
to calculate the object-oriented metrics that were identified 
earlier by Briand et al. [21] and Basili et al. [22] to be indi-
cators of fault-proneness. Their case study was carried out on 
seven releases of Mozilla. In general, the results supported 
those of Briand et al. [21] and Basili et al. [22]. However, in 
contrast to those previous studies, here NOC did not change 
significantly over time and LCOM got worse (i.e., increased) 
over time.  

Gyimóthy et al. [23] carried out an empirical validation of 
eight object-oriented metrics for fault prediction of the OSS 
project Mozilla. The authors used such methods as logistic and 
linear regression, decision trees and neural networks. The re-
sults indicated strong statistically significant correlations be-
tween most of the CK metrics and fault-proneness.  

Li et al. [24] attempted to find out predictors (i.e. metrics 
available before release) for field defects (i.e. customer-
reported software problems requiring developer intervention 
to resolve) of OSS by scrutinizing nine releases of OpenBSD. 
The collected predictors included 101 product metrics, 22 de-
velopment metrics, 9 deployment and usage metrics and 7 
software and hardware configuration metrics. Those metrics 
were collected from request tracking systems, concurrent 
versioning system (CVS) and mailing lists, as well as by 
measuring source code using a set of special tools such as 
Campwood SourceMonitor. They were evaluated by means of 
statistical methods. Many internal quality attributes were iden-
tified as good predictors of defects in terms of Spearman’s and 
Kendall’s rank coefficients, e.g. Total Number of Methods, 
Number of Public Methods, and Number of Inline Comments.  

Zhou and Leung [25] analyzed the relationships between 
the CK metrics suite augmented with SLOC and fault-
proneness, taking into account the severity of faults. Their 
study was conducted on a public domain data set from the 
NASA Metrics Data Program. That data was collected from 
a storage management system implemented in C++. Zhou 
and Leung classified the severity ratings for each defect. 
Three types of predicting models were used in the study: 
high-severity fault model, low-severity fault model and un-
graded-severity fault model. As analysis methods the authors 
used univariate and multivariate logistic regression. The re-
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sults indicate a great number of strong correlations between 
the CK metrics and high, low and ungraded severity faults. 

Olague et al. [26] empirically validated three object-
oriented metrics suites for their ability to predict software 
fault-proneness: CK, Brito e Abreu’s [27] MOOD metrics 
suite and Bansiya and Davis’ [28] QMOOD metrics suite. 
The case study was carried out on six releases of the Mozilla 
Rhino OSS project implemented in Java. All the metrics 
were collected by means of a special tool – Software System 
Markup Language tool chain developed by the authors. The 
univariate binary logistic regression and collinearity analysis 
were used to determine the relations between the metrics 
under study. The results of that study indicated that some of 
the CK metrics and the QMOOD metrics are consistent 
predictors of class error-proneness. 

2.1.2. Closed Source Software Systems 

Khoshgoftaar and Munson [29] studied three available 
sets of data, i.e. 1) Lennselius’ [30] data set, which is based 
on an analysis of a software project in the telecommunica-
tion domain, 2) Harrison and Cook’s [31] data set, which is 
based on an analysis of a number of modules from a me-

dium-sized C-based project, and 3) Akiyama’s [32] data set. 
The authors concluded that complexity metrics such as 
McCabe’s Cyclomatic Complexity correlated highly with 
software errors and fault-proneness. However, they warned 
that this high correlation by itself was an unreliable indicator 
of the predictive quality of models based on those complex-
ity metrics, because the correlations indicated also multi-
collinearity between the metrics.  

Basili et al. [22] analyzed eight medium-sized systems 
developed by students in C++. They examined the effect of 
the CK metrics suite on fault-proneness of classes by means 
of logistic regression analysis. Most of the CK metrics were 
identified as explaining factors of fault-proneness of classes. 

Fenton and Ohlsson [33] analyzed two major releases of 
a large legacy project in switching telecommunication sys-
tems. They raised and tested a number of hypotheses. Six of 
them were related to the ability of size and complexity met-
rics to predict software faults. The complexity metrics were 
collected automatically from the design documents using a 
special tool ERIMET. For testing the hypotheses they used 
Alberg diagrams to evaluate the independent variables’ abil-
ity to rank the dependent variable, and scatter plots. The 

Table 1. Summary of the Related Works 

Study (in a Chronological Order) Focus Areas Analyzed Software Products Metrics used 

Khoshgoftaar and Munson [29], 
1990 

2b 3 data sets from the earlier  
studies of other researchers 

20 complexity metrics 

Basili et al. [22], 1996 2b 8 medium-sized systems Chidamber and Kemerer (CK) metrics suite 

Briand et al. [17], 1999 2a An open multi agent system 
development environment 

CK metrics suite 

Fenton and Ohlsson [33], 2000 2b A large legacy project 2 complexity metrics and LOC 

Briand et al. [19], 2001 2a An open multi agent system 
development environment 

28 coupling metrics, 10 cohesion metrics and 11 inheritance 
metrics 

El Emam et al. [34], 2001 2b 1 commercial Java application 2 metrics from CK metrics suite, several Briand et al’s metrics 

Ferenc et al. [20], 2004 2a 1 OSS, i.e. Mozilla Several metrics proposed by Briand et al. and Basili et al. 

Koru and Tian [12], 2004 1 75 OSSs A number of quantitative attributes measuring the OSS main-
tenance process 

Gyimóthy et al. [23], 2005 2a 1 OSS, i.e., Mozilla 8 metrics from CK metrics suite 

Hassan and Holt [45], 2005 3 6 large OSSs 4 heuristics 

Ostrand et al. [35], 2005 2b 2 large industrial software sys-
tems 

6 metrics for fault-proneness 

Koponen [39], 2006 1 5 medium-sized OSSs 12 metrics measuring the OSS maintenance process 

Lintula et al. [40], 2006 1 4 medium-sized OSSs No metrics 

Zhou and Leung [25], 2006 2a Public domain data set from the 
NASA metrics data program 

CK metrics suite 

Olague et al. [26], 2007 2a 1 OSS, i.e. Mozilla Rhino CK, MOOD and QMOOD metrics suites 

Koponen and Hotti [41], 2008 1 2 large OSSs No metrics 

Li et al. [24], 2008 2a, 3 1 OSS, i.e. OpenBSD 101 product metrics, 22 development metrics, 9 deployment 
and usage metrics, 7 software and hardware configuration 
metrics 

This study 1, 2a 8 medium-sized OSSs 76 internal quality attributes, 2 external quality attributes ac-
counting for fault-proneness, 23 maintenance process metrics  

1: Software maintenance process for OSS 
2a: Relationships between internal quality attributes and software faults - the case of OSS  
2b: Relationships between internal quality attributes and software faults - the case of CSS 
3: Relationships between software maintenance process and fault proneness 
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study found no strict evidence that size and complexity met-
rics are good predictors of fault-proneness of modules.  

El Emam et al. [34] used object-oriented design metrics 
to construct prediction models for identification of faulty 
classes. The study used data collected from one version of a 
commercial Java application to construct a prediction model. 
The analyzed metrics included DIT and NOC from the CK 
suite and several coupling metrics proposed by Briand et al. 
distinguishing the types of relationships among classes, dif-
ferent types of interactions and the locus of impact of the 
interaction. The statistical modeling technique used was lo-
gistic regression analysis. The results indicated that an in-
heritance metric (in terms of DIT and NOC) and an export 
coupling metric were strongly associated with fault-
proneness.  

Ostrand et al. [35] developed a negative binomial regres-
sion model to predict the expected number of faults in each 
file of the next release of a system. The prediction is based on 
the code of the file in the current release, and the fault and 
modification history of the file from previous releases. The 
model was applied to two large industrial software systems 
with 17 and 9 releases respectively. The predictor variables of 
the model included e.g. the logarithm of the number of lines of 
code and the file’s change status. The constructed model was 
capable of successfully identifying the most fault-prone files 
in multiple releases of the studied software systems. 

2.2. OSS Maintenance Process 

Lehman et al. [36] studied software evolution and main-
tenance on a long time perspective. Although their study was 
conducted on CSS, their results and insights are relevant to 
OSS researchers as a point of comparison.  

Vixie [37] claimed that in the case of OSSs such activi-
ties as requirements definition, unit and system testing and 
support are not carried out in a manner similar to traditional 
software engineering. Vixie also stressed that quality assur-
ance activities are unorganized, but extensive field testing 
helps to improve quality. This fact is well known as Ray-
mond’s principle: “given enough eyeballs, every bug is shal-
low” [38, 2].  

The most comprehensive study of OSS maintenance was 
conducted by Koru and Tian [12], who studied the mainte-
nance process of OSS from the viewpoint of defect handling. 
They did not analyze the software, but sent a questionnaire 
to persons working in OSS projects. They received answers 
from 119 individuals (largely either developers or testers) 
who contributed to 52 medium and large OSS projects. The 
researchers found out various aspects of defect handling in 
OSS development and maintenance, including reasons for 
defect reporting, subjects of defect reports, reporting of pre- 
and post-release defects, initial employment of defect data-
base systems, consistency of defect recording, and com-
pleteness of defect reports.  

Koponen [39] developed a framework for evaluation of 
OSS maintenance process based on several quantitative at-
tributes: software type, intended audience, number of opened 
defects, number of source code changes, etc. The framework 
was validated by five case studies.  

Lintula et al. [40] analyzed the maintenance processes of 
four medium-sized OSS systems from the viewpoint of de-

fect reporting, user support and feature requesting. It was 
found out that in those projects discussion forums were very 
active. A reason for this can be that a large number of users 
can respond faster to user requests than a limited number of 
developers. 

Koponen and Hotti [40] studied the maintenance proc-
esses of two large open source software projects, Apache 
HTTP server and Mozilla web browser. They came to the 
conclusion that most of those processes, e.g. problem and 
modification analysis, modification implementation and 
modification review and acceptance, were similar to the 
common vision of the maintenance process defined in the 
standards ISO/IEC 12207 [42] and ISO/IEC 14764 [43, 44]. 
However, the study also revealed a number of differences 
between the standards and the OSS maintenance process. For 
example, instead of Migration activities in OSS projects 
there is Release management, which consists of pre-release 
testing, packaging and release announcement tasks. The lat-
ter findings are in line with Vixie’s [37] claims.  

