
Send Orders of Reprints at Reprints@benthamscience.net

 The Open Software Engineering Journal, 2013, 7, 1-23 1

 1874-107X/13 2013 Bentham Open

Open Access
Fault-Proneness of Open Source Software: Exploring its Relations to
Internal Software Quality and Maintenance Process

Denis Kozlov, Jussi Koskinen and Markku Sakkinen*

Department of Computer Science and Information Systems, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland

Abstract: The goal of this study is to explore how fault-proneness of open source software (OSS) could be explained in
terms of internal quality attributes and maintenance process metrics. We reviewed earlier studies and performed a multiple
case study of eight Java-based projects based on data available in the Source Forge repository. Overall, we studied 342 re-
leases of those systems. As is usual, software quality was regarded as a set of internal and external quality attributes. A to-
tal of 76 internal quality attributes were measured from the source code of the selected systems via the tool SoftCalc. Two
external quality attributes contributing to fault-proneness were in turn obtained from the Source Forge Issue Tracking Sys-
tem. The framework for assessing the maintenance process was adopted from our previous studies. Its distinguishing fea-
ture is that it takes into account the peculiarities of OSS development. We included 23 maintenance process metrics to this
study. Relationships between the metrics under study were identified by means of correlation analysis, multiple regression
analysis and factor analysis. The obtained results give an interesting insight into interpretation of the earlier results of
other researchers, regarding especially their generalizability. The strengths of our study include the following: 1) we stud-
ied a greater number of metrics than most of the related studies, 2) we studied a greater number of OSS-systems than most
of the studies, and 3) we focused on the fault-proneness of modern Java-based systems and investigated them as an aggre-
gated sample.

Keywords: Software quality, software maintenance process, open source software, software metrics, fault-proneness.

1. INTRODUCTION

Software quality is becoming increasingly important for
modern society; software faults and other quality problems
can have severe consequences. The problems are caused by
inadequate quality management, the human factor and other
reasons in all stages of the software development process
and in particular in the maintenance stage. Revealing the
causes of quality problems is extremely important from the
practical viewpoint, but there is still a gap in the research in
this area. The majority of the existing studies focus either on
software quality or on the software maintenance process
alone. Most of them do not study the relationships between
those two aspects.

The aim of this study is to explore how external quality
attributes contributing to fault-proneness of open source
software (OSS) can be explained in terms of internal quality
attributes and maintenance process metrics (maintenance
being a phase of the OSS life cycle).

We understand an attribute as a measurable physical or
abstract property of an entity [1]. A quality attribute is a
management-oriented attribute of software that contributes to
its quality [1]. Software quality is a collection of quality
attributes, such as portability, efficiency, reliability,

*Address correspondence to this author at the Department of Computer
Science and Information Systems, University of Jyväskylä, P.O. Box 35,
40014 Jyväskylä, Finland; Fax: +358142603011;
E-mail: markku.j.sakkinen@cs.jyu.fi

functionality, usability, maintainability and testability [2, 3].
Internal quality attributes are those that can be measured
purely in terms of the software product itself, i.e., by exam-
ining the software product on its own, separately from its
behaviour [4]. External quality attributes are those that can
be measured only with respect to how the software product
relates to its environment. Here the behaviour of the software
product is important rather than the product itself [4]. Fault-
proneness is sometimes defined e.g. as the probability that
an artifact contains a fault [5]. We will give a detailed defini-
tion of this attribute later in the paper.

Software maintenance is the modification of a software
product after delivery to correct faults, to improve perform-
ance or other attributes or to adapt the product to a modified
environment [1]. There are four types of software mainte-
nance, i.e. corrective, adaptive, perfective and preventive.
The corrective maintenance includes diagnosis and
correction of errors. The adaptive maintenance includes
modifications of a software product to properly interface it
with a changing environment. The perfective maintenance
covers enhancements of a software product to add new
capabilities or modify existing functions. Finally, the
preventive maintenance consists of changes which are made
to improve future maintainability of the software system.
Source code or some of its parts may be reengineered to
achieve this. Various reverse engineering techniques may be
applied to improve the safety of making changes to source
code related to all four types of maintenance. In our study we
have focused on small and medium-sized OSS projects. The

2 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

maintenance process activities performed in those projects
are related mostly to corrective and perfective types of
maintenance.

We chose the maintenance process as our target because
of its importance. From the 1970s to the 1990s the costs of
maintenance ranged from 49% [6] to 75% [7] of the total
software costs. Nowadays the proportion of costs caused by
system maintenance and evolution may in some cases be
more than 90% [8], and about 75% of the maintenance costs
are caused by enhancements, i.e., adaptive and perfective
maintenance [9-11]. Although those numbers represent
closed source software (CSS), there is no doubt that mainte-
nance issues are very important for OSS as well.

There were three main reasons for choosing OSS as the
target of our study: 1) Importance of OSS - Open source has
gained a strong position, e.g., in some countries the Linux
operating system is prescribed for governmental organiza-
tions. 2) Lack of studying OSS. There is relatively little pre-
vious research on OSS, as compared to conventional proprie-
tary software. It is a particularly open question how OSS
project activities influence OSS quality. 3) Potential for
studying OSS. There exists a huge amount of source code
and related documents that can be studied.

Today many OSS projects are becoming more organized
efforts as companies initiate and lead them to gain business
advantages. Full-time company employees often participate
in managing and developing these projects [12]. For in-
stance, the office suite OpenOffice [13] and the integrated
Java development environment Netbeans [14] are successful
OSS projects carried out by Sun Microsystems. OpenOffice
is a case in which a parallel version of an originally proprie-
tary software product (StarOffice, recently renamed to Ora-
cle Open Office) has been released to the OSS domain; and
there are many others. In such cases, the initial implementa-
tion and early evolution of the software has probably con-
formed to the normal process of the company. We have
therefore chosen for our study only ‘pure’ OSSs, i.e. systems
which have been developed by an open source community
without significant participation of any company.

In this study we use an enhanced version of the research
method used in our previous studies [15, 16]. Firstly, we raise
a number of hypotheses based on a literature review. Those
hypotheses concern specific metrics and quality attributes to
be analyzed. Secondly, we test the relations between the metrics
under study by means of statistical methods. We use a combina-
tion of correlation analysis and multiple regression analysis.

The rest of the paper is organized as follows. Firstly, we
give an in-depth analysis of the research background in Sec-
tion 2. The research objectives and methods used are pre-
sented in Section 3. Section 4 presents the results of the
study. In Section 5 we discuss the results and the limitations
of the study. Finally, Section 6 summarizes the paper and
suggests some issues for future research. The acronyms that
are used for several metrics in this paper are explained in
Appendix A.

2. RELATED WORKS

This section reviews the studies that are the most relevant
ones to this paper. Firstly, we summarize those studies that
discuss the relationships between various internal quality

attributes and fault–proneness, either in OSS or CSS. Sec-
ondly, we provide an overview of the major studies about the
peculiarities of the OSS maintenance process, including pa-
pers relevant to fault-proneness. Thirdly, we summarize the
main characteristics of all these studies in Table 1.

2.1. Relationships between Internal Quality Attributes
and Fault-Proneness

2.1.1. Open Source Software Systems

Briand et al. [17] carried out a case study on quality fac-
tors of object-oriented design based on an analysis of the
open multi-agent system development environment LALO.
They found out that a number of metrics from the Chidamber
and Kemerer (CK) metrics suite [18] were statistically re-
lated to the fault-proneness of classes. Later Briand et al.
performed a replication of this study [19]. The results dif-
fered in some aspects, including the relations between DIT,
NOC and fault-proneness of classes. In both studies logistic
regression analysis was used.

Ferenc et al. [20] used their framework called Columbus
to calculate the object-oriented metrics that were identified
earlier by Briand et al. [21] and Basili et al. [22] to be indi-
cators of fault-proneness. Their case study was carried out on
seven releases of Mozilla. In general, the results supported
those of Briand et al. [21] and Basili et al. [22]. However, in
contrast to those previous studies, here NOC did not change
significantly over time and LCOM got worse (i.e., increased)
over time.

Gyimóthy et al. [23] carried out an empirical validation of
eight object-oriented metrics for fault prediction of the OSS
project Mozilla. The authors used such methods as logistic and
linear regression, decision trees and neural networks. The re-
sults indicated strong statistically significant correlations be-
tween most of the CK metrics and fault-proneness.

Li et al. [24] attempted to find out predictors (i.e. metrics
available before release) for field defects (i.e. customer-
reported software problems requiring developer intervention
to resolve) of OSS by scrutinizing nine releases of OpenBSD.
The collected predictors included 101 product metrics, 22 de-
velopment metrics, 9 deployment and usage metrics and 7
software and hardware configuration metrics. Those metrics
were collected from request tracking systems, concurrent
versioning system (CVS) and mailing lists, as well as by
measuring source code using a set of special tools such as
Campwood SourceMonitor. They were evaluated by means of
statistical methods. Many internal quality attributes were iden-
tified as good predictors of defects in terms of Spearman’s and
Kendall’s rank coefficients, e.g. Total Number of Methods,
Number of Public Methods, and Number of Inline Comments.

Zhou and Leung [25] analyzed the relationships between
the CK metrics suite augmented with SLOC and fault-
proneness, taking into account the severity of faults. Their
study was conducted on a public domain data set from the
NASA Metrics Data Program. That data was collected from
a storage management system implemented in C++. Zhou
and Leung classified the severity ratings for each defect.
Three types of predicting models were used in the study:
high-severity fault model, low-severity fault model and un-
graded-severity fault model. As analysis methods the authors
used univariate and multivariate logistic regression. The re-

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 3

sults indicate a great number of strong correlations between
the CK metrics and high, low and ungraded severity faults.

Olague et al. [26] empirically validated three object-
oriented metrics suites for their ability to predict software
fault-proneness: CK, Brito e Abreu’s [27] MOOD metrics
suite and Bansiya and Davis’ [28] QMOOD metrics suite.
The case study was carried out on six releases of the Mozilla
Rhino OSS project implemented in Java. All the metrics
were collected by means of a special tool – Software System
Markup Language tool chain developed by the authors. The
univariate binary logistic regression and collinearity analysis
were used to determine the relations between the metrics
under study. The results of that study indicated that some of
the CK metrics and the QMOOD metrics are consistent
predictors of class error-proneness.