2.2.1. Relationships between Maintenance Process and 
Fault-Proneness 

Hassan and Holt [45] proposed a framework to identify 
the ten most susceptible subsystems (i.e. directories) of the 
source code to have a fault. The study was based on an 
analysis of six large OSS projects. The results indicate that 
the following four heuristics should be applied by OSS 
maintainers to define their top-ten list of susceptible directo-
ries: 1) most frequently modified, 2) most recently modified, 
3) most frequently fixed, and 4) most recently fixed subsys-
tems.  

The case study of Li et al. [24] (presented already in Sec-
tion 2.1.1) provides a number of results also on the relations 
between fault-proneness and maintenance process metrics. 
Several metrics accounting for maintenance support (in 
terms of numbers of messages in various mailing lists) were 
identified as good predictors of defects by rank correlation 
analysis. 

2.3. Summary  

The studies discussed in the previous subsections are 
summarized in Table 1 in a chronological order. The current 
paper appears as the last one in the table. Information related 
to the following aspects is shown: 1) focus areas of the 
study, 2) analyzed software products, and 3) metrics used. 
As can be seen from the table, this study has the following 
advantages over others: 1) it covers two areas that have not 
much yet been discussed in conjunction with each other; 2) it 
is based on a greater (or equal) number of analyzed software 
products than the previous studies except that of Koru and 
Tian [12]; and 3) it is based on a substantially greater  
number of metrics than the other studies except that of Li  
et al. [24]. 

3. RESEARCH OBJECTIVES AND METHODS 

3.1. Research Objectives 

Our main research objective is to explore if and how se-
lected external quality attributes representing fault-proneness 
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can be explained quantitatively by maintenance process met-
rics and internal quality attributes for OSS. We studied these 
relations quantitatively based on a set of metrics. 

We chose to measure fault-proneness by the two metrics 
Rate of Bug Reports (RBR) and Average Bug Priority Level 
(ABPL). The applied maintenance process metrics are 
adopted from our previous studies [15, 16] and are presented 
in Appendix B, Table B-1. The chosen palette of analyzed 
internal quality attributes is large; it includes, for example, 
size attributes like Number of Source Lines in All (NSL), 
Number of Modules (NM), Number of Comment Lines 
(NCL), and Number of Object-Points (NOP), as well as 
complexity attributes like Data Complexity Chapin Metric 
(DCCM) and Interface Complexity Henry Metric (ICHM). 
The complete list of these 76 attributes is available as Ko-
zlov et al. [46].  

3.2. Analyzed Software 

In the choice of OSS systems for analysis, we applied six 
main criteria: 1) They should cover different kinds of appli-
cations, to eliminate commonalities that might be valid only 
for OSS of some specific kind. 2) They should have a com-
mon implementation language, so that differences between 
languages would not affect the results. For current OSS, Java 
was the first choice. 3) Each project should have a reason-
able number of releases, and the numbers should preferably 
be nearly the same. 4) The projects should be relatively 
popular (in terms of number of downloads per month) and 
active during their lifetime so far (average project activity). 
5) They should be of medium size, especially concerning 
source code. Very large OSS projects would be tackled in a 
possible later study. 6) For each project, at least the source 
code and relatively detailed information about bugs and fea-
ture requests should be available in a repository. 

Based on those criteria, we selected the following eight 
Java-based projects and analyzed their all releases: 

1) J – text editor [47]; 

2) Art of Illusion – full-featured 3D modeling, rendering, 
and animation studio [48]; 

3) jEdit – programmer's text editor [49]; 

4) TVBrowser – TV guide [50];  

5) Jaxe – XML editor [51]; 

6) DrJava – lightweight programming environment for 
Java [52]; 

7) Buddi – simple budgeting program targeted for users 
with little or no financial background [53]; 

8) KoLmafia – cross-platform desktop tool which 
interfaces with the online adventure game Kingdom of 
Loathing [54]. 

Table 2 shows the main information about the selected 
projects. We were able to fulfil the criteria otherwise, but 
there is a rather large variation in the number of releases 
(criterion 3). The chosen projects cover various domains, 
including text and programming editors and multimedia and 
gaming applications. They all are available in the online 
Source Forge Issue Tracking System (SFITS) [55]. SFITS 
contains information on various kinds of bugs and feature 
requests related to specific releases of OSS products. 

Software size is given in Table 2 in terms of maximum 
and average (over releases) Number of Source Lines in All 
(NSL, in thousands of lines) and average Number of Modules 
(NM). The development time is considered to be the time 
between the release dates of the first and last OSS versions 
available. The maturity of each project is estimated on the 6-
point scale used on the Source Forge website (1 – Planning, 
2 – Pre-Alpha, 3 – Alpha, 4 – Beta, 5 – Production/Stable, 6 
– Mature). Of course, this scale is more or less subjective, 
since the OSS developers have to estimate the maturity level 
of their projects based on spent effort, added features, etc. 
However, no better metric is available. The number of down-
loads (average over the lifetime) is extracted from the corre-
sponding project website in the Source Forge OSS repository.  

3.3. Hypotheses 

The approach of the paper is 1) to raise a number of hy-
potheses about the relations between the metrics under study, 
based on earlier research, 2) to test those hypotheses against 
the empirical results obtained from analysis of the selected 
OSS projects, and 3) to raise further hypotheses based on 
those results. The focus of this section is the first set of hy-
potheses.  

We divided our hypotheses in two groups according to 
the objectives of our study, i.e. 1) hypotheses concerning the 
relations between internal quality attributes and fault–
proneness (Subsection 2.1.1) and 2) hypotheses concerning 
the relations between maintenance process metrics and fault-
proneness (Subsection 2.1.2). Note that when we talk about a 
positive correlation in a hypothesis, we implicitly assume 
that the correlation is statistically significant. Some metrics 
used in the papers reviewed in Section 2 differ from those 

Table 2. Analyzed OSSs 

Project J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia 

Number of releases 19 22 22 28 30 39 75 108 

Max. NSL 127 103.3 87.9 133.3 25.8 120.9 34.5 104.2 

Avg. NSL 120 77.2 47.6 44.7 14.5 91.2 27.5 50.5 

Avg. NM 8.6 21.8 21.5 59.9 9.8 37.8 22.2 10 

Development time (years) 2.0 6.5 4.5 4.0 4.0 4.5 1.0 2.5 

Maturity of the latest release Beta Mature Mature Stable Stable Stable Stable Beta 

Number of downloads per month 10 - 25 400 - 800 1500 - 3000 1000 - 8000 40 -110 180 -620 300 -850 250 - 400 
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used here. Therefore we define our hypotheses in more gen-
eral terms. The metrics used in the previous studies and in 
our study can be considered as operationalizations of the 
more abstract concepts used in the hypotheses.  

It should be noted that some of the hypotheses are based 
on results from CSS studies. We used them when there were 
no OSS studies that treated the same issues.  

3.3.1. Hypotheses about the Relations between the Internal 
Quality Attributes and Fault-Proneness 

We raised the following hypotheses concerning the rela-
tions of the internal quality attributes and fault-proneness 
based on the literature review: 

H1: Software size correlates positively with fault-
proneness. Based on Briand et al. [21], Zhou and Leung 
[25], Khoshgoftaar and Munson [29] and Ostrand et al. [35] 
― but not supported by Fenton and Ohlsson [33]. 

H2: The number of methods correlates positively with 
fault-proneness. Based on Li et al. [24] and Olague et al. [26]. 

H3: The number of decisions correlates positively with 
fault-proneness. Based on Khoshgoftaar and Munson [29] 
but not supported by Fenton and Ohlsson [33]. 

H4: Inheritance correlates positively with fault-
proneness. Based on Briand et al. [19], Ferenc et al. [20], 
Briand et al. [21], Basili et al. [22], Gyimóthy et al. [23] and 
El Emam et al. [34].   

H5: Lexical or textual complexity of software correlates 
positively with fault-proneness. Based on Khoshgoftaar and 
Munson [29]. 

H6: The amount of nesting correlates positively with 
fault-proneness. Based on Khoshgoftaar and Munson [29].  

3.3.2. Hypotheses about the Relations between the Mainte-
nance Process Metrics and Fault-Proneness 

We raised the following hypotheses concerning the rela-
tions of the maintenance process metrics and fault-
proneness, based on the literature review: 

H7: The number of system modifications correlates posi-
tively with fault-proneness. Based on Hassan and Holt [45]. 

H8: The number of system fixes correlates positively with 
fault-proneness. Based on Hassan and Holt [45]. 

H9: The number of messages in the mailing list corre-
lates positively with fault-proneness. Based on Li et al. [24]. 

3.3.3. Testing the Hypotheses 

We tested the hypotheses on the operationalization met-
rics used in this study by means of correlation analysis and 
multiple regression analysis. We considered a hypothesis to 
be supported if the correlation analysis showed a relatively 
strong and statistically significant correlation between the 
metrics in question. 

3.4. Research Methods 

In our study we used an approach adopted from the stud-
ies of Ostrand et al. [35] and Anderson and Felici [56]. Ac-
cording to it the relations between the metrics under study 
can be revealed from a substantial set of software releases 
available for measuring and analysis.  

3.4.1. Approach to Measure the Internal Quality Attributes 

We measured the internal software characteristics with 
the static analysis tool SoftCalc and its module JavaAnal 
dedicated to assessing Java source code [57, 58]. SoftCalc is 
listed among the efficient Computer-Assisted Software 
Measurement and Evaluation Tools (CAME tools) support-
ing different phases of the software development process 
[59] and has been used in our previous studies [15, 16]. In 
total we measured 76 internal quality attributes, which can 
be divided into the following categories: 1) basic internal 
quality attributes, e.g. Number of Source Lines in All (NSL), 
Number of Modules (NM) and Number of Comment Lines 
(NCL), and 2) complexity metrics, e.g. Data Complexity 
Chapin Metric (DCCM) and Interface Complexity Henry 
Metric (ICHM).  

3.4.2. Approach to Measure the External Quality Attributes 

We define fault-proneness informally as the rate of new 
faults (bugs) found as the software is being used and main-
tained, weighted by their severities. For this purpose we use 
two external quality attributes: Rate of Bug Reports (RBR) 
and Average Bug Priority Level (ABPL). Our single metric 
for fault-proneness is simply the product of RBR and ABPL, 
but calculating them separately first yields more information. 

RBR is the inverse of the more common metric Mean 
Time to Bug Report (MTTBR), but more convenient because 
it is always finite. Note further that MTTBR is not the same 
as the metric Mean Time To Failure (MTTF), which is com-
monly used to measure reliability. The point is that RBR 
counts every different fault only once, when it is first re-
ported, while MTTF counts all failures of the software 
caused by all faults. 

We calculated RBR as the total number of bugs reported 
for a specific OSS release divided by the life time of the cor-
responding release. The total number of bugs for a specific 
release was calculated from the information available in 
SFITS by taking into account the dates of the releases. The 
accuracy of measurement was sufficient, since 1) manual 
review of SFITS revealed that most of the bugs reported af-
ter the release of a newer software version (i+1) were related 
to that release rather than to the previous one (i), and 2) the 
bugs posted after the release of a newer software version 
(i+1) and related to the previous version (i) are likely to be 
valid also for the newer version (i+1). 

The metric Average Bug Priority Level (ABPL) is the 
arithmetic average of the priority levels of all bugs reported 
for a specific release. The priority of each bug is estimated 
from the subjective viewpoint of developers on a 10-point 
scale, where 1 is the lowest priority level and 10 the highest 
one. The information about bug severity levels was obtained 
from SFITS. We inspected bug reports, and the severity lev-
els of the bugs seemed correct; thus we regard ABPL as a 
reliable metric. There were some releases with no bug re-
ports, and we took 0 as their ABPL. This choice has no effect 
on the product ABPL × RBR, because RBR is then 0. 

The priority scale is only an ordinal scale, and the highest 
priority levels are usually regarded as significantly more 
important than the lower ones. ABPL is therefore not an op-
timal metric. Instead of it and RBR we could have computed 
the rate of bugs of each level separately, but that would have 
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made the results more difficult to process further and to as-
sess intuitively. 

3.4.3. Approach to Measure the Maintenance Process  

In this study we used the approach presented in our pre-
vious work [15], as summarized in Appendix B, to measure 
the maintenance process. The conventional standards and 
evaluation models for maintenance process, such as ISO/IEC 
12207 [42], ISO/IEC 14764 [43] and IEEE 1219 [60], have 
been defined with closed-source software in mind. Many 
metrics defined in these standards, e.g. metrics related to 
documentation and testing, are not often used by OSS devel-
opers. It is thus hardly possible to evaluate OSS based on the 
ISO/IEC metrics. In turn, as noted earlier, the main disad-
vantage of Koponen and Hotti [41] is that the authors do not 
propose any particular metrics for the maintenance process 
that would be suitable for many OSS developers. 

Our approach is based both on the ISO/IEC [42] and 
IEEE [60] standards and on the study of Koponen and Hotti 
[41]. We defined a set of substitutes for ISO/IEC and IEEE 
metrics, as listed in Appendix B. The original metrics and 
their substitutes are mapped to each other by groups. For 
instance, ROB, ROFR, ABPL and AFRPL are substitutes to 
the corresponding ISO metrics related to the ‘Implementa-
tion phase’. Some substitutes, e.g. TNB, are used in several 
groups. We regard the complexity metrics as internal quality 
attributes in this study, but some of them could also be 
treated as maintenance process metrics. The detailed infor-
mation about all the substitutes and the grounds for choosing 
them can be found in paper [15]. 

A significant advantage of our approach is that it can be 
easily and fruitfully applied to many OSS projects, since it is 
based on “primitive” metrics measured by a majority (ac-
cording to our observations) of OSS practitioners. In turn, a 
limitation of our approach is that we do not take into account 
the human factor of the maintenance process, i.e., metrics 
characterizing OSS developers and OSS communities.  

3.4.4. Statistical Methods Used 

We intended to use a combination of correlation analysis 
and multiple regression analysis to find out quantitative rela-
tions between the metrics under study. We treated the two 
external quality attributes as dependent variables and the 
others as explaining variables. This does not necessarily im-
ply causal relationships, but it seems safe to assume that the 
external quality attributes are affected by the other metrics 
more than vice versa. 

The analyses were first carried out on the releases of one 
project at a time, as we had done in our previous studies. 
After considering the results (Subsection 4.1.1) we decided 
to analyze the “grand sample” consisting of all releases from 
all the studied OSS projects in order to get more generaliz-
able results. All analyses were performed using the statistical 
software package Statistica 8.  

 The correlation analysis was used to identify significant 
relations between the studied metrics. Following a common 
recommendation [61], we decided to regard only those ex-
plaining variables as interesting that had statistically signifi-
cant (p <= 0.05) and moderate or strong (|r| >= 0.5) correla-
tions with the dependent variable. The multiple regression 

analysis would then have been performed, using for each 
dependent variable only those explaining variables that were 
interesting for it. 

It turned out that all interesting explaining variables were 
very strongly collinear (see Subsection 4.1.2), and thus mul-
tiple regression analysis was not meaningful. Khoshgoftaar 
and Munson [29] had run to the same situation in their study, 
and performed factor analysis instead. We decided to follow 
their example. 

4. RESULTS 

We classify our results into two groups corresponding to 
the goals of our study. Firstly, we provide the results about 
relations between internal quality attributes and fault-
proneness. Secondly, we present the results about relations 
between maintenance process metrics and fault-proneness. In 
the rest of the section we explain whether our results support 
or do not support the hypotheses raised earlier (Section 3.3). 
As explained earlier (Subsection 3.4.2) we model fault-
proneness with the two metrics ABPL and RBR. 

4.1. Relations between the Internal Quality Attributes 
and Fault-Proneness 

4.1.1. Correlation Analysis 

We calculated the correlations first for each individual 
OSS project. They turned out to be very different for differ-
ent projects. Only 20 out of the 76 quality attributes (QAs) 
had non-conflicting statistically significant correlations with 
ABPL or RBR in more than one project. All correlations of 
those attributes are presented in Appendix D (Tables D-1, D-
2, D-3, D-4). Even the most consistent correlation that be-
tween ABPL and Number of Loop Statements (NLS) is valid 
only for four of the eight projects If we consider only inter-
esting (see Subsection 3.4.4) correlations, none of them is 
valid for more than two projects. 

Regarding ABPL, it has interesting correlations with all 
except 5 QAs in jEdit. It has statistically significant correla-
tions with almost all QAs also in Buddi and KoLmafia, but 
most of them are weak (|r| < 0.5). For two QAs (NCI and 
NNML) the correlations in jEdit and KoLmafia are in con-
flict. Art of Illusion and Jaxe each have one statistically sig-
nificant but weak correlation, and in the remaining three pro-
jects there are no such correlations with ABPL. 

Regarding RBR, it also has interesting correlations with 
all except the same 5 QAs as ABPL in jEdit. Almost all the 
same correlations are valid also in J. In Art of Illusion there 
are almost as many statistically significant correlations, but 
they are mostly weak. Interestingly, none of those correla-
tions has the same sign as in jEdit and J. RBR has statisti-
cally significant correlations with only three QAs in KoLma-
fia and with two in Buddi; all these are weak. In the remain-
ing three projects there are no such correlations. 

From the analysis of the grand sample we obtained inter-
esting correlations between the external quality attribute ABPL 
and the following internal quality attributes: NSL, NCD, NDS, 
NDVI, NDP, NFR and NLiS (Table 3). The descriptive statis-
tics for each of the above metrics by itself are provided in Ap-
pendix C (Table C-1, Figs. C-1, C-2). The single-correlation 
coefficients of the explaining variables with the dependent 
variable varied from 0.506 to 0.537 (Table 3). 
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As can be seen from Table D-2, on the project level the 
correlations of the above QAs are statistically significant 
only in two or three of the studied OSS projects. For five of 
them, the correlations in jEdit are stronger than in the grand 
sample, and those in Buddi and KoLmafia mostly weaker 
(but statistically significant). However, for NCD and NLiS 
the correlations in jEdit are low and not significant, but those 
in Buddi and KoLmafia significant (although rather low). 

In the grand sample there were no interesting correlations 
between RBR and any quality attribute; the strongest one was 
between RBR and Data Flow Complexity Elshoff Metric 
(DFCEM, r = 0.197) As noted in Subsection 3.4.2, the com-
posite metric ABPL×RBR is a better indicator of fault-
proneness than the two initial metrics. Therefore we com-
puted also its correlations with the internal quality attributes, 
but those were very low. The strongest correlations were 
found with DFCEM (r = 0.194, p = 0.000), and Data Com-
plexity Chapin Metric (DCCM, r = 0.171, p = 0.002). On the 
project level the correlations between ABPL×RBR and other 
internal quality attributes were slightly higher, but statisti-
cally significant only for some OSSs, e.g. jEdit (Appendix 
D, Tables D-5, D-6). 

4.1.2. Regression Analysis 

We proceeded in our analysis on the grand sample. Be-
cause RBR and ABPL×RBR had no significant correlations 
with any internal quality attributes, further analysis was 
meaningful only for ABPL. 

We computed next the pairwise correlations between the 
identified seven attributes (Table 3), and they were very high 
(minimum 0.772, maximum 0.992 and mean 0.901, Appendix 
F, Table F1). Thus, the regression coefficients produced by 
multiple regression analysis would not have been meaningful. 
We performed it nevertheless to get the multiple-correlation 
coefficient R, and it was 0.597. The coefficient of multiple 
determination, R2 is thus 0.357; the adjusted R2, which takes 
into account the number of degrees of freedom, is 0.343. This 
indicates that 34.3% of the variability of ABPL can be ex-
plained by the seven explaining variables The coefficient of 
single determination (r2) of the best predictor NDS (Number of 
Data Structures) alone is 0.288, which means that the multi-
ple-regression model explains only 5.5% of the variability of 
ABPL over single regression with NDS.Thus, multiple regres-
sion did not give as much additional information as we had 
hoped; the main reason for that is that the explaining variables 
are highly collinear. 