2.1.2. Closed Source Software Systems

Khoshgoftaar and Munson [29] studied three available
sets of data, i.e. 1) Lennselius’ [30] data set, which is based
on an analysis of a software project in the telecommunica-
tion domain, 2) Harrison and Cook’s [31] data set, which is
based on an analysis of a number of modules from a me-

dium-sized C-based project, and 3) Akiyama’s [32] data set.
The authors concluded that complexity metrics such as
McCabe’s Cyclomatic Complexity correlated highly with
software errors and fault-proneness. However, they warned
that this high correlation by itself was an unreliable indicator
of the predictive quality of models based on those complex-
ity metrics, because the correlations indicated also multi-
collinearity between the metrics.

Basili et al. [22] analyzed eight medium-sized systems
developed by students in C++. They examined the effect of
the CK metrics suite on fault-proneness of classes by means
of logistic regression analysis. Most of the CK metrics were
identified as explaining factors of fault-proneness of classes.

Fenton and Ohlsson [33] analyzed two major releases of
a large legacy project in switching telecommunication sys-
tems. They raised and tested a number of hypotheses. Six of
them were related to the ability of size and complexity met-
rics to predict software faults. The complexity metrics were
collected automatically from the design documents using a
special tool ERIMET. For testing the hypotheses they used
Alberg diagrams to evaluate the independent variables’ abil-
ity to rank the dependent variable, and scatter plots. The

Table 1. Summary of the Related Works

Study (in a Chronological Order) Focus Areas Analyzed Software Products Metrics used

Khoshgoftaar and Munson [29],
1990

2b 3 data sets from the earlier
studies of other researchers

20 complexity metrics

Basili et al. [22], 1996 2b 8 medium-sized systems Chidamber and Kemerer (CK) metrics suite

Briand et al. [17], 1999 2a An open multi agent system
development environment

CK metrics suite

Fenton and Ohlsson [33], 2000 2b A large legacy project 2 complexity metrics and LOC

Briand et al. [19], 2001 2a An open multi agent system
development environment

28 coupling metrics, 10 cohesion metrics and 11 inheritance
metrics

El Emam et al. [34], 2001 2b 1 commercial Java application 2 metrics from CK metrics suite, several Briand et al’s metrics

Ferenc et al. [20], 2004 2a 1 OSS, i.e. Mozilla Several metrics proposed by Briand et al. and Basili et al.

Koru and Tian [12], 2004 1 75 OSSs A number of quantitative attributes measuring the OSS main-
tenance process

Gyimóthy et al. [23], 2005 2a 1 OSS, i.e., Mozilla 8 metrics from CK metrics suite

Hassan and Holt [45], 2005 3 6 large OSSs 4 heuristics

Ostrand et al. [35], 2005 2b 2 large industrial software sys-
tems

6 metrics for fault-proneness

Koponen [39], 2006 1 5 medium-sized OSSs 12 metrics measuring the OSS maintenance process

Lintula et al. [40], 2006 1 4 medium-sized OSSs No metrics

Zhou and Leung [25], 2006 2a Public domain data set from the
NASA metrics data program

CK metrics suite

Olague et al. [26], 2007 2a 1 OSS, i.e. Mozilla Rhino CK, MOOD and QMOOD metrics suites

Koponen and Hotti [41], 2008 1 2 large OSSs No metrics

Li et al. [24], 2008 2a, 3 1 OSS, i.e. OpenBSD 101 product metrics, 22 development metrics, 9 deployment
and usage metrics, 7 software and hardware configuration
metrics

This study 1, 2a 8 medium-sized OSSs 76 internal quality attributes, 2 external quality attributes ac-
counting for fault-proneness, 23 maintenance process metrics

1: Software maintenance process for OSS
2a: Relationships between internal quality attributes and software faults - the case of OSS
2b: Relationships between internal quality attributes and software faults - the case of CSS
3: Relationships between software maintenance process and fault proneness

4 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

study found no strict evidence that size and complexity met-
rics are good predictors of fault-proneness of modules.

El Emam et al. [34] used object-oriented design metrics
to construct prediction models for identification of faulty
classes. The study used data collected from one version of a
commercial Java application to construct a prediction model.
The analyzed metrics included DIT and NOC from the CK
suite and several coupling metrics proposed by Briand et al.
distinguishing the types of relationships among classes, dif-
ferent types of interactions and the locus of impact of the
interaction. The statistical modeling technique used was lo-
gistic regression analysis. The results indicated that an in-
heritance metric (in terms of DIT and NOC) and an export
coupling metric were strongly associated with fault-
proneness.

Ostrand et al. [35] developed a negative binomial regres-
sion model to predict the expected number of faults in each
file of the next release of a system. The prediction is based on
the code of the file in the current release, and the fault and
modification history of the file from previous releases. The
model was applied to two large industrial software systems
with 17 and 9 releases respectively. The predictor variables of
the model included e.g. the logarithm of the number of lines of
code and the file’s change status. The constructed model was
capable of successfully identifying the most fault-prone files
in multiple releases of the studied software systems.

2.2. OSS Maintenance Process

Lehman et al. [36] studied software evolution and main-
tenance on a long time perspective. Although their study was
conducted on CSS, their results and insights are relevant to
OSS researchers as a point of comparison.

Vixie [37] claimed that in the case of OSSs such activi-
ties as requirements definition, unit and system testing and
support are not carried out in a manner similar to traditional
software engineering. Vixie also stressed that quality assur-
ance activities are unorganized, but extensive field testing
helps to improve quality. This fact is well known as Ray-
mond’s principle: “given enough eyeballs, every bug is shal-
low” [38, 2].

The most comprehensive study of OSS maintenance was
conducted by Koru and Tian [12], who studied the mainte-
nance process of OSS from the viewpoint of defect handling.
They did not analyze the software, but sent a questionnaire
to persons working in OSS projects. They received answers
from 119 individuals (largely either developers or testers)
who contributed to 52 medium and large OSS projects. The
researchers found out various aspects of defect handling in
OSS development and maintenance, including reasons for
defect reporting, subjects of defect reports, reporting of pre-
and post-release defects, initial employment of defect data-
base systems, consistency of defect recording, and com-
pleteness of defect reports.

Koponen [39] developed a framework for evaluation of
OSS maintenance process based on several quantitative at-
tributes: software type, intended audience, number of opened
defects, number of source code changes, etc. The framework
was validated by five case studies.

Lintula et al. [40] analyzed the maintenance processes of
four medium-sized OSS systems from the viewpoint of de-

fect reporting, user support and feature requesting. It was
found out that in those projects discussion forums were very
active. A reason for this can be that a large number of users
can respond faster to user requests than a limited number of
developers.

Koponen and Hotti [40] studied the maintenance proc-
esses of two large open source software projects, Apache
HTTP server and Mozilla web browser. They came to the
conclusion that most of those processes, e.g. problem and
modification analysis, modification implementation and
modification review and acceptance, were similar to the
common vision of the maintenance process defined in the
standards ISO/IEC 12207 [42] and ISO/IEC 14764 [43, 44].
However, the study also revealed a number of differences
between the standards and the OSS maintenance process. For
example, instead of Migration activities in OSS projects
there is Release management, which consists of pre-release
testing, packaging and release announcement tasks. The lat-
ter findings are in line with Vixie’s [37] claims.

2.2.1. Relationships between Maintenance Process and
Fault-Proneness

Hassan and Holt [45] proposed a framework to identify
the ten most susceptible subsystems (i.e. directories) of the
source code to have a fault. The study was based on an
analysis of six large OSS projects. The results indicate that
the following four heuristics should be applied by OSS
maintainers to define their top-ten list of susceptible directo-
ries: 1) most frequently modified, 2) most recently modified,
3) most frequently fixed, and 4) most recently fixed subsys-
tems.

The case study of Li et al. [24] (presented already in Sec-
tion 2.1.1) provides a number of results also on the relations
between fault-proneness and maintenance process metrics.
Several metrics accounting for maintenance support (in
terms of numbers of messages in various mailing lists) were
identified as good predictors of defects by rank correlation
analysis.

2.3. Summary

The studies discussed in the previous subsections are
summarized in Table 1 in a chronological order. The current
paper appears as the last one in the table. Information related
to the following aspects is shown: 1) focus areas of the
study, 2) analyzed software products, and 3) metrics used.
As can be seen from the table, this study has the following
advantages over others: 1) it covers two areas that have not
much yet been discussed in conjunction with each other; 2) it
is based on a greater (or equal) number of analyzed software
products than the previous studies except that of Koru and
Tian [12]; and 3) it is based on a substantially greater
number of metrics than the other studies except that of Li
et al. [24].

3. RESEARCH OBJECTIVES AND METHODS

3.1. Research Objectives

Our main research objective is to explore if and how se-
lected external quality attributes representing fault-proneness

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 5

can be explained quantitatively by maintenance process met-
rics and internal quality attributes for OSS. We studied these
relations quantitatively based on a set of metrics.

We chose to measure fault-proneness by the two metrics
Rate of Bug Reports (RBR) and Average Bug Priority Level
(ABPL). The applied maintenance process metrics are
adopted from our previous studies [15, 16] and are presented
in Appendix B, Table B-1. The chosen palette of analyzed
internal quality attributes is large; it includes, for example,
size attributes like Number of Source Lines in All (NSL),
Number of Modules (NM), Number of Comment Lines
(NCL), and Number of Object-Points (NOP), as well as
complexity attributes like Data Complexity Chapin Metric
(DCCM) and Interface Complexity Henry Metric (ICHM).
The complete list of these 76 attributes is available as Ko-
zlov et al. [46].

3.2. Analyzed Software

In the choice of OSS systems for analysis, we applied six
main criteria: 1) They should cover different kinds of appli-
cations, to eliminate commonalities that might be valid only
for OSS of some specific kind. 2) They should have a com-
mon implementation language, so that differences between
languages would not affect the results. For current OSS, Java
was the first choice. 3) Each project should have a reason-
able number of releases, and the numbers should preferably
be nearly the same. 4) The projects should be relatively
popular (in terms of number of downloads per month) and
active during their lifetime so far (average project activity).
5) They should be of medium size, especially concerning
source code. Very large OSS projects would be tackled in a
possible later study. 6) For each project, at least the source
code and relatively detailed information about bugs and fea-
ture requests should be available in a repository.

Based on those criteria, we selected the following eight
Java-based projects and analyzed their all releases:

1) J – text editor [47];

2) Art of Illusion – full-featured 3D modeling, rendering,
and animation studio [48];

3) jEdit – programmer's text editor [49];

4) TVBrowser – TV guide [50];

5) Jaxe – XML editor [51];

6) DrJava – lightweight programming environment for
Java [52];

7) Buddi – simple budgeting program targeted for users
with little or no financial background [53];

8) KoLmafia – cross-platform desktop tool which
interfaces with the online adventure game Kingdom of
Loathing [54].

Table 2 shows the main information about the selected
projects. We were able to fulfil the criteria otherwise, but
there is a rather large variation in the number of releases
(criterion 3). The chosen projects cover various domains,
including text and programming editors and multimedia and
gaming applications. They all are available in the online
Source Forge Issue Tracking System (SFITS) [55]. SFITS
contains information on various kinds of bugs and feature
requests related to specific releases of OSS products.

Software size is given in Table 2 in terms of maximum
and average (over releases) Number of Source Lines in All
(NSL, in thousands of lines) and average Number of Modules
(NM). The development time is considered to be the time
between the release dates of the first and last OSS versions
available. The maturity of each project is estimated on the 6-
point scale used on the Source Forge website (1 – Planning,
2 – Pre-Alpha, 3 – Alpha, 4 – Beta, 5 – Production/Stable, 6
– Mature). Of course, this scale is more or less subjective,
since the OSS developers have to estimate the maturity level
of their projects based on spent effort, added features, etc.
However, no better metric is available. The number of down-
loads (average over the lifetime) is extracted from the corre-
sponding project website in the Source Forge OSS repository.

3.3. Hypotheses

The approach of the paper is 1) to raise a number of hy-
potheses about the relations between the metrics under study,
based on earlier research, 2) to test those hypotheses against
the empirical results obtained from analysis of the selected
OSS projects, and 3) to raise further hypotheses based on
those results. The focus of this section is the first set of hy-
potheses.

We divided our hypotheses in two groups according to
the objectives of our study, i.e. 1) hypotheses concerning the
relations between internal quality attributes and fault–
proneness (Subsection 2.1.1) and 2) hypotheses concerning
the relations between maintenance process metrics and fault-
proneness (Subsection 2.1.2). Note that when we talk about a
positive correlation in a hypothesis, we implicitly assume
that the correlation is statistically significant. Some metrics
used in the papers reviewed in Section 2 differ from those

Table 2. Analyzed OSSs

Project J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia

Number of releases 19 22 22 28 30 39 75 108

Max. NSL 127 103.3 87.9 133.3 25.8 120.9 34.5 104.2

Avg. NSL 120 77.2 47.6 44.7 14.5 91.2 27.5 50.5

Avg. NM 8.6 21.8 21.5 59.9 9.8 37.8 22.2 10

Development time (years) 2.0 6.5 4.5 4.0 4.0 4.5 1.0 2.5

Maturity of the latest release Beta Mature Mature Stable Stable Stable Stable Beta

Number of downloads per month 10 - 25 400 - 800 1500 - 3000 1000 - 8000 40 -110 180 -620 300 -850 250 - 400

6 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

used here. Therefore we define our hypotheses in more gen-
eral terms. The metrics used in the previous studies and in
our study can be considered as operationalizations of the
more abstract concepts used in the hypotheses.

It should be noted that some of the hypotheses are based
on results from CSS studies. We used them when there were
no OSS studies that treated the same issues.

3.3.1. Hypotheses about the Relations between the Internal
Quality Attributes and Fault-Proneness

We raised the following hypotheses concerning the rela-
tions of the internal quality attributes and fault-proneness
based on the literature review:

H1: Software size correlates positively with fault-
proneness. Based on Briand et al. [21], Zhou and Leung
[25], Khoshgoftaar and Munson [29] and Ostrand et al. [35]
― but not supported by Fenton and Ohlsson [33].

H2: The number of methods correlates positively with
fault-proneness. Based on Li et al. [24] and Olague et al. [26].

H3: The number of decisions correlates positively with
fault-proneness. Based on Khoshgoftaar and Munson [29]
but not supported by Fenton and Ohlsson [33].

H4: Inheritance correlates positively with fault-
proneness. Based on Briand et al. [19], Ferenc et al. [20],
Briand et al. [21], Basili et al. [22], Gyimóthy et al. [23] and
El Emam et al. [34].

H5: Lexical or textual complexity of software correlates
positively with fault-proneness. Based on Khoshgoftaar and
Munson [29].

H6: The amount of nesting correlates positively with
fault-proneness. Based on Khoshgoftaar and Munson [29].

3.3.2. Hypotheses about the Relations between the Mainte-
nance Process Metrics and Fault-Proneness

We raised the following hypotheses concerning the rela-
tions of the maintenance process metrics and fault-
proneness, based on the literature review:

H7: The number of system modifications correlates posi-
tively with fault-proneness. Based on Hassan and Holt [45].

H8: The number of system fixes correlates positively with
fault-proneness. Based on Hassan and Holt [45].

H9: The number of messages in the mailing list corre-
lates positively with fault-proneness. Based on Li et al. [24].

3.3.3. Testing the Hypotheses

We tested the hypotheses on the operationalization met-
rics used in this study by means of correlation analysis and
multiple regression analysis. We considered a hypothesis to
be supported if the correlation analysis showed a relatively
strong and statistically significant correlation between the
metrics in question.

3.4. Research Methods

In our study we used an approach adopted from the stud-
ies of Ostrand et al. [35] and Anderson and Felici [56]. Ac-
cording to it the relations between the metrics under study
can be revealed from a substantial set of software releases
available for measuring and analysis.

3.4.1. Approach to Measure the Internal Quality Attributes

We measured the internal software characteristics with
the static analysis tool SoftCalc and its module JavaAnal
dedicated to assessing Java source code [57, 58]. SoftCalc is
listed among the efficient Computer-Assisted Software
Measurement and Evaluation Tools (CAME tools) support-
ing different phases of the software development process
[59] and has been used in our previous studies [15, 16]. In
total we measured 76 internal quality attributes, which can
be divided into the following categories: 1) basic internal
quality attributes, e.g. Number of Source Lines in All (NSL),
Number of Modules (NM) and Number of Comment Lines
(NCL), and 2) complexity metrics, e.g. Data Complexity
Chapin Metric (DCCM) and Interface Complexity Henry
Metric (ICHM).

3.4.2. Approach to Measure the External Quality Attributes

We define fault-proneness informally as the rate of new
faults (bugs) found as the software is being used and main-
tained, weighted by their severities. For this purpose we use
two external quality attributes: Rate of Bug Reports (RBR)
and Average Bug Priority Level (ABPL). Our single metric
for fault-proneness is simply the product of RBR and ABPL,
but calculating them separately first yields more information.

RBR is the inverse of the more common metric Mean
Time to Bug Report (MTTBR), but more convenient because
it is always finite. Note further that MTTBR is not the same
as the metric Mean Time To Failure (MTTF), which is com-
monly used to measure reliability. The point is that RBR
counts every different fault only once, when it is first re-
ported, while MTTF counts all failures of the software
caused by all faults.

We calculated RBR as the total number of bugs reported
for a specific OSS release divided by the life time of the cor-
responding release. The total number of bugs for a specific
release was calculated from the information available in
SFITS by taking into account the dates of the releases. The
accuracy of measurement was sufficient, since 1) manual
review of SFITS revealed that most of the bugs reported af-
ter the release of a newer software version (i+1) were related
to that release rather than to the previous one (i), and 2) the
bugs posted after the release of a newer software version
(i+1) and related to the previous version (i) are likely to be
valid also for the newer version (i+1).

The metric Average Bug Priority Level (ABPL) is the
arithmetic average of the priority levels of all bugs reported
for a specific release. The priority of each bug is estimated
from the subjective viewpoint of developers on a 10-point
scale, where 1 is the lowest priority level and 10 the highest
one. The information about bug severity levels was obtained
from SFITS. We inspected bug reports, and the severity lev-
els of the bugs seemed correct; thus we regard ABPL as a
reliable metric. There were some releases with no bug re-
ports, and we took 0 as their ABPL. This choice has no effect
on the product ABPL × RBR, because RBR is then 0.

The priority scale is only an ordinal scale, and the highest
priority levels are usually regarded as significantly more
important than the lower ones. ABPL is therefore not an op-
timal metric. Instead of it and RBR we could have computed
the rate of bugs of each level separately, but that would have

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 7

made the results more difficult to process further and to as-
sess intuitively.

3.4.3. Approach to Measure the Maintenance Process

In this study we used the approach presented in our pre-
vious work [15], as summarized in Appendix B, to measure
the maintenance process. The conventional standards and
evaluation models for maintenance process, such as ISO/IEC
12207 [42], ISO/IEC 14764 [43] and IEEE 1219 [60], have
been defined with closed-source software in mind. Many
metrics defined in these standards, e.g. metrics related to
documentation and testing, are not often used by OSS devel-
opers. It is thus hardly possible to evaluate OSS based on the
ISO/IEC metrics. In turn, as noted earlier, the main disad-
vantage of Koponen and Hotti [41] is that the authors do not
propose any particular metrics for the maintenance process
that would be suitable for many OSS developers.