4.1.3. Factor Analysis 

It is obvious that the seven explaining variables in Table 
3 either can be taken to represent the size of the software, or 
at least tend to grow with size. On the other hand, it is also 
obvious that many other things beside those measured in this 
study have significant effects on fault-proneness. Therefore, 
we could not expect any other strong factor than size to ap-
pear in factor analysis. To detect possible weaker factors we 
included also those quality attributes with 0.3 < |r| < 0.5. This 
lead to 41 variables for the factor analysis (Appendix G). 

As expected, there came out one very strong factor, on 
which all variables except one had loadings from !0.577 to 
−0.992, and which can be regarded as size (Appendix G, 
Tables G1, G2). The exceptional variable was LCHM (Lan-
guage Complexity Halstead Metric), whose loading was 
0.443. The second factor was already much weaker; its load-
ings were rather symmetrically distributed around 0, only 11 
larger than 0.3 in absolute value, and the maximum absolute 
value was 0.706. The third factor was still weaker, and con-
sidering the large number of variables in proportion to the 
sample size (335) we decided to ignore it. 

The results of the factor analysis indicate that there can 
be at least one other underlying, orthogonal factor behind the 
studied internal quality attributes, in addition to size. How-
ever, it is not easy to name this factor or have an intuitive 
understanding of it. 

4.2. Relationships between the Maintenance Process Met-
rics and Fault-Proneness 

4.2.1. Correlation Analysis 

As in Subsection 4.1.1, we calculated the correlations 
first for each individual OSS project, and they were quite 
different for different projects. In all projects except J and 
Art of Illusion some correlations could not be computed be-
cause the variance of the explaining variable was 0. 

ABPL (Appendix E, Table E-1) had statistically signifi-
cant correlations only with Number of Closed Bugs (NBC) in 
jEdit, Jaxe, Buddi and KoLmafia, and with Number of 
Closed Feature Requests (NCFR) in J. 

RBR (Appendix E, Table E-2) had statistically significant 
correlations with three of the four metrics in jEdit and Jaxe, 
with two metrics in J and Buddi, and none in the remaining 
four projects. 

The composite metric ABPL×RBR had statistically sig-
nificant medium-sized correlations with a number of internal 
quality attributes for the OSSs jEdit and Art of Illusion (Ap-
pendix D, Tables D-5, D-6). However, the signs of those 
correlations are not consistent, i.e. positive in the case of 
jEdit and negative in the case of Art of Illusion.  

The correlation analysis of the grand sample did not yield 
interesting (strong or medium-strong and statistically signifi-
cant) correlations between the maintenance process metrics 
and external quality attributes. The strongest obtained corre-
lations were between ABPL and Rate of Unassigned Bugs 
(RUB, r = 0.329, p = 0.000(**)) and Rate of Unassigned 
Feature Requests (RUFR, r = 0.306, p = 0.000). With respect 
to the composite metric ABPL×RBR the correlations were 
even weaker (Appendix E, Table E3). The strongest correla-

Table 3. Correlations between Average Bug Priority Level 
(ABPL) and Internal Quality Attributes 

ABPL r p 

NSL 0.522 0.000 (***) 

NCD 0.516 0.000 (***) 

NDS 0.537 0.000 (***) 

NDVI 0.509 0.000 (***) 

NDP 0.525 0.000 (***) 

NFR 0.502 0.000 (***) 

NLiS 0.506 0.000 (***) 

*** p < 0.001 
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tion was found between ABPL×RBR and RUB (r = 0.197, p 
= 0.000(***)). 

4.2.2. Regression Analysis 

Since most of the obtained correlations between the 
maintenance process metrics and fault-proneness were very 
low, it was meaningless to carry out regression analysis for 
those metrics. 

4.2.3. Factor Analysis 

Similarly, most of the obtained correlations between the 
maintenance process metrics and fault-proneness were very 
low. Thus it did not make sense to carry out factor analysis 
for those metrics. 

4.3. Relation of the Results to the Hypotheses 

In this section we analyze the results of our study with re-
spect to the raised hypotheses (Section 3.3). The results are pre-
sented according to the initial groups of hypotheses. Like earlier 
in the paper, we consider those correlations to be interesting that 
are moderate or strong and also statistically significant. 

4.3.1. Hypotheses about the Relations between the Internal 
Quality Attributes and Fault-Proneness 

H1: Software size correlates positively with fault-
proneness. We used several operationalization metrics related 
to software size, i.e. Number of Source Lines in All (NSL), 
Number of Genuine Code Lines (NGCL), Number of All Con-
trol Statements (NACS), Number of If Statements (NIS), 
Number of Switch Statements (NSS), Number of Case State-
ments (NCS) and Number of Loop Statements (NLS). None of 
these correlated significantly with ABPL×RBR or RBR alone 
The external quality attribute ABPL correlates strongly posi-
tively with Number of Source Lines in All (NSL) (Table 3), 
but ABPL alone does not really represent fault-proneness. 
Thus the hypothesis is at most weakly supported.  

H2: Amount of methods correlates positively with fault-
proneness. We used two operationalization metrics related to 
methods, i.e. Number of Methods Declared (NMD) and 
Number of Methods Inherited (NMI). Neither one of those 
metrics had interesting correlations with fault-proneness. 
Thus the hypothesis is not supported.  

H3: Amount of decisions correlates positively with fault-
proneness. We used two operationalization metrics related to 
decisions, i.e. Decisional Complexity McClure Metric 
(DCMM) and Control Flow Complexity McCabe Metric 
(CFCMM). There were no interesting correlations between 
the metrics DCMM and CFCMM and fault-proneness. Thus 
the hypothesis is not supported.  

H4: Inheritance correlates positively with fault-proneness. 
We used three operationalization metrics related to inheri-
tance, i.e. Number of Classes Inherited (NCI), Number of 
Methods Inherited (NMI) and Number of Data Variables In-
herited (NDVI). The external quality attribute ABPL correlated 
strongly positively with NDVI (r = 0.509, p = 0.000(***)). 
However, there is no significant correlation with ABPL×RBR. 
The hypothesis is thus at most weakly supported. 

 H5: Lexical or textual complexity of software correlates 
positively with fault-proneness. We used one operationaliza-
tion metric related to lexical complexity, i.e. Language 

Complexity Halstead Metric (LCHM). There were no inter-
esting correlations between LCHM and external quality at-
tributes. Thus the hypothesis is not supported. 

H6: Amount of nesting correlates positively with fault-
proneness. We have used one operationalization metric re-
lated to nesting, i.e. Number of Nesting Levels Maximum 
(NNLM). There were no interesting correlations between the 
metric NNLM and external quality attributes. Thus the hy-
pothesis is not supported. 

As explained earlier (Subsection 3.4.4), we performed 
the statistical analyses also on each individual OSS sepa-
rately. There are more statistically significant correlations on 
that level, but none of them is valid for more than four of the 
eight studied OSS projects (Appendix D). 

4.3.2. Hypotheses about the Relations between the Mainte-
nance Process Metrics and Fault-Proneness 

H7: Number of system modifications correlates posi-
tively with fault-proneness. We used two operationalization 
metrics related to system modifications, i.e. Number of 
Closed Feature Requests (NCFR) and Number of Closed 
Bugs (NCB). We did not obtain any interesting correlations 
between those metrics and external quality attributes. Thus 
the hypothesis is not supported. 

H8: Number of system fixes correlates positively with 
fault-proneness. We used one operationalization metric re-
lated to system fixes, i.e. Number of Closed Bugs (NCB). 
We did not obtain any interesting correlations between the 
metric NCB and external quality attributes. Thus the hy-
pothesis is not supported. 

H9: Number of messages in the mailing list correlates 
positively with fault-proneness. We used two operationaliza-
tion metrics related to mailing lists, i.e. Number of Messages 
in the Open Discussion Forum (NMODF) and Number of 
Messages in the Help Forum (NMHF). We did not obtain 
any interesting correlations between those metrics and exter-
nal quality attributes. Thus the hypothesis is not supported. 

On the level of individual OSSs, there are more statisti-
cally significant correlations (Appendix E). 

4.3.3. Results not directly related to the hypotheses 

As Table 3 shows, we identified a number of relations 
between the internal quality attributes and fault-proneness 
that go beyond the initial set of hypotheses. In particular, we 
found medium-strong statistically significant correlations 
between each of the following internal quality attributes and 
ABPL: Number of Classes Declared (NCD), Number of Data 
Structures (NDS), Number of Data Points (NDP), Number of 
Function References (NFR) and Number of Literals in 
Statements (NLiS). However, none of them had significant 
correlations with RBR or ABPL×RBR. 

5. DISCUSSION 

5.1. Why were Most Previous Research Results not  
Confirmed?  

The positive correlations between various internal quality 
attributes and metrics of fault-proneness that were found in 
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most previous studies are intuitively very plausible. Those 
QAs largely measure the size and complexity of software, 
which are generally believed to affect fault-proneness. There-
fore, we took these correlations as our hypotheses H1 – H6. 

There was much less previous research on the relation-
ships between maintenance process metrics and fault-
proneness. However, the positive correlations found in two 
studies seemed plausible, and so we took them as our hy-
potheses H7-H9. 

We used two rather orthogonal metrics for fault-
proneness: Average Bug Priority Level (ABPL) and Rate of 
Bug Reports (RBR). We considered these to be the best met-
rics available for all the studied OSS systems, and their 
product the best single metric to represent fault-proneness. 
Previous studies had used somewhat different metrics for 
this. Likewise, different concrete metrics had been used for 
many internal quality attributes in the previous studies. 

A striking observation from our results is that the correla-
tions are highly different among the eight projects. Indeed, 
jEdit is the only one where both ABPL and RBR have consis-
tently significant and at least medium-strong positive corre-
lations with almost all QAs. In J this is the case only for 
RBR. In Buddi and KoLmafia ABPL has significant but 
weaker positive correlations with almost all QAs. In Art of 
Illusion the results for RBR are directly opposite to the hy-
potheses: almost all correlations are negative, statistically 
significant and medium-strong or nearly so. In the remaining 
three projects there is only one significant correlation alto-
gether. 