Our approach is based both on the ISO/IEC [42] and
IEEE [60] standards and on the study of Koponen and Hotti
[41]. We defined a set of substitutes for ISO/IEC and IEEE
metrics, as listed in Appendix B. The original metrics and
their substitutes are mapped to each other by groups. For
instance, ROB, ROFR, ABPL and AFRPL are substitutes to
the corresponding ISO metrics related to the ‘Implementa-
tion phase’. Some substitutes, e.g. TNB, are used in several
groups. We regard the complexity metrics as internal quality
attributes in this study, but some of them could also be
treated as maintenance process metrics. The detailed infor-
mation about all the substitutes and the grounds for choosing
them can be found in paper [15].

A significant advantage of our approach is that it can be
easily and fruitfully applied to many OSS projects, since it is
based on “primitive” metrics measured by a majority (ac-
cording to our observations) of OSS practitioners. In turn, a
limitation of our approach is that we do not take into account
the human factor of the maintenance process, i.e., metrics
characterizing OSS developers and OSS communities.

3.4.4. Statistical Methods Used

We intended to use a combination of correlation analysis
and multiple regression analysis to find out quantitative rela-
tions between the metrics under study. We treated the two
external quality attributes as dependent variables and the
others as explaining variables. This does not necessarily im-
ply causal relationships, but it seems safe to assume that the
external quality attributes are affected by the other metrics
more than vice versa.

The analyses were first carried out on the releases of one
project at a time, as we had done in our previous studies.
After considering the results (Subsection 4.1.1) we decided
to analyze the “grand sample” consisting of all releases from
all the studied OSS projects in order to get more generaliz-
able results. All analyses were performed using the statistical
software package Statistica 8.

 The correlation analysis was used to identify significant
relations between the studied metrics. Following a common
recommendation [61], we decided to regard only those ex-
plaining variables as interesting that had statistically signifi-
cant (p <= 0.05) and moderate or strong (|r| >= 0.5) correla-
tions with the dependent variable. The multiple regression

analysis would then have been performed, using for each
dependent variable only those explaining variables that were
interesting for it.

It turned out that all interesting explaining variables were
very strongly collinear (see Subsection 4.1.2), and thus mul-
tiple regression analysis was not meaningful. Khoshgoftaar
and Munson [29] had run to the same situation in their study,
and performed factor analysis instead. We decided to follow
their example.

4. RESULTS

We classify our results into two groups corresponding to
the goals of our study. Firstly, we provide the results about
relations between internal quality attributes and fault-
proneness. Secondly, we present the results about relations
between maintenance process metrics and fault-proneness. In
the rest of the section we explain whether our results support
or do not support the hypotheses raised earlier (Section 3.3).
As explained earlier (Subsection 3.4.2) we model fault-
proneness with the two metrics ABPL and RBR.

4.1. Relations between the Internal Quality Attributes
and Fault-Proneness

4.1.1. Correlation Analysis

We calculated the correlations first for each individual
OSS project. They turned out to be very different for differ-
ent projects. Only 20 out of the 76 quality attributes (QAs)
had non-conflicting statistically significant correlations with
ABPL or RBR in more than one project. All correlations of
those attributes are presented in Appendix D (Tables D-1, D-
2, D-3, D-4). Even the most consistent correlation that be-
tween ABPL and Number of Loop Statements (NLS) is valid
only for four of the eight projects If we consider only inter-
esting (see Subsection 3.4.4) correlations, none of them is
valid for more than two projects.

Regarding ABPL, it has interesting correlations with all
except 5 QAs in jEdit. It has statistically significant correla-
tions with almost all QAs also in Buddi and KoLmafia, but
most of them are weak (|r| < 0.5). For two QAs (NCI and
NNML) the correlations in jEdit and KoLmafia are in con-
flict. Art of Illusion and Jaxe each have one statistically sig-
nificant but weak correlation, and in the remaining three pro-
jects there are no such correlations with ABPL.

Regarding RBR, it also has interesting correlations with
all except the same 5 QAs as ABPL in jEdit. Almost all the
same correlations are valid also in J. In Art of Illusion there
are almost as many statistically significant correlations, but
they are mostly weak. Interestingly, none of those correla-
tions has the same sign as in jEdit and J. RBR has statisti-
cally significant correlations with only three QAs in KoLma-
fia and with two in Buddi; all these are weak. In the remain-
ing three projects there are no such correlations.

From the analysis of the grand sample we obtained inter-
esting correlations between the external quality attribute ABPL
and the following internal quality attributes: NSL, NCD, NDS,
NDVI, NDP, NFR and NLiS (Table 3). The descriptive statis-
tics for each of the above metrics by itself are provided in Ap-
pendix C (Table C-1, Figs. C-1, C-2). The single-correlation
coefficients of the explaining variables with the dependent
variable varied from 0.506 to 0.537 (Table 3).

8 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

As can be seen from Table D-2, on the project level the
correlations of the above QAs are statistically significant
only in two or three of the studied OSS projects. For five of
them, the correlations in jEdit are stronger than in the grand
sample, and those in Buddi and KoLmafia mostly weaker
(but statistically significant). However, for NCD and NLiS
the correlations in jEdit are low and not significant, but those
in Buddi and KoLmafia significant (although rather low).

In the grand sample there were no interesting correlations
between RBR and any quality attribute; the strongest one was
between RBR and Data Flow Complexity Elshoff Metric
(DFCEM, r = 0.197) As noted in Subsection 3.4.2, the com-
posite metric ABPL×RBR is a better indicator of fault-
proneness than the two initial metrics. Therefore we com-
puted also its correlations with the internal quality attributes,
but those were very low. The strongest correlations were
found with DFCEM (r = 0.194, p = 0.000), and Data Com-
plexity Chapin Metric (DCCM, r = 0.171, p = 0.002). On the
project level the correlations between ABPL×RBR and other
internal quality attributes were slightly higher, but statisti-
cally significant only for some OSSs, e.g. jEdit (Appendix
D, Tables D-5, D-6).

4.1.2. Regression Analysis

We proceeded in our analysis on the grand sample. Be-
cause RBR and ABPL×RBR had no significant correlations
with any internal quality attributes, further analysis was
meaningful only for ABPL.

We computed next the pairwise correlations between the
identified seven attributes (Table 3), and they were very high
(minimum 0.772, maximum 0.992 and mean 0.901, Appendix
F, Table F1). Thus, the regression coefficients produced by
multiple regression analysis would not have been meaningful.
We performed it nevertheless to get the multiple-correlation
coefficient R, and it was 0.597. The coefficient of multiple
determination, R2 is thus 0.357; the adjusted R2, which takes
into account the number of degrees of freedom, is 0.343. This
indicates that 34.3% of the variability of ABPL can be ex-
plained by the seven explaining variables The coefficient of
single determination (r2) of the best predictor NDS (Number of
Data Structures) alone is 0.288, which means that the multi-
ple-regression model explains only 5.5% of the variability of
ABPL over single regression with NDS.Thus, multiple regres-
sion did not give as much additional information as we had
hoped; the main reason for that is that the explaining variables
are highly collinear.

4.1.3. Factor Analysis

It is obvious that the seven explaining variables in Table
3 either can be taken to represent the size of the software, or
at least tend to grow with size. On the other hand, it is also
obvious that many other things beside those measured in this
study have significant effects on fault-proneness. Therefore,
we could not expect any other strong factor than size to ap-
pear in factor analysis. To detect possible weaker factors we
included also those quality attributes with 0.3 < |r| < 0.5. This
lead to 41 variables for the factor analysis (Appendix G).

As expected, there came out one very strong factor, on
which all variables except one had loadings from !0.577 to
−0.992, and which can be regarded as size (Appendix G,
Tables G1, G2). The exceptional variable was LCHM (Lan-
guage Complexity Halstead Metric), whose loading was
0.443. The second factor was already much weaker; its load-
ings were rather symmetrically distributed around 0, only 11
larger than 0.3 in absolute value, and the maximum absolute
value was 0.706. The third factor was still weaker, and con-
sidering the large number of variables in proportion to the
sample size (335) we decided to ignore it.

The results of the factor analysis indicate that there can
be at least one other underlying, orthogonal factor behind the
studied internal quality attributes, in addition to size. How-
ever, it is not easy to name this factor or have an intuitive
understanding of it.

4.2. Relationships between the Maintenance Process Met-
rics and Fault-Proneness

4.2.1. Correlation Analysis

As in Subsection 4.1.1, we calculated the correlations
first for each individual OSS project, and they were quite
different for different projects. In all projects except J and
Art of Illusion some correlations could not be computed be-
cause the variance of the explaining variable was 0.

ABPL (Appendix E, Table E-1) had statistically signifi-
cant correlations only with Number of Closed Bugs (NBC) in
jEdit, Jaxe, Buddi and KoLmafia, and with Number of
Closed Feature Requests (NCFR) in J.

RBR (Appendix E, Table E-2) had statistically significant
correlations with three of the four metrics in jEdit and Jaxe,
with two metrics in J and Buddi, and none in the remaining
four projects.

The composite metric ABPL×RBR had statistically sig-
nificant medium-sized correlations with a number of internal
quality attributes for the OSSs jEdit and Art of Illusion (Ap-
pendix D, Tables D-5, D-6). However, the signs of those
correlations are not consistent, i.e. positive in the case of
jEdit and negative in the case of Art of Illusion.

The correlation analysis of the grand sample did not yield
interesting (strong or medium-strong and statistically signifi-
cant) correlations between the maintenance process metrics
and external quality attributes. The strongest obtained corre-
lations were between ABPL and Rate of Unassigned Bugs
(RUB, r = 0.329, p = 0.000(**)) and Rate of Unassigned
Feature Requests (RUFR, r = 0.306, p = 0.000). With respect
to the composite metric ABPL×RBR the correlations were
even weaker (Appendix E, Table E3). The strongest correla-

Table 3. Correlations between Average Bug Priority Level
(ABPL) and Internal Quality Attributes

ABPL r p

NSL 0.522 0.000 (***)

NCD 0.516 0.000 (***)

NDS 0.537 0.000 (***)

NDVI 0.509 0.000 (***)

NDP 0.525 0.000 (***)

NFR 0.502 0.000 (***)

NLiS 0.506 0.000 (***)

*** p < 0.001

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 9

tion was found between ABPL×RBR and RUB (r = 0.197, p
= 0.000(***)).

4.2.2. Regression Analysis

Since most of the obtained correlations between the
maintenance process metrics and fault-proneness were very
low, it was meaningless to carry out regression analysis for
those metrics.

4.2.3. Factor Analysis

Similarly, most of the obtained correlations between the
maintenance process metrics and fault-proneness were very
low. Thus it did not make sense to carry out factor analysis
for those metrics.

4.3. Relation of the Results to the Hypotheses

In this section we analyze the results of our study with re-
spect to the raised hypotheses (Section 3.3). The results are pre-
sented according to the initial groups of hypotheses. Like earlier
in the paper, we consider those correlations to be interesting that
are moderate or strong and also statistically significant.

4.3.1. Hypotheses about the Relations between the Internal
Quality Attributes and Fault-Proneness

H1: Software size correlates positively with fault-
proneness. We used several operationalization metrics related
to software size, i.e. Number of Source Lines in All (NSL),
Number of Genuine Code Lines (NGCL), Number of All Con-
trol Statements (NACS), Number of If Statements (NIS),
Number of Switch Statements (NSS), Number of Case State-
ments (NCS) and Number of Loop Statements (NLS). None of
these correlated significantly with ABPL×RBR or RBR alone
The external quality attribute ABPL correlates strongly posi-
tively with Number of Source Lines in All (NSL) (Table 3),
but ABPL alone does not really represent fault-proneness.
Thus the hypothesis is at most weakly supported.

H2: Amount of methods correlates positively with fault-
proneness. We used two operationalization metrics related to
methods, i.e. Number of Methods Declared (NMD) and
Number of Methods Inherited (NMI). Neither one of those
metrics had interesting correlations with fault-proneness.
Thus the hypothesis is not supported.

H3: Amount of decisions correlates positively with fault-
proneness. We used two operationalization metrics related to
decisions, i.e. Decisional Complexity McClure Metric
(DCMM) and Control Flow Complexity McCabe Metric
(CFCMM). There were no interesting correlations between
the metrics DCMM and CFCMM and fault-proneness. Thus
the hypothesis is not supported.

H4: Inheritance correlates positively with fault-proneness.
We used three operationalization metrics related to inheri-
tance, i.e. Number of Classes Inherited (NCI), Number of
Methods Inherited (NMI) and Number of Data Variables In-
herited (NDVI). The external quality attribute ABPL correlated
strongly positively with NDVI (r = 0.509, p = 0.000(***)).
However, there is no significant correlation with ABPL×RBR.
The hypothesis is thus at most weakly supported.

 H5: Lexical or textual complexity of software correlates
positively with fault-proneness. We used one operationaliza-
tion metric related to lexical complexity, i.e. Language

Complexity Halstead Metric (LCHM). There were no inter-
esting correlations between LCHM and external quality at-
tributes. Thus the hypothesis is not supported.

H6: Amount of nesting correlates positively with fault-
proneness. We have used one operationalization metric re-
lated to nesting, i.e. Number of Nesting Levels Maximum
(NNLM). There were no interesting correlations between the
metric NNLM and external quality attributes. Thus the hy-
pothesis is not supported.

As explained earlier (Subsection 3.4.4), we performed
the statistical analyses also on each individual OSS sepa-
rately. There are more statistically significant correlations on
that level, but none of them is valid for more than four of the
eight studied OSS projects (Appendix D).

4.3.2. Hypotheses about the Relations between the Mainte-
nance Process Metrics and Fault-Proneness

H7: Number of system modifications correlates posi-
tively with fault-proneness. We used two operationalization
metrics related to system modifications, i.e. Number of
Closed Feature Requests (NCFR) and Number of Closed
Bugs (NCB). We did not obtain any interesting correlations
between those metrics and external quality attributes. Thus
the hypothesis is not supported.

H8: Number of system fixes correlates positively with
fault-proneness. We used one operationalization metric re-
lated to system fixes, i.e. Number of Closed Bugs (NCB).
We did not obtain any interesting correlations between the
metric NCB and external quality attributes. Thus the hy-
pothesis is not supported.

H9: Number of messages in the mailing list correlates
positively with fault-proneness. We used two operationaliza-
tion metrics related to mailing lists, i.e. Number of Messages
in the Open Discussion Forum (NMODF) and Number of
Messages in the Help Forum (NMHF). We did not obtain
any interesting correlations between those metrics and exter-
nal quality attributes. Thus the hypothesis is not supported.

On the level of individual OSSs, there are more statisti-
cally significant correlations (Appendix E).

4.3.3. Results not directly related to the hypotheses

As Table 3 shows, we identified a number of relations
between the internal quality attributes and fault-proneness
that go beyond the initial set of hypotheses. In particular, we
found medium-strong statistically significant correlations
between each of the following internal quality attributes and
ABPL: Number of Classes Declared (NCD), Number of Data
Structures (NDS), Number of Data Points (NDP), Number of
Function References (NFR) and Number of Literals in
Statements (NLiS). However, none of them had significant
correlations with RBR or ABPL×RBR.

5. DISCUSSION

5.1. Why were Most Previous Research Results not
Confirmed?

The positive correlations between various internal quality
attributes and metrics of fault-proneness that were found in

10 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

most previous studies are intuitively very plausible. Those
QAs largely measure the size and complexity of software,
which are generally believed to affect fault-proneness. There-
fore, we took these correlations as our hypotheses H1 – H6.

There was much less previous research on the relation-
ships between maintenance process metrics and fault-
proneness. However, the positive correlations found in two
studies seemed plausible, and so we took them as our hy-
potheses H7-H9.

We used two rather orthogonal metrics for fault-
proneness: Average Bug Priority Level (ABPL) and Rate of
Bug Reports (RBR). We considered these to be the best met-
rics available for all the studied OSS systems, and their
product the best single metric to represent fault-proneness.
Previous studies had used somewhat different metrics for
this. Likewise, different concrete metrics had been used for
many internal quality attributes in the previous studies.

A striking observation from our results is that the correla-
tions are highly different among the eight projects. Indeed,
jEdit is the only one where both ABPL and RBR have consis-
tently significant and at least medium-strong positive corre-
lations with almost all QAs. In J this is the case only for
RBR. In Buddi and KoLmafia ABPL has significant but
weaker positive correlations with almost all QAs. In Art of
Illusion the results for RBR are directly opposite to the hy-
potheses: almost all correlations are negative, statistically
significant and medium-strong or nearly so. In the remaining
three projects there is only one significant correlation alto-
gether.

The picture about the correlations between fault-
proneness and maintenance process metrics is similar. Un-
fortunately, all four of those metrics were available from
only two projects, and only one of them from one project
(Appendix E, Tables E-1 and E-2). Observations like this
were not even possible in the earlier metric-based studies,
because each of them focused on some specific software
products or on a set of releases of the same product. Our
decision to choose a set of highly dissimilar software prod-
ucts proved to be fruitful: our study suggests that some of the
results of the earlier studies may not be widely generalizable.
However, with the one exception mentioned above, our re-
sults were not directly opposite to them.

 Our results on the “grand sample”, where all releases of
all projects were treated as a single set, suggest the low gen-
eralizability of the results from the earlier studies. Seven of
the nine hypotheses were not supported at all, and the two
others (H1 and H4) at most marginally: there were statistically
significant correlations only between ABPL and some QAs.

5.2. OSS Maintenance Process

The SFITS contains information about bugs which re-
sembles the defect handling patterns revealed by Koru and
Tian [12]. Therefore our approach to measure the OSS main-
tenance process based on the data extractable from the
SFITS can be regarded as a further step towards a practical
usage of those defect handling patterns.

In our study we followed Koponen and Hotti [41], who
claimed that the approach for measuring the maintenance
process presented in ISO/IEC 12207 [42] and ISO/IEC
14764 [43] is applicable also to OSS. A limitation of their

study is that they did not analyze experimental data. We have
not encountered any crucial obstacles in implementing the
above standards for OSS. Our approach entails collecting
those maintenance process metrics that are easily extractable
from real OSS projects. Although our approach was derived
from the standards and the approach of Koponen and Hotti,
the metrics used in those standards have been just linked to
the metrics used in our study. However, it would be wise to
carry out a strict validation of our approach against the ISO
standard. It could be achieved e.g. by gathering and analyz-
ing software maintenance process metrics (Appendix B, Ta-
ble B-1) from closed source software development projects
and comparing those results with the results of this study.

Our framework to measure the OSS maintenance process
can be considered complementary to the framework of
Koponen [39]. Both frameworks use many similar metrics,
e.g. those that are related to the numbers of bugs of different
types. Some of the attributes considered by Koponen, e.g.
type of defect management system and intended audience,
have not been taken into consideration in our framework,
since they were not available in SFITS.

By collecting the metrics related to the maintenance
process of the studied OSSs we found out that in all projects
the number of messages in the open discussion forums was
high. This confirms the results of Lintula et al. [40].

A distinguishing feature of our approach to measure the
OSS maintenance process is its simplicity and usage of the
data that has been gathered and used in real OSS projects.
Usually OSS developers have collected only quite primitive
information, which is not used or is used restrictedly by the
available advanced and sophisticated frameworks, such as
IEEE 1219 [60] and Boehm [62].

5.3. Further Research Avenues

We have studied a rather diverse set of eight OSS pro-
jects. It would be highly interesting to continue on that track
and study an even larger and more diverse set of projects.
Probably there would appear some further patterns of the
relationships between quality attributes and fault-proneness
within a single project. We might find some common factors
that would explain (partially) why a project follows a certain
pattern. It is also possible that in such a very large sample
there would be some significant correlations that did not
appear in our “grand sample”.

6. SUMMARY AND CONCLUSIONS

This has been an empirical multiple case study. We have
explored to what extent and how fault-proneness could be
explained by means of internal quality attributes and mainte-
nance process metrics. We first conducted a literature survey
as a basis for taking into account the main findings of other
researchers. Next we analyzed eight OSS systems and their
342 releases.