The picture about the correlations between fault-
proneness and maintenance process metrics is similar. Un-
fortunately, all four of those metrics were available from 
only two projects, and only one of them from one project 
(Appendix E, Tables E-1 and E-2). Observations like this 
were not even possible in the earlier metric-based studies, 
because each of them focused on some specific software 
products or on a set of releases of the same product. Our 
decision to choose a set of highly dissimilar software prod-
ucts proved to be fruitful: our study suggests that some of the 
results of the earlier studies may not be widely generalizable. 
However, with the one exception mentioned above, our re-
sults were not directly opposite to them. 

 Our results on the “grand sample”, where all releases of 
all projects were treated as a single set, suggest the low gen-
eralizability of the results from the earlier studies. Seven of 
the nine hypotheses were not supported at all, and the two 
others (H1 and H4) at most marginally: there were statistically 
significant correlations only between ABPL and some QAs.  

5.2. OSS Maintenance Process 

The SFITS contains information about bugs which re-
sembles the defect handling patterns revealed by Koru and 
Tian [12]. Therefore our approach to measure the OSS main-
tenance process based on the data extractable from the 
SFITS can be regarded as a further step towards a practical 
usage of those defect handling patterns. 

In our study we followed Koponen and Hotti [41], who 
claimed that the approach for measuring the maintenance 
process presented in ISO/IEC 12207 [42] and ISO/IEC 
14764 [43] is applicable also to OSS. A limitation of their 

study is that they did not analyze experimental data. We have 
not encountered any crucial obstacles in implementing the 
above standards for OSS. Our approach entails collecting 
those maintenance process metrics that are easily extractable 
from real OSS projects. Although our approach was derived 
from the standards and the approach of Koponen and Hotti, 
the metrics used in those standards have been just linked to 
the metrics used in our study. However, it would be wise to 
carry out a strict validation of our approach against the ISO 
standard. It could be achieved e.g. by gathering and analyz-
ing software maintenance process metrics (Appendix B, Ta-
ble B-1) from closed source software development projects 
and comparing those results with the results of this study. 

Our framework to measure the OSS maintenance process 
can be considered complementary to the framework of 
Koponen [39]. Both frameworks use many similar metrics, 
e.g. those that are related to the numbers of bugs of different 
types. Some of the attributes considered by Koponen, e.g. 
type of defect management system and intended audience, 
have not been taken into consideration in our framework, 
since they were not available in SFITS.  

By collecting the metrics related to the maintenance 
process of the studied OSSs we found out that in all projects 
the number of messages in the open discussion forums was 
high. This confirms the results of Lintula et al. [40]. 

A distinguishing feature of our approach to measure the 
OSS maintenance process is its simplicity and usage of the 
data that has been gathered and used in real OSS projects. 
Usually OSS developers have collected only quite primitive 
information, which is not used or is used restrictedly by the 
available advanced and sophisticated frameworks, such as 
IEEE 1219 [60] and Boehm [62].  

5.3. Further Research Avenues 

We have studied a rather diverse set of eight OSS pro-
jects. It would be highly interesting to continue on that track 
and study an even larger and more diverse set of projects. 
Probably there would appear some further patterns of the 
relationships between quality attributes and fault-proneness 
within a single project. We might find some common factors 
that would explain (partially) why a project follows a certain 
pattern. It is also possible that in such a very large sample 
there would be some significant correlations that did not 
appear in our “grand sample”. 

6. SUMMARY AND CONCLUSIONS 

This has been an empirical multiple case study. We have 
explored to what extent and how fault-proneness could be 
explained by means of internal quality attributes and mainte-
nance process metrics. We first conducted a literature survey 
as a basis for taking into account the main findings of other 
researchers. Next we analyzed eight OSS systems and their 
342 releases. 

Software quality was measured in terms of 76 internal 
quality attributes, using the static analysis tool SoftCalc. 
There were 23 maintenance process metrics obtained from 
Source Forge Issue Tracking System (SFITS). Fault-
proneness was measured in terms of Rate of Bug Reports 
(RBR) and Average Bug Priority Level (ABPL). That data 
was also obtained from SFITS.  
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We investigated the relationships between the metrics 
under study by the combination of correlation analysis, re-
gression analysis and factor analysis where appropriate. Nine 
hypotheses based on the results of the reviewed studies were 
raised. 

Firstly, we applied a bottom-up approach; i.e. strong cor-
relations between the metrics under study were identified at 
the level of individual OSS projects. Such correlations, sup-
porting the hypotheses, emerged for only two or three of the 
eight projects. Most correlations were weak and statistically 
insignificant.  

Secondly, we applied a top-down approach; i.e. strong 
correlations between the metrics under study were identified 
at the level of the grand sample consisting of all versions of 
all projects. At this level we obtained only medium-strong 
statistically significant correlations between ABPL and some 
of the internal quality attributes. These results supported two 
hypotheses at most weakly, and the other seven hypotheses 
were not supported at all. The results of correlation analysis 

revealed a strong multicollinearity between the metrics ob-
tained from the analysis of the grand sample. Consequently it 
was not possible to apply multiple regression analysis to gain 
a fine-grained insight into the obtained correlations, as we 
had intended. However, the results of the conducted factor 
analysis revealed that the studied metrics can be interpreted 
in terms of two factors, one of which represents system size.  

We noted additionally that the correlations valid for indi-
vidual OSS projects became insignificant at the level of the 
grand sample. Conversely, the few correlations valid in the 
grand sample were insignificant at the level of the individual 
projects.  

Most of the earlier studies in this area are based on only 
relatively small sets of OSS systems and releases despite the 
fact that OSS projects are very diverse and heterogeneous. 
The main conclusion to be drawn from our study is that the 
results of those earlier studies might not be well generaliz-
able beyond their initial research settings due to their rela-
tively limited nature. 

APPENDIX A: ACRONYMS USED IN THE PAPER 

The acronyms used in the main part of the paper are related to the primary focus of the paper, i.e. internal, external quality 
attributes and maintenance process metrics. The acronyms are provided in the alphabetical order. Also definitions are provided 
for those items, whose meaning is not necessarily intuitively clear.  

ABPL - Average Bugs Priority Level (i.e. the severity and priority of a reported bug from the subjective viewpoint of devel-
opers) 

AFRPL - Average Feature Request Priority Level (i.e. the priority of a reported feature request from the subjective view-
point of developers) 

BCSM - Branching Complexity Sneed Metric 
CBO - Coupling between Object Classes 
CFCMM - Control Flow Complexity McCabe Metric 
CSS – Closed Source Software (i.e. computer software with restrictions on use or private modification, or with restrictions 

judged to be excessive on copying or publishing of modified or unmodified versions) 
DACCM - Data Access Complexity Card Metric 
DCCM - Data Complexity Chapin Metric 
DCMM - Decisional Complexity McClure Metric 
DFCEM - Data Flow Complexity Elshoff Metric 
DIT – Depth of Inheritance Tree 
ICHM - Interface Complexity Henry Metric 
LCHM - Language Complexity Halstead Metric 
LCOM – Lack of Cohesion of Methods 
LOC – Number of Lines of Code 
LOCD - LOC Difference between Two Adjoining Releases 
LTR - Life Time of the Release  
MTPV - Mean Time for Problem Validation (i.e. the time required by a developer to review a reported issue and mark it as a 

bug with specific priority, see ABPL)  
MTTBR - Mean Time To Bug Report (i.e. the amount of bugs reported with respect to a specific release (TNB) divided by 

the life time of that release calculated in minutes (LTR))  
MTTF – Mean Time To Failure 
NACS - Number of All Control Statements 
NAIV - Number of Arguments or Input Variables 
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NAM - Number of Assertions Made 
NAV - Number of Arrays or Vectors 
NCB - Number of Closed Bugs (i.e. number of those bugs, which were reviewed and fixed by the developers) 
NCD - Number of Classes Declared 
NCFB - Number of Control Flow Branches 
NCFR - Number of Closed Feature Requests (i.e. number of those feature requests, which were reviewed and implemented 

by the developers)  
NCI - Number of Classes Inherited 
NCL - Number of Comment Lines 
NCS - Number of Case Statements 
NCUB - Number of Closed Unassigned Bugs (i.e. number of those bugs, which were reviewed and fixed by the developers 

without being assigned to any particular developer for fixing) 
NCUFR - Number of Closed Unassigned Feature Requests (i.e. number of those feature requests, which were reviewed and 

implemented by the developers without being assigned to any particular developer for implementation) 
NDB - Number of Deleted Bugs (i.e. those bugs that were deleted by a developer after problem validation; see MTPV) 
NDBA - Number of Data Bases Accessed 
NDCED - Number of Data Constants or Enums Declared 
NDD - Number of Defined Definitions 
NDFR - Number of Deleted Feature Requests  
NDP - Number of Data-Points 
NDR - Number of Data References 
NDS - Number of Data Structures 
NDST - Number of Different Statement Types 
NDVD - Number of Data Variables Declared 
NDVI - Number of Data Variables Inherited 
NEC - Number of Exception Conditions 
NFD - Number of Files Declared 
NFDA - Number of File and Database Accesses 
NFFR - Number of Foreign Functions Referenced (i.e. number of functions accessed from the source code and written in a 

programming language different to the main programming language used in the source code) 
NFP - Number of Function-Points 
NFR - Number of Function References 
NGCL - Number of Genuine Code Lines (i.e. number of code lines without taking into account comments and blank lines) 
NI - Number of Includes 
NID - Number of Interfaces Declared 
NII - Number of Interfaces Implemented 
NIO - Number of Input Operations 
NIS - Number of If Statements 
NLiS - Number of Literals in Statements (i.e. the amount of characters in a specific statement)  
NLS - Number of Loop Statements 
NMCVS - Number of Messages in the CVS Archive (i.e. number of messages in the CVS of a specific OSS project exported 

and displayed in the SFITS)  
NMD - Number of Methods Declared 
NMDA - Number of Messages in the Developers’ Archive (i.e. number of replies made by developers for an initial topic 

started by a developer facing a software development issue)  
NMHF - Number of Messages in the Help Forum (i.e. number of replies made by developers for an initial topic started by a 

user asking for help or maintenance support) 
NMI - Number of Methods Inherited 
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NMODF - Number of Messages in the Open Discussion Forum (i.e. number of replies made by developers or users for an 
initial topic started by a developer or a user discussing issues not directly related to development or maintenance) 