Software quality was measured in terms of 76 internal
quality attributes, using the static analysis tool SoftCalc.
There were 23 maintenance process metrics obtained from
Source Forge Issue Tracking System (SFITS). Fault-
proneness was measured in terms of Rate of Bug Reports
(RBR) and Average Bug Priority Level (ABPL). That data
was also obtained from SFITS.

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 11

We investigated the relationships between the metrics
under study by the combination of correlation analysis, re-
gression analysis and factor analysis where appropriate. Nine
hypotheses based on the results of the reviewed studies were
raised.

Firstly, we applied a bottom-up approach; i.e. strong cor-
relations between the metrics under study were identified at
the level of individual OSS projects. Such correlations, sup-
porting the hypotheses, emerged for only two or three of the
eight projects. Most correlations were weak and statistically
insignificant.

Secondly, we applied a top-down approach; i.e. strong
correlations between the metrics under study were identified
at the level of the grand sample consisting of all versions of
all projects. At this level we obtained only medium-strong
statistically significant correlations between ABPL and some
of the internal quality attributes. These results supported two
hypotheses at most weakly, and the other seven hypotheses
were not supported at all. The results of correlation analysis

revealed a strong multicollinearity between the metrics ob-
tained from the analysis of the grand sample. Consequently it
was not possible to apply multiple regression analysis to gain
a fine-grained insight into the obtained correlations, as we
had intended. However, the results of the conducted factor
analysis revealed that the studied metrics can be interpreted
in terms of two factors, one of which represents system size.

We noted additionally that the correlations valid for indi-
vidual OSS projects became insignificant at the level of the
grand sample. Conversely, the few correlations valid in the
grand sample were insignificant at the level of the individual
projects.

Most of the earlier studies in this area are based on only
relatively small sets of OSS systems and releases despite the
fact that OSS projects are very diverse and heterogeneous.
The main conclusion to be drawn from our study is that the
results of those earlier studies might not be well generaliz-
able beyond their initial research settings due to their rela-
tively limited nature.

APPENDIX A: ACRONYMS USED IN THE PAPER

The acronyms used in the main part of the paper are related to the primary focus of the paper, i.e. internal, external quality
attributes and maintenance process metrics. The acronyms are provided in the alphabetical order. Also definitions are provided
for those items, whose meaning is not necessarily intuitively clear.

ABPL - Average Bugs Priority Level (i.e. the severity and priority of a reported bug from the subjective viewpoint of devel-
opers)

AFRPL - Average Feature Request Priority Level (i.e. the priority of a reported feature request from the subjective view-
point of developers)

BCSM - Branching Complexity Sneed Metric
CBO - Coupling between Object Classes
CFCMM - Control Flow Complexity McCabe Metric
CSS – Closed Source Software (i.e. computer software with restrictions on use or private modification, or with restrictions

judged to be excessive on copying or publishing of modified or unmodified versions)
DACCM - Data Access Complexity Card Metric
DCCM - Data Complexity Chapin Metric
DCMM - Decisional Complexity McClure Metric
DFCEM - Data Flow Complexity Elshoff Metric
DIT – Depth of Inheritance Tree
ICHM - Interface Complexity Henry Metric
LCHM - Language Complexity Halstead Metric
LCOM – Lack of Cohesion of Methods
LOC – Number of Lines of Code
LOCD - LOC Difference between Two Adjoining Releases
LTR - Life Time of the Release
MTPV - Mean Time for Problem Validation (i.e. the time required by a developer to review a reported issue and mark it as a

bug with specific priority, see ABPL)
MTTBR - Mean Time To Bug Report (i.e. the amount of bugs reported with respect to a specific release (TNB) divided by

the life time of that release calculated in minutes (LTR))
MTTF – Mean Time To Failure
NACS - Number of All Control Statements
NAIV - Number of Arguments or Input Variables

12 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

NAM - Number of Assertions Made
NAV - Number of Arrays or Vectors
NCB - Number of Closed Bugs (i.e. number of those bugs, which were reviewed and fixed by the developers)
NCD - Number of Classes Declared
NCFB - Number of Control Flow Branches
NCFR - Number of Closed Feature Requests (i.e. number of those feature requests, which were reviewed and implemented

by the developers)
NCI - Number of Classes Inherited
NCL - Number of Comment Lines
NCS - Number of Case Statements
NCUB - Number of Closed Unassigned Bugs (i.e. number of those bugs, which were reviewed and fixed by the developers

without being assigned to any particular developer for fixing)
NCUFR - Number of Closed Unassigned Feature Requests (i.e. number of those feature requests, which were reviewed and

implemented by the developers without being assigned to any particular developer for implementation)
NDB - Number of Deleted Bugs (i.e. those bugs that were deleted by a developer after problem validation; see MTPV)
NDBA - Number of Data Bases Accessed
NDCED - Number of Data Constants or Enums Declared
NDD - Number of Defined Definitions
NDFR - Number of Deleted Feature Requests
NDP - Number of Data-Points
NDR - Number of Data References
NDS - Number of Data Structures
NDST - Number of Different Statement Types
NDVD - Number of Data Variables Declared
NDVI - Number of Data Variables Inherited
NEC - Number of Exception Conditions
NFD - Number of Files Declared
NFDA - Number of File and Database Accesses
NFFR - Number of Foreign Functions Referenced (i.e. number of functions accessed from the source code and written in a

programming language different to the main programming language used in the source code)
NFP - Number of Function-Points
NFR - Number of Function References
NGCL - Number of Genuine Code Lines (i.e. number of code lines without taking into account comments and blank lines)
NI - Number of Includes
NID - Number of Interfaces Declared
NII - Number of Interfaces Implemented
NIO - Number of Input Operations
NIS - Number of If Statements
NLiS - Number of Literals in Statements (i.e. the amount of characters in a specific statement)
NLS - Number of Loop Statements
NMCVS - Number of Messages in the CVS Archive (i.e. number of messages in the CVS of a specific OSS project exported

and displayed in the SFITS)
NMD - Number of Methods Declared
NMDA - Number of Messages in the Developers’ Archive (i.e. number of replies made by developers for an initial topic

started by a developer facing a software development issue)
NMHF - Number of Messages in the Help Forum (i.e. number of replies made by developers for an initial topic started by a

user asking for help or maintenance support)
NMI - Number of Methods Inherited

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 13

NMODF - Number of Messages in the Open Discussion Forum (i.e. number of replies made by developers or users for an
initial topic started by a developer or a user discussing issues not directly related to development or maintenance)

NMR - Number of Macro References
NMRd - Number of Macros Referenced
NNLM - Number of Nesting Levels Maximum
NOC – Number of Children
NOP - Number of Object-Points
NOSR - Number of Open Support Requests (i.e. number of those support requests, which were not yet reviewed and fulfilled

by the developers)
NPCD - Number of Predicates or Conditional Data
NPFA - Number of Parameters or Function Arguments
NROV - Number of Results or Output Variables
NRP - Number of Reports Produced
NRS - Number of Return Statements
NS - Number of Statements
NSL - Number of Source Lines in All (i.e. total number of source code lines of a specific OSS including blank lines and

comments)
NSMA - Number of Source Members Analyzed (i.e. number of files comprising the source code of a specific OSS)
NSS - Number of Switch Statements
OSS – Open Source Software
OSSs – Open Source Software Products
RBR – Rate of Bug Reports, see MTTBR
RFC – Response for a Class
ROB - Rate of Open Bugs (i.e. percentage of those bugs, which were not yet reviewed and fixed by the developers)
ROFR - Rate of Open Feature Requests (i.e. percentage of those feature requests, which were not yet reviewed and imple-

mented by the developers)
RUB - Rate of Unassigned Bugs (i.e. percentage of those bugs, which were not assigned to any particular developer for fix-

ing; the total number of unassigned bugs includes both open and closed unassigned bugs)
RUFR - Rate of Unassigned Feature Requests (i.e. percentage of those feature requests, which were not assigned to any par-

ticular developer for implementing; the total number of unassigned feature request includes both open and closed feature requests)
SFITS – Source Forge Issue Tracking System
SLOC – Source Lines of Code
TNB - Total Number of Bugs (i.e. total amount of bugs reported with respect to a specific release)
TNFR - Total Number of Feature Requests
TNSR - Total Number of Support Requests
WMC – Weighted Methods per Class

APPENDIX B: THE APPROACH USED TO MEASURE THE OSS MAINTENANCE PROCESS

Table B-1. The Approach used to Measure the OSS Maintenance Process (Adopted from [15])

Metrics Used in the IEEE Standard [60] Metrics Used in this Study

Number of Omissions on Modification Requests (NOMR) Number of Deleted Bugs (NDB)
Number of Closed Unassigned Bugs (NCUB)
Number of Deleted Feature Requests (NDFR)

Number of Closed Unassigned Feature Requests (NCUFR)

Number of Modification Request Submittals (NMRS) Total Number of Bugs (TNB)
Total Number of Feature Requests (TNFR)

Number of Duplicate Modification Requests (NDMR) Number of Deleted Bugs (NDB)
Number of Deleted Feature Requests (NDFR)

Pr
ob

le
m

 Id
en

tif
ic

at
io

n

Time Expended for Problem Validation (TEPV) Mean Time for Problem Validation (MTPV)

14 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

Table B-1. contd….

Metrics Used in the IEEE Standard [60] Metrics Used in this Study

Requirement Changes
Documentation Error Rate
Effort per Function Area
Elapsed Time (schedule)

Rate of Unassigned Bugs (RUB)
Rate of Unassigned Feature Requests (RUFR)

A
na

ly
si

s

Error Rates Generated by Priority and Type
Average Bug Priority Level (ABPL)

Average Feature Request Priority Level (AFRPL)

Software Complexity

Data Complexity Chapin Metric (DCCM)
Data Flow Complexity Elshoff Metric (DFCEM)
Data Access Complexity Card Metric (DACCM)

Interface Complexity Henry Metric (ICHM)
Control Flow Complexity McCabe Metric (CFCMM)

Decisional Complexity McClure Metric (DCMM)
Branching Complexity Sneed Metric (BCSM)

Language Complexity Halstead Metric (LCHM)

Design Changes
Effort per Function Area

Number of Messages in the CVS Archive (NMCVS)
Number of Messages in the Developers’ Archive (NMDA)

Elapsed Time Life Time of the Release (LTR)

Test Plans and Procedure Changes -

Error Rates Generated by Priority and Type
Average Bug Priority Level (ABPL)

Average Feature Request Priority Level (AFRPL)

Number of Lines of Code Added, Deleted, Modified, Tested LOC Difference Between Two Adjoining Releases (LOCD)

D
es

ig
n

Number of Applications -

Volume or Functionality (function points or SLOC)
Rate of Open Bugs (ROB)

Rate of Open Feature Requests (ROFR)

Im
pl

em
en

ta
tio

n

Error Rates Generated by Priority and Type
Average Bug Priority Level (ABPL)

Average Feature Request Priority Level (AFRPL)

Te
st

 Error Rates by Priority and Type
Generated
Corrected

Total Number of Bugs (TNB)
Total Number of Feature Requests (TNFR)

Number of Closed Bugs (NCB)
Number of Closed Feature Requests (NCFR)

D
el

iv
er

y

Documentation changes (i.e. version description documents, training
manuals, operation guidelines)

Number of Messages in the Help Forum (NMHF)
Number of Messages in the Open Discussion Forum (NMOD)

Total Number of Support Requests (TNSR)
Number of Open Support Requests (NOSR)

APPENDIX C. DESCRIPTIVE STATISTICS FOR THE STUDIED METRICS RELATED TO THE HYPOTHESES
Table C-1. Descriptive Statistics for the Studied Metrics at the Level of the Grand Sample

 Mean Minimum Maximum Standard Deviation

ABPL 3.370 0.000 7.000 2.416

RBR 5382.136 0.000 341280.000 20495.502

NCD 286.551 30.000 707.000 182.378

NDP 7698.353 621.000 22754.000 5296.506

NDS 322.160 32.000 745.000 206.273

NDVI 191.227 15.000 464.000 134.239

NFR 13115.560 884.000 38892.000 9599.499

NLiS 7484.327 376.000 22152.000 6511.630

NSL 52557.988 4649.000 133337.000 35792.421

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 15

Fig. (C-1). Mean plot of Average Bug Priority Level (ABPL) values for the individual OSSs.

Fig. (C-2). Mean plot of Rate of Bug Reports (RBR) values for the individual OSSs.

APPENDIX D. MAIN CORRELATIONS BETWEEN FAULT-PRONENESS (ABPL, RBR) AND INTERNAL QUAL-
ITY ATTRIBUTES

Table D-1. Correlations between Average Bug Priority Level (ABPL) and Internal Quality Attributes (Part 1)

ABPL J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
Sample

r -0.151 0.389 0.665 0.199 -0.085 0.007 0.300 0.428 0.484 NGCL

p 0.537 0.074 0.001(**) 0.311 0.654 0.969 0.009(**) 0.000(**) 0.000(**)

r -0.191 0.333 -0.442 0.194 -0.112 0.011 0.150 0.496 0.483 NCI

p 0.434 0.130 0.040(*) 0.324 0.555 0.946 0.200 0.000(**) 0.000(**)

16 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

Table D-1. contd….

ABPL J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
Sample

r -0.241 0.378 0.764 0.198 -0.096 0.056 0.264 0.420 0.462
NMD

p 0.321 0.083 0.000(**) 0.313 0.613 0.735 0.022(*) 0.000(**) 0.000(**)

r -0.238 0.326 0.741 0.193 -0.053 -0.171 -0.157 0.501 0.498
NMI

p 0.326 0.139 0.000(**) 0.325 0.780 0.298 0.178 0.000(**) 0.000(**)

r -0.220 0.417 0.724 0.196 -0.082 0.032 0.319 0.406 0.394
NIS

p 0.367 0.054 0.000(**) 0.317 0.665 0.845 0.005(**) 0.000(**) 0.000(**)

r -0.203 0.294 0.547 0.197 -0.473 0.014 0.251 0.387 0.064
NSS

p 0.405 0.184 0.008(**) 0.315 0.008(**) 0.931 0.030(*) 0.000(**) 0.239

r -0.220 0.325 -0.181 0.187 -0.082 0.007 0.281 0.359 0.162
NCS

p 0.366 0.140 0.420 0.342 0.669 0.965 0.015(*) 0.000(**) 0.003(**)

r -0.236 0.429 0.662 0.206 -0.063 0.054 0.288 0.419 0.411
NLS

p 0.331 0.046(*) 0.001(**) 0.294 0.740 0.745 0.012(*) 0.000(**) 0.000(**)

r -0.223 0.420 0.708 0.198 -0.081 0.037 0.318 0.403 0.407
NACS

p 0.360 0.051 0.000(**) 0.313 0.672 0.823 0.005(**) 0.000(**) 0.000(**)

r 0.059 0.062 -0.766 0.166 0.009 0.009 -0.200 0.603 0.087
NNML

p 0.809 0.785 0.000(**) 0.400 0.964 0.956 0.086 0.000(**) 0.109

r -0.045 -0.364 -0.787 0.076 0.228 -0.017 0.174 0.011 0.267
CFCMM

p 0.855 0.096 0.000(**) 0.702 0.225 0.917 0.136 0.910 0.000(**)

r -0.381 0.272 0.873 0.227 -0.082 0.032 0.282 0.452 0.062
DCMM

p 0.107 0.221 0.000(**) 0.245 0.666 0.845 0.014(*) 0.000(**) 0.249

r -0.139 0.157 -0.331 -0.167 0.038 -0.148 -0.287 -0.585 -0.429
LCHM

p 0.570 0.485 0.133 0.397 0.842 0.368 0.012(*) 0.000(**) 0.000(**)

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001

Table D-2. Correlations between Average Bug Priority Level (ABPL) and Internal Quality Attributes (Part 2)

ABPL J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
sample

r -0.069 0.384 0.615 0.198 -0.097 -0.005 0.299 0.444 0.522 NSL

p 0.781 0.078 0.002(**) 0.313 0.611 0.976 0.009(**) 0.000(**) 0.000(**)

r -0.271 0.335 0.223 0.194 -0.117 0.008 0.301 0.495 0.517 NCD

p 0.262 0.127 0.318 0.322 0.539 0.963 0.009(**) 0.000(**) 0.000(**)

r 0.011 0.376 0.718 0.192 -0.118 0.011 0.257 0.505 0.538 NDS

p 0.966 0.084 0.000(**) 0.328 0.536 0.945 0.026(*) 0.000(**) 0.000(**)

r -0.254 0.296 0.622 0.197 -0.022 -0.126 -0.226 0.534 0.510 NDVI

p 0.294 0.181 0.002(**) 0.316 0.910 0.447 0.052 0.000(**) 0.000(**)

r -0.274 0.380 0.789 0.197 -0.103 0.033 0.315 0.471 0.525 NDP

p 0.257 0.082 0.000(**) 0.316 0.589 0.841 0.006(**) 0.000(**) 0.000(**)

r -0.215 0.417 0.623 0.196 -0.095 0.028 0.330 0.447 0.502 NFR

p 0.377 0.054 0.002(**) 0.317 0.617 0.866 0.004(**) 0.000(**) 0.000(**)

r -0.102 0.398 0.316 0.201 -0.090 0.037 0.313 0.413 0.508 NLiS

p 0.679 0.066 0.152 0.305 0.635 0.825 0.006(**) 0.000(**) 0.000(**)

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 17

Table D-3. Correlations between Rate of Bug Reports (RBR) and Internal Quality Attributes (Part 1)

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
sample

r 0.586 -0.474 0.645 -0.151 0.245 0.150 0.209 0.128 0.098 NGCL

p 0.008(**) 0.026(*) 0.001(**) 0.442 0.193 0.364 0.073 0.188 0.069

r 0.691 -0.406 -0.038 -0.152 0.219 0.174 0.122 0.178 -0.012
NCI

p 0.001(**) 0.061 0.865 0.441 0.245 0.289 0.299 0.065 0.830

r 0.586 -0.476 0.701 -0.148 0.230 0.157 0.204 0.130 0.094
NMD

p 0.008(**) 0.025(*) 0.000(**) 0.451 0.221 0.340 0.079 0.182 0.084

r 0.566 -0.390 0.667 -0.150 0.256 -0.219 -0.073 0.185 0.004
NMI

p 0.012(*) 0.073 0.001(**) 0.447 0.173 0.180 0.533 0.055 0.943

r 0.560 -0.505 0.679 -0.146 0.246 0.158 0.218 0.113 0.122
NIS

p 0.013(*) 0.017(*) 0.001(**) 0.457 0.189 0.337 0.060 0.244 0.024(*)

r -0.245 -0.469 0.639 -0.192 -0.047 -0.055 0.167 0.082 -0.061
NSS

p 0.312 0.028(*) 0.001(**) 0.327 0.806 0.741 0.152 0.399 0.258

r -0.223 -0.484 -0.073 -0.178 -0.109 -0.077 0.176 0.079 -0.060
NCS

p 0.360 0.023(*) 0.746 0.364 0.567 0.644 0.131 0.418 0.267

r 0.530 -0.515 0.620 -0.160 0.267 0.182 0.197 0.120 0.117
NLS

p 0.020(*) 0.014(*) 0.002(**) 0.418 0.153 0.267 0.090 0.217 0.031(*)

r 0.557 -0.507 0.666 -0.147 0.247 0.159 0.215 0.111 0.120
NACS

p 0.013(*) 0.016(*) 0.001(**) 0.456 0.187 0.333 0.064 0.251 0.026

r 0.498 -0.135 -0.744 -0.151 0.169 -0.056 0.059 0.348 0.024
NNLM

p 0.030(*) 0.549 0.000(**) 0.443 0.371 0.735 0.618 0.000(**) 0.656

r -0.651 0.517 -0.632 -0.274 -0.057 0.114 0.089 0.122 0.089
CFCMM

p 0.003(**) 0.014(*) 0.002(**) 0.159 0.764 0.489 0.446 0.209 0.102

r 0.408 -0.243 0.693 -0.134 0.216 0.227 0.178 0.133 0.146
DCMM

p 0.083 0.277 0.000(**) 0.497 0.251 0.165 0.127 0.170 0.007(**)

r 0.404 -0.219 0.166 0.263 -0.196 0.208 -0.199 -0.204 0.090
LCHM

p 0.086 0.328 0.461 0.177 0.300 0.204 0.087 0.035(*) 0.098

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

Table D-4. Correlations between Rate of Bug Reports (RBR) and Internal Quality Attributes (Part 2)