NMR - Number of Macro References 
NMRd - Number of Macros Referenced 
NNLM - Number of Nesting Levels Maximum 
NOC – Number of Children 
NOP - Number of Object-Points 
NOSR - Number of Open Support Requests (i.e. number of those support requests, which were not yet reviewed and fulfilled 

by the developers) 
NPCD - Number of Predicates or Conditional Data 
NPFA - Number of Parameters or Function Arguments 
NROV - Number of Results or Output Variables 
NRP - Number of Reports Produced 
NRS - Number of Return Statements 
NS - Number of Statements 
NSL - Number of Source Lines in All (i.e. total number of source code lines of a specific OSS including blank lines and 

comments) 
NSMA - Number of Source Members Analyzed (i.e. number of files comprising the source code of a specific OSS) 
NSS - Number of Switch Statements 
OSS – Open Source Software  
OSSs – Open Source Software Products 
RBR – Rate of Bug Reports, see MTTBR 
RFC – Response for a Class  
ROB - Rate of Open Bugs (i.e. percentage of those bugs, which were not yet reviewed and fixed by the developers) 
ROFR - Rate of Open Feature Requests (i.e. percentage of those feature requests, which were not yet reviewed and imple-

mented by the developers)  
RUB - Rate of Unassigned Bugs (i.e. percentage of those bugs, which were not assigned to any particular developer for fix-

ing; the total number of unassigned bugs includes both open and closed unassigned bugs) 
RUFR - Rate of Unassigned Feature Requests (i.e. percentage of those feature requests, which were not assigned to any par-

ticular developer for implementing; the total number of unassigned feature request includes both open and closed feature requests) 
SFITS – Source Forge Issue Tracking System 
SLOC – Source Lines of Code 
TNB - Total Number of Bugs (i.e. total amount of bugs reported with respect to a specific release) 
TNFR - Total Number of Feature Requests  
TNSR - Total Number of Support Requests 
WMC – Weighted Methods per Class  

APPENDIX B: THE APPROACH USED TO MEASURE THE OSS MAINTENANCE PROCESS 

Table B-1. The Approach used to Measure the OSS Maintenance Process (Adopted from [15]) 

Metrics Used in the IEEE Standard [60] Metrics Used in this Study 

Number of Omissions on Modification Requests (NOMR) Number of Deleted Bugs (NDB) 
Number of Closed Unassigned Bugs (NCUB) 
Number of Deleted Feature Requests (NDFR) 

Number of Closed Unassigned Feature Requests (NCUFR) 

Number of Modification Request Submittals (NMRS) Total Number of Bugs (TNB) 
Total Number of Feature Requests (TNFR) 

Number of Duplicate Modification Requests (NDMR) Number of Deleted Bugs (NDB) 
Number of Deleted Feature Requests (NDFR) 

Pr
ob

le
m

 Id
en

tif
ic

at
io

n 

Time Expended for Problem Validation (TEPV) Mean Time for Problem Validation (MTPV)  
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Table B-1. contd…. 

Metrics Used in the IEEE Standard [60] Metrics Used in this Study 

Requirement Changes 
Documentation Error Rate 
Effort per Function Area 
Elapsed Time (schedule) 

Rate of Unassigned Bugs (RUB) 
Rate of Unassigned Feature Requests (RUFR) 

A
na

ly
si

s 

Error Rates Generated by Priority and Type 
Average Bug Priority Level (ABPL) 

Average Feature Request Priority Level (AFRPL) 

Software Complexity 

Data Complexity Chapin Metric (DCCM) 
Data Flow Complexity Elshoff Metric (DFCEM) 
Data Access Complexity Card Metric (DACCM) 

Interface Complexity Henry Metric (ICHM) 
Control Flow Complexity McCabe Metric (CFCMM) 

Decisional Complexity McClure Metric (DCMM) 
Branching Complexity Sneed Metric (BCSM) 

Language Complexity Halstead Metric (LCHM) 

Design Changes 
Effort per Function Area 

Number of Messages in the CVS Archive (NMCVS) 
Number of Messages in the Developers’ Archive (NMDA) 

Elapsed Time Life Time of the Release (LTR) 

Test Plans and Procedure Changes - 

Error Rates Generated by Priority and Type 
Average Bug Priority Level (ABPL) 

Average Feature Request Priority Level (AFRPL) 

Number of Lines of Code Added, Deleted, Modified, Tested LOC Difference Between Two Adjoining Releases (LOCD) 

D
es

ig
n 

Number of Applications - 

Volume or Functionality (function points or SLOC) 
Rate of Open Bugs (ROB) 

Rate of Open Feature Requests (ROFR) 

Im
pl

em
en

ta
tio

n 

Error Rates Generated by Priority and Type 
Average Bug Priority Level (ABPL) 

Average Feature Request Priority Level (AFRPL) 

Te
st

 Error Rates by Priority and Type 
Generated 
Corrected 

Total Number of Bugs (TNB) 
Total Number of Feature Requests (TNFR) 

Number of Closed Bugs (NCB) 
Number of Closed Feature Requests (NCFR) 

D
el

iv
er

y 

Documentation changes (i.e. version description documents, training 
manuals, operation guidelines) 

Number of Messages in the Help Forum (NMHF) 
Number of Messages in the Open Discussion Forum (NMOD) 

Total Number of Support Requests (TNSR) 
Number of Open Support Requests (NOSR) 

APPENDIX C. DESCRIPTIVE STATISTICS FOR THE STUDIED METRICS RELATED TO THE HYPOTHESES 
Table C-1. Descriptive Statistics for the Studied Metrics at the Level of the Grand Sample  

 Mean Minimum Maximum Standard Deviation 

ABPL 3.370 0.000 7.000 2.416 

RBR 5382.136 0.000 341280.000 20495.502 

NCD 286.551 30.000 707.000 182.378 

NDP 7698.353 621.000 22754.000 5296.506 

NDS 322.160 32.000 745.000 206.273 

NDVI 191.227 15.000 464.000 134.239 

NFR 13115.560 884.000 38892.000 9599.499 

NLiS 7484.327 376.000 22152.000 6511.630 

NSL 52557.988 4649.000 133337.000 35792.421 
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Fig. (C-1). Mean plot of Average Bug Priority Level (ABPL) values for the individual OSSs. 

 
Fig. (C-2). Mean plot of Rate of Bug Reports (RBR) values for the individual OSSs. 

APPENDIX D. MAIN CORRELATIONS BETWEEN FAULT-PRONENESS (ABPL, RBR) AND INTERNAL QUAL-
ITY ATTRIBUTES 

Table D-1. Correlations between Average Bug Priority Level (ABPL) and Internal Quality Attributes (Part 1) 

ABPL J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
Sample 

r -0.151 0.389 0.665  0.199 -0.085 0.007 0.300  0.428  0.484 NGCL 

p 0.537 0.074 0.001(**) 0.311 0.654 0.969 0.009(**) 0.000(**) 0.000(**) 

r -0.191 0.333 -0.442  0.194 -0.112 0.011 0.150 0.496  0.483 NCI 

p 0.434 0.130 0.040(*) 0.324 0.555 0.946 0.200 0.000(**) 0.000(**) 
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Table D-1. contd…. 

ABPL J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
Sample 

r -0.241 0.378 0.764 0.198 -0.096 0.056 0.264 0.420 0.462 
NMD 

p 0.321 0.083 0.000(**) 0.313 0.613 0.735 0.022(*) 0.000(**) 0.000(**) 

r -0.238 0.326 0.741 0.193 -0.053 -0.171 -0.157 0.501 0.498 
NMI 

p 0.326 0.139 0.000(**) 0.325 0.780 0.298 0.178 0.000(**) 0.000(**) 

r -0.220 0.417 0.724 0.196 -0.082 0.032 0.319 0.406 0.394 
NIS 

p 0.367 0.054 0.000(**) 0.317 0.665 0.845 0.005(**) 0.000(**) 0.000(**) 

r -0.203 0.294 0.547 0.197 -0.473 0.014 0.251 0.387 0.064 
NSS 

p 0.405 0.184 0.008(**) 0.315 0.008(**) 0.931 0.030(*) 0.000(**) 0.239 

r -0.220 0.325 -0.181 0.187 -0.082 0.007 0.281 0.359 0.162 
NCS 

p 0.366 0.140 0.420 0.342 0.669 0.965 0.015(*) 0.000(**) 0.003(**) 

r -0.236 0.429 0.662 0.206 -0.063 0.054 0.288 0.419 0.411 
NLS 

p 0.331 0.046(*) 0.001(**) 0.294 0.740 0.745 0.012(*) 0.000(**) 0.000(**) 

r -0.223 0.420 0.708 0.198 -0.081 0.037 0.318 0.403 0.407 
NACS 

p 0.360 0.051 0.000(**) 0.313 0.672 0.823 0.005(**) 0.000(**) 0.000(**) 

r 0.059 0.062 -0.766 0.166 0.009 0.009 -0.200 0.603 0.087 
NNML 

p 0.809 0.785 0.000(**) 0.400 0.964 0.956 0.086 0.000(**) 0.109 

r -0.045 -0.364 -0.787 0.076 0.228 -0.017 0.174 0.011 0.267 
CFCMM 

p 0.855 0.096 0.000(**) 0.702 0.225 0.917 0.136 0.910 0.000(**) 

r -0.381 0.272 0.873 0.227 -0.082 0.032 0.282 0.452 0.062 
DCMM 

p 0.107 0.221 0.000(**) 0.245 0.666 0.845 0.014(*) 0.000(**) 0.249 

r -0.139 0.157 -0.331 -0.167 0.038 -0.148 -0.287 -0.585 -0.429 
LCHM 

p 0.570 0.485 0.133 0.397 0.842 0.368 0.012(*) 0.000(**) 0.000(**) 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001 

Table D-2. Correlations between Average Bug Priority Level (ABPL) and Internal Quality Attributes (Part 2) 

ABPL J Art of Illusion  jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
sample 

r -0.069 0.384 0.615  0.198 -0.097 -0.005 0.299 0.444  0.522 NSL 

p 0.781 0.078 0.002(**) 0.313 0.611 0.976 0.009(**) 0.000(**) 0.000(**) 

r -0.271 0.335 0.223 0.194 -0.117 0.008 0.301 0.495  0.517 NCD 

p 0.262 0.127 0.318 0.322 0.539 0.963 0.009(**) 0.000(**) 0.000(**) 

r 0.011 0.376 0.718  0.192 -0.118 0.011 0.257 0.505  0.538 NDS 

p 0.966 0.084 0.000(**) 0.328 0.536 0.945 0.026(*) 0.000(**) 0.000(**) 

r -0.254 0.296 0.622  0.197 -0.022 -0.126 -0.226 0.534  0.510 NDVI 

p 0.294 0.181 0.002(**) 0.316 0.910 0.447 0.052 0.000(**) 0.000(**) 

r -0.274 0.380 0.789  0.197 -0.103 0.033 0.315  0.471  0.525 NDP 

p 0.257 0.082 0.000(**) 0.316 0.589 0.841 0.006(**) 0.000(**) 0.000(**) 

r -0.215 0.417 0.623  0.196 -0.095 0.028 0.330  0.447  0.502 NFR 

p 0.377 0.054 0.002(**) 0.317 0.617 0.866 0.004(**) 0.000(**) 0.000(**) 

r -0.102 0.398 0.316 0.201 -0.090 0.037 0.313  0.413  0.508 NLiS 

p 0.679 0.066 0.152 0.305 0.635 0.825 0.006(**) 0.000(**) 0.000(**) 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 
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Table D-3. Correlations between Rate of Bug Reports (RBR) and Internal Quality Attributes (Part 1) 

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
sample 

r 0.586  -0.474  0.645  -0.151 0.245 0.150 0.209 0.128 0.098 NGCL 

p 0.008(**) 0.026(*) 0.001(**) 0.442 0.193 0.364 0.073 0.188 0.069 

r 0.691 -0.406 -0.038 -0.152 0.219 0.174 0.122 0.178 -0.012 
NCI 

p 0.001(**) 0.061 0.865 0.441 0.245 0.289 0.299 0.065 0.830 

r 0.586 -0.476 0.701 -0.148 0.230 0.157 0.204 0.130 0.094 
NMD 

p 0.008(**) 0.025(*) 0.000(**) 0.451 0.221 0.340 0.079 0.182 0.084 

r 0.566 -0.390 0.667 -0.150 0.256 -0.219 -0.073 0.185 0.004 
NMI 

p 0.012(*) 0.073 0.001(**) 0.447 0.173 0.180 0.533 0.055 0.943 

r 0.560 -0.505 0.679 -0.146 0.246 0.158 0.218 0.113 0.122 
NIS 

p 0.013(*) 0.017(*) 0.001(**) 0.457 0.189 0.337 0.060 0.244 0.024(*) 

r -0.245 -0.469 0.639 -0.192 -0.047 -0.055 0.167 0.082 -0.061 
NSS 

p 0.312 0.028(*) 0.001(**) 0.327 0.806 0.741 0.152 0.399 0.258 

r -0.223 -0.484 -0.073 -0.178 -0.109 -0.077 0.176 0.079 -0.060 
NCS 

p 0.360 0.023(*) 0.746 0.364 0.567 0.644 0.131 0.418 0.267 

r 0.530 -0.515 0.620 -0.160 0.267 0.182 0.197 0.120 0.117 
NLS 

p 0.020(*) 0.014(*) 0.002(**) 0.418 0.153 0.267 0.090 0.217 0.031(*) 

r 0.557 -0.507 0.666 -0.147 0.247 0.159 0.215 0.111 0.120 
NACS 

p 0.013(*) 0.016(*) 0.001(**) 0.456 0.187 0.333 0.064 0.251 0.026 

r 0.498 -0.135 -0.744 -0.151 0.169 -0.056 0.059 0.348 0.024 
NNLM 

p 0.030(*) 0.549 0.000(**) 0.443 0.371 0.735 0.618 0.000(**) 0.656 

r -0.651 0.517 -0.632 -0.274 -0.057 0.114 0.089 0.122 0.089 
CFCMM 

p 0.003(**) 0.014(*) 0.002(**) 0.159 0.764 0.489 0.446 0.209 0.102 

r 0.408 -0.243 0.693 -0.134 0.216 0.227 0.178 0.133 0.146 
DCMM 

p 0.083 0.277 0.000(**) 0.497 0.251 0.165 0.127 0.170 0.007(**) 

r 0.404 -0.219 0.166 0.263 -0.196 0.208 -0.199 -0.204 0.090 
LCHM 

p 0.086 0.328 0.461 0.177 0.300 0.204 0.087 0.035(*) 0.098 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

Table D-4. Correlations between Rate of Bug Reports (RBR) and Internal Quality Attributes (Part 2) 

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
Sample 

r 0.513  -0.476  0.644  -0.152 0.231 0.193 0.205 0.141 0.058 NSL 

p 0.025(*) 0.025(*) 0.001(**) 0.440 0.220 0.240 0.078 0.145 0.286 

r 0.563  -0.429  0.447  -0.149 0.206 0.179 0.148 0.170 0.004 NCD 

p 0.012(*) 0.046(*) 0.037(*) 0.450 0.274 0.277 0.207 0.079 0.945 

r -0.058 -0.455  0.531  -0.158 0.203 0.189 0.084 0.174 -0.005 NDS 

p 0.814 0.034(*) 0.011(*) 0.421 0.281 0.250 0.475 0.072 0.929 

r 0.564  -0.385 0.622  -0.152 0.270 -0.051 -0.153 0.247  0.014 NDVI 

p 0.012(*) 0.077 0.002(**) 0.441 0.149 0.756 0.190 0.010(*) 0.800 

r 0.505  -0.463  0.624  -0.153 0.223 0.181 0.208 0.157 0.078 NDP 

p 0.028(*) 0.030(*) 0.002(**) 0.437 0.237 0.271 0.073 0.104 0.147 
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Table D-4. contd…. 

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
Sample 

r 0.599  -0.511  0.590  -0.145 0.233 0.154 0.231  0.142 0.089 NFR 

p 0.007(**) 0.015(*) 0.004(**) 0.462 0.216 0.350 0.046(*) 0.144 0.101 

r 0.659  -0.513  0.350 -0.151 0.240 0.112 0.241  0.116 0.054 NLiS 

p 0.002(**) 0.015(*) 0.111 0.444 0.202 0.499 0.038(*) 0.234 0.319 
*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

Table D-5. Correlations between ABPL*RBR and Internal Quality Attributes (Part 1) 

ABPL*RBR J ArtOfIllusion jEdit TVBrowser Jaxe DrJava Buddi KoLmfia Grand 
Sample 

r 0.270 -0.473 0.643 -0.164 0.245 0.061 0.220 0.128 0.120 
NGCL 

p 0.263 0.026(*) 0.001(**) 0.404 0.193 0.712 0.058 0.187 0.056 

r 0.362 -0.405 -0.032 -0.165 0.219 0.083 0.128 0.179 0.064 
NCI 

p 0.128 0.062(*) 0.887 0.401 0.245 0.617 0.274 0.064 0.306 

r 0.239 -0.475 0.698 -0.161 0.230 0.071 0.215 0.130 0.086 
NMD 

p 0.324 0.026(*) 0.000(**) 0.414 0.221 0.669 0.065 0.180 0.169 

r 0.262 -0.389 0.666 -0.162 0.256 -0.179 -0.076 0.186 0.095 
NMI 

p 0.278 0.074 0.001(**) 0.411 0.173 0.275 0.519 0.055 0.132 

r 0.254 -0.504 0.676 -0.159 0.246 0.067 0.230 0.114 0.146 
NIS 

p 0.295 0.017(*) 0.001(**) 0.420 0.189 0.685 0.047(*) 0.242 0.020(*) 

r -0.346 -0.467 0.639 -0.207 -0.047 -0.062 0.176 0.082 -0.044 
NSS 

p 0.147 0.028(*) 0.001(**) 0.291 0.806 0.706 0.131 0.397 0.483 

r -0.310 -0.482 -0.076 -0.193 -0.109 -0.075 0.185 0.079 -0.035 
NCS 

p 0.196 0.023(*) 0.738 0.325 0.567 0.650 0.112 0.415 0.584 

r 0.232 -0.513 0.618 -0.172 0.267 0.094 0.208 0.120 0.136 
NLS 

p 0.339 0.015(*) 0.002(**) 0.381 0.153 0.567 0.074 0.216 0.030(*) 

r 0.247 -0.505 0.664 -0.159 0.247 0.073 0.227 0.112 0.150 
NACS 

p 0.309 0.016(*) 0.001(**) 0.420 0.187 0.660 0.050(*) 0.249 0.016(*) 

r 0.375 -0.136 -0.743 -0.163 0.169 -0.060 0.062 0.348 0.012 
NNLM 

p 0.114 0.545 0.000(**) 0.408 0.371 0.717 0.599 0.000(**) 0.852 

r -0.358 0.515 -0.632 -0.242 -0.057 0.036(*) 0.095 0.122 0.098 
CFCMM 

p 0.132 0.014(*) 0.002(**) 0.215 0.764 0.828 0.420 0.210 0.119 

r 0.142 -0.243 0.691 -0.126 0.216 0.133 0.189 0.133 0.196 
DCMM 

p 0.563 0.277 0.000(**) 0.522 0.251 0.419 0.105 0.169 0.002(**) 

r 0.190 -0.217 0.171 0.275 -0.196 0.122 -0.205 -0.204 0.073 
LCHM 

p 0.437 0.332 0.447 0.156 0.300 0.458 0.078 0.034(*) 0.248 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

Table D-6. Correlations between ABPL*RBR and Internal Quality Attributes (Part 2) 

ABPL*RBR J ArtOfIllusion jEdit TVBrowser Jaxe DrJava Buddi KoLmfia Grand 
Sample 

r 0.220 -0.474 0.642 -0.165 0.231 0.092 0.215 0.142 0.082 
NSL 

p 0.366 0.026(*) 0.001(**) 0.402 0.220 0.577 0.064 0.144 0.195 

r 0.234 -0.427 0.448 -0.162 0.206 0.086 0.156 0.170 0.059 
NCD 

p 0.335 0.048(*) 0.036(*) 0.409 0.274 0.602 0.182 0.078 0.345 
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Table D-6. contd…. 

ABPL*RBR J ArtOfIllusion jEdit TVBrowser Jaxe DrJava Buddi KoLmfia Grand 
Sample 

r -0.048 -0.453 0.528 -0.173 0.203 0.096 0.089 0.174 0.048 
NDS 

p 0.847 0.034(*) 0.012(*) 0.378 0.281 0.561 0.450 0.071 0.444 

r 0.244 -0.384 0.621 -0.164 0.270 -0.095 -0.160 0.248 0.102 
NDVI 

p 0.315 0.078 0.002(**) 0.404 0.149 0.564 0.169 0.010(*) 0.106 

r 0.177 -0.461 0.621 -0.167 0.223 0.089 0.218 0.158 0.093 
NDP 

p 0.468 0.031(*) 0.002(**) 0.396 0.237 0.590 0.060 0.103 0.139 

r 0.278 -0.510 0.588 -0.157 0.233 0.062 0.244 0.142 0.115 
NFR 

p 0.250 0.015(*) 0.004(**) 0.425 0.216 0.707 0.035(*) 0.142 0.066 

r 0.272 -0.512 0.347 -0.163 0.240 0.033 0.253 0.116 0.111 
NLiS 

p 0.259 0.015(*) 0.114 0.408 0.202 0.842 0.028(*) 0.232 0.076 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

APPENDIX E. MAIN CORRELATIONS BETWEEN FAULT-PRONENESS (ABPL, RBR) AND MAINTENANCE 
PROCESS METRICS 

Table E-1. Correlations between Average Bug Priority Level (ABPL) and Maintenance Process Metrics  

ABPL J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
Sample 

r 0.376 0.342 0.493  0.243 0.942  0.260 0.803  0.515  0.171 NCB 

p 0.113 0.119 0.020(*) 0.214 0.000(**) 0.110 0.000(**) 0.000(**) 0.006(**) 

r 0.864  0.213 0.192 --- --- 0.151 0.194 0.327 0.234 NCFR 

p 0.000(**) 0.342 0.392  --- --- 0.358 0.095 0.001 0.000(**) 

r 0.044 0.263 0.313 --- 0.116 --- --- --- 0.105 NMHF 

p 0.859 0.237 0.156  --- 0.541  ---  ---  --- 0.096 

r 0.019 0.308 --- --- 0.195 0.135 0.054 --- 0.193 NMODF 

p 0.939 0.163 ---  --- 0.302 0.412 0.644  --- 0.002(**) 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

Table E-2. Correlations between Rate of Bug Reports (RBR) and Maintenance Process Metrics 

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
sample 

r 0.106 -0.257 0.538  -0.128 0.407  -0.278 0.365  -0.028 -0.031 NCB 

p 0.667 0.249 0.010(*) 0.517 0.026(*) 0.087 0.001(**) 0.774 0.620 

r -0.031 0.066 0.560  --- --- -0.239 0.464  0.065 0.009 NCFR 

p 0.900 0.771 0.007(**) ---  --- 0.143 0.000(**) 0.502 0.888 

r 0.710  -0.249 0.761  --- 0.421  --- --- --- -0.010 NMHF 

p 0.001(**) 0.264 0.000(**)  --- 0.020(*)  ---  ---  --- 0.871 

r 0.937  -0.341 --- --- 0.599  0.108 0.173 --- 0.051 NMODF 

p 0.000(**) 0.120 --- --- 0.000(**) 0.514 0.139  --- 0.413 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

Table E-3. Correlations between ABPL*RBR and Maintenance Process Metrics 

ABPL*RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
Sample 

r 0.785 -0.254 0.535 -0.136 0.407 -0.232 0.379 -0.028 0.002 
NCB 

p 0.000(**) 0.254 0.010(*) 0.491 0.026(*) 0.155 0.001(**) 0.777 0.969 
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Table E-3. contd…. 

ABPL*RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand 
Sample 

r 0.642 .0663 0.563 --- --- -0.213 0.489 0.066 0.055 
NCFR 

p 0.003(**) 0.770 0.006(**) --- --- 0.193 0.000(**) 0.497 0.382 

r 0.628 -0.248 0.764 --- 0.421 --- --- --- 0.002 
NMHF 

p 0.004(**) 0.266 0.000(**) --- 0.020(*) --- --- --- 0.972 

r 0.103 -0.338 --- --- 0.599 0.089 0.184 --- -0.015 
NMODF 

p 0.675 0.124 --- --- 0.000(**) 0.595 0.114 --- 0.809 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

APPENDIX F. PAIRWISE CORRELATIONS BETWEEN THE MAIN METRICS UNDER STUDY 

Table F-1. Pairwise Correlations between the Metrics Under Study at the Level of the Grand Sample 

 ABPL RBR NSL NCD NDS NDVI NDP NFR NLiS 

ABPL r 1.000 0.187 0.522 0.517 0.538 0.510 0.525 0.502 0.508 

  p --- 0.001(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 

RBR r 0.187 1.000 0.058 0.004 -0.005 0.014 0.078 0.089 0.054 

  p 0.001 (**) --- 0.286 0.945 0.929 0.800 0.147 0.101 0.319 

NSL r 0.522 0.058 1.000 0.914 0.902 0.810 0.977 0.981 0.937 

  p 0.000(**) 0.286  --- 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 

NCD r 0.517 0.004 0.914 1.000 0.992 0.879 0.884 0.879 0.919 

  p 0.000(**) 0.945 0.000(**) --- 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 

NDS r 0.538 -0.005 0.902 0.992 1.000 0.870 0.882 0.861 0.914 

  p 0.000(**) 0.929 0.000(**) 0.000(**) --- 0.000(**) 0.000(**) 0.000(**) 0.000(**) 

NDVI r 0.510 0.014(*) 0.810 0.879 0.870 1.000 0.772 0.823 0.906 

  p 0.000(**) 0.800 0.000(**) 0.000(**) 0.000(**) --- 0.000(**) 0.000(**) 0.000(**) 

NDP r 0.525 0.078 0.977 0.884 0.882 0.772 1.000 0.975 0.909 

  p 0.000(**) 0.147 0.000(**) 0.000(**) 0.000(**) 0.000(**) --- 0.000(**) 0.000(**) 

NFR r 0.502 0.089 0.981 0.879 0.861 0.823 0.975 1.000 0.944 

  p 0.000(**) 0.101 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) --- 0.000(**) 

NLiS r 0.508 0.054 0.937 0.919 0.914 0.906 0.909 0.944 1.000 

  p 0.000(**) 0.319 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) --- 

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001. 

APPENDIX G. RESULTS OF THE FACTOR ANALYSIS AT THE LEVEL OF THE GRAND SAMPLE 
Table G-1. Results of the Factor Analysis at the Level of the Grand Sample for the Selected Metrics 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

LCHM 0.423 0.105 0.142 0.549 0.053 

NSMA -0.907 0.195 0.271 -0.194 0.065 

NSL -0.981 0.152 -0.023 -0.002 -0.044 

NGCL -0.985 -0.112 -0.006 0.110 -0.035 

NCL -0.618 0.706 0.061 -0.123 -0.171 

NI -0.779 0.263 0.286 -0.179 0.385 

NCD -0.892 0.236 -0.330 -0.100 0.059 

NCI -0.811 0.238 -0.507 -0.047 -0.002 
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Table G-1. contd…. 

NMD -0.915 0.257 0.276 0.044 -0.100 

NMI -0.826 -0.005 -0.517 0.009 0.065 

NII -0.933 0.205 -0.069 0.112 0.111 

NOO -0.948 0.143 0.248 -0.015 -0.111 

NPP -0.577 0.036 0.003 -0.519 0.583 

NRP -0.691 0.230 -0.466 0.404 0.120 

NFD -0.729 0.501 0.312 0.287 -0.004 

NDS -0.884 0.213 -0.338 -0.187 0.010 

NDVD -0.882 -0.365 0.070 -0.243 -0.131 

NDVI -0.822 -0.024 -0.495 -0.007 0.021 

MDCED -0.857 -0.280 0.134 -0.347 0.012 

NEDE -0.591 0.029 -0.186 -0.588 -0.322 

NDDTU -0.945 -0.231 0.130 -0.104 -0.002 

NDR -0.897 -0.418 0.053 0.072 -0.098 

NAIV -0.866 -0.467 0.069 0.026 -0.134 

NROV -0.870 -0.460 0.069 0.034 -0.129 

NPCD -0.898 -0.360 -0.020 0.235 0.005 

NPFA -0.960 0.129 0.151 -0.090 -0.061 

NDP -0.992 0.043 0.072 -0.070 -0.008 

NS -0.982 -0.146 0.004 0.102 -0.047 

NIO -0.831 -0.182 0.409 0.113 0.219 

NOO -0.885 -0.181 0.379 -0.060 -0.054 

NFR -0.992 0.008 -0.019 0.090 -0.005 

NFFR -0.991 0.016 0.065 0.108 0.015 

NIS -0.895 -0.240 -0.038 0.318 0.095 

NLS -0.847 -0.477 -0.015 -0.037 -0.141 

NEC -0.702 0.630 0.099 0.044 -0.288 

NRS -0.887 -0.157 -0.131 0.257 0.198 

NCFB -0.921 -0.230 -0.059 0.267 0.081 

NLiS -0.939 -0.020 -0.266 -0.022 -0.088 

NDST -0.983 -0.141 0.008 0.097 -0.045 

NAM -0.754 0.567 0.125 0.158 -0.214 

NFP -0.879 0.341 0.121 -0.017 0.279 

Table G-2. General Results of the Factor Analysis Based on the Selected Metrics at the Level of the Grand Sample 

Factors Eigenvalue % Total Variance Cumulative Eigenvalue Cumulative % 

1 30.479 74.334 30.479 74.339 

2 3.568 8.702 34.047 83.041 

3 2.193 5.348 36.240 88.389 

4 1.909 4.656 38.148 93.045 

5 1.099 2.680 39.247 95.725 
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