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
Sample

r 0.513 -0.476 0.644 -0.152 0.231 0.193 0.205 0.141 0.058 NSL

p 0.025(*) 0.025(*) 0.001(**) 0.440 0.220 0.240 0.078 0.145 0.286

r 0.563 -0.429 0.447 -0.149 0.206 0.179 0.148 0.170 0.004 NCD

p 0.012(*) 0.046(*) 0.037(*) 0.450 0.274 0.277 0.207 0.079 0.945

r -0.058 -0.455 0.531 -0.158 0.203 0.189 0.084 0.174 -0.005 NDS

p 0.814 0.034(*) 0.011(*) 0.421 0.281 0.250 0.475 0.072 0.929

r 0.564 -0.385 0.622 -0.152 0.270 -0.051 -0.153 0.247 0.014 NDVI

p 0.012(*) 0.077 0.002(**) 0.441 0.149 0.756 0.190 0.010(*) 0.800

r 0.505 -0.463 0.624 -0.153 0.223 0.181 0.208 0.157 0.078 NDP

p 0.028(*) 0.030(*) 0.002(**) 0.437 0.237 0.271 0.073 0.104 0.147

18 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

Table D-4. contd….

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
Sample

r 0.599 -0.511 0.590 -0.145 0.233 0.154 0.231 0.142 0.089 NFR

p 0.007(**) 0.015(*) 0.004(**) 0.462 0.216 0.350 0.046(*) 0.144 0.101

r 0.659 -0.513 0.350 -0.151 0.240 0.112 0.241 0.116 0.054 NLiS

p 0.002(**) 0.015(*) 0.111 0.444 0.202 0.499 0.038(*) 0.234 0.319
*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

Table D-5. Correlations between ABPL*RBR and Internal Quality Attributes (Part 1)

ABPL*RBR J ArtOfIllusion jEdit TVBrowser Jaxe DrJava Buddi KoLmfia Grand
Sample

r 0.270 -0.473 0.643 -0.164 0.245 0.061 0.220 0.128 0.120
NGCL

p 0.263 0.026(*) 0.001(**) 0.404 0.193 0.712 0.058 0.187 0.056

r 0.362 -0.405 -0.032 -0.165 0.219 0.083 0.128 0.179 0.064
NCI

p 0.128 0.062(*) 0.887 0.401 0.245 0.617 0.274 0.064 0.306

r 0.239 -0.475 0.698 -0.161 0.230 0.071 0.215 0.130 0.086
NMD

p 0.324 0.026(*) 0.000(**) 0.414 0.221 0.669 0.065 0.180 0.169

r 0.262 -0.389 0.666 -0.162 0.256 -0.179 -0.076 0.186 0.095
NMI

p 0.278 0.074 0.001(**) 0.411 0.173 0.275 0.519 0.055 0.132

r 0.254 -0.504 0.676 -0.159 0.246 0.067 0.230 0.114 0.146
NIS

p 0.295 0.017(*) 0.001(**) 0.420 0.189 0.685 0.047(*) 0.242 0.020(*)

r -0.346 -0.467 0.639 -0.207 -0.047 -0.062 0.176 0.082 -0.044
NSS

p 0.147 0.028(*) 0.001(**) 0.291 0.806 0.706 0.131 0.397 0.483

r -0.310 -0.482 -0.076 -0.193 -0.109 -0.075 0.185 0.079 -0.035
NCS

p 0.196 0.023(*) 0.738 0.325 0.567 0.650 0.112 0.415 0.584

r 0.232 -0.513 0.618 -0.172 0.267 0.094 0.208 0.120 0.136
NLS

p 0.339 0.015(*) 0.002(**) 0.381 0.153 0.567 0.074 0.216 0.030(*)

r 0.247 -0.505 0.664 -0.159 0.247 0.073 0.227 0.112 0.150
NACS

p 0.309 0.016(*) 0.001(**) 0.420 0.187 0.660 0.050(*) 0.249 0.016(*)

r 0.375 -0.136 -0.743 -0.163 0.169 -0.060 0.062 0.348 0.012
NNLM

p 0.114 0.545 0.000(**) 0.408 0.371 0.717 0.599 0.000(**) 0.852

r -0.358 0.515 -0.632 -0.242 -0.057 0.036(*) 0.095 0.122 0.098
CFCMM

p 0.132 0.014(*) 0.002(**) 0.215 0.764 0.828 0.420 0.210 0.119

r 0.142 -0.243 0.691 -0.126 0.216 0.133 0.189 0.133 0.196
DCMM

p 0.563 0.277 0.000(**) 0.522 0.251 0.419 0.105 0.169 0.002(**)

r 0.190 -0.217 0.171 0.275 -0.196 0.122 -0.205 -0.204 0.073
LCHM

p 0.437 0.332 0.447 0.156 0.300 0.458 0.078 0.034(*) 0.248

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

Table D-6. Correlations between ABPL*RBR and Internal Quality Attributes (Part 2)

ABPL*RBR J ArtOfIllusion jEdit TVBrowser Jaxe DrJava Buddi KoLmfia Grand
Sample

r 0.220 -0.474 0.642 -0.165 0.231 0.092 0.215 0.142 0.082
NSL

p 0.366 0.026(*) 0.001(**) 0.402 0.220 0.577 0.064 0.144 0.195

r 0.234 -0.427 0.448 -0.162 0.206 0.086 0.156 0.170 0.059
NCD

p 0.335 0.048(*) 0.036(*) 0.409 0.274 0.602 0.182 0.078 0.345

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 19

Table D-6. contd….

ABPL*RBR J ArtOfIllusion jEdit TVBrowser Jaxe DrJava Buddi KoLmfia Grand
Sample

r -0.048 -0.453 0.528 -0.173 0.203 0.096 0.089 0.174 0.048
NDS

p 0.847 0.034(*) 0.012(*) 0.378 0.281 0.561 0.450 0.071 0.444

r 0.244 -0.384 0.621 -0.164 0.270 -0.095 -0.160 0.248 0.102
NDVI

p 0.315 0.078 0.002(**) 0.404 0.149 0.564 0.169 0.010(*) 0.106

r 0.177 -0.461 0.621 -0.167 0.223 0.089 0.218 0.158 0.093
NDP

p 0.468 0.031(*) 0.002(**) 0.396 0.237 0.590 0.060 0.103 0.139

r 0.278 -0.510 0.588 -0.157 0.233 0.062 0.244 0.142 0.115
NFR

p 0.250 0.015(*) 0.004(**) 0.425 0.216 0.707 0.035(*) 0.142 0.066

r 0.272 -0.512 0.347 -0.163 0.240 0.033 0.253 0.116 0.111
NLiS

p 0.259 0.015(*) 0.114 0.408 0.202 0.842 0.028(*) 0.232 0.076

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

APPENDIX E. MAIN CORRELATIONS BETWEEN FAULT-PRONENESS (ABPL, RBR) AND MAINTENANCE
PROCESS METRICS

Table E-1. Correlations between Average Bug Priority Level (ABPL) and Maintenance Process Metrics

ABPL J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
Sample

r 0.376 0.342 0.493 0.243 0.942 0.260 0.803 0.515 0.171 NCB

p 0.113 0.119 0.020(*) 0.214 0.000(**) 0.110 0.000(**) 0.000(**) 0.006(**)

r 0.864 0.213 0.192 --- --- 0.151 0.194 0.327 0.234 NCFR

p 0.000(**) 0.342 0.392 --- --- 0.358 0.095 0.001 0.000(**)

r 0.044 0.263 0.313 --- 0.116 --- --- --- 0.105 NMHF

p 0.859 0.237 0.156 --- 0.541 --- --- --- 0.096

r 0.019 0.308 --- --- 0.195 0.135 0.054 --- 0.193 NMODF

p 0.939 0.163 --- --- 0.302 0.412 0.644 --- 0.002(**)

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

Table E-2. Correlations between Rate of Bug Reports (RBR) and Maintenance Process Metrics

RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
sample

r 0.106 -0.257 0.538 -0.128 0.407 -0.278 0.365 -0.028 -0.031 NCB

p 0.667 0.249 0.010(*) 0.517 0.026(*) 0.087 0.001(**) 0.774 0.620

r -0.031 0.066 0.560 --- --- -0.239 0.464 0.065 0.009 NCFR

p 0.900 0.771 0.007(**) --- --- 0.143 0.000(**) 0.502 0.888

r 0.710 -0.249 0.761 --- 0.421 --- --- --- -0.010 NMHF

p 0.001(**) 0.264 0.000(**) --- 0.020(*) --- --- --- 0.871

r 0.937 -0.341 --- --- 0.599 0.108 0.173 --- 0.051 NMODF

p 0.000(**) 0.120 --- --- 0.000(**) 0.514 0.139 --- 0.413

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

Table E-3. Correlations between ABPL*RBR and Maintenance Process Metrics

ABPL*RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
Sample

r 0.785 -0.254 0.535 -0.136 0.407 -0.232 0.379 -0.028 0.002
NCB

p 0.000(**) 0.254 0.010(*) 0.491 0.026(*) 0.155 0.001(**) 0.777 0.969

20 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

Table E-3. contd….

ABPL*RBR J Art of Illusion jEdit TVBrowser Jaxe DrJava Buddi KoLmafia Grand
Sample

r 0.642 .0663 0.563 --- --- -0.213 0.489 0.066 0.055
NCFR

p 0.003(**) 0.770 0.006(**) --- --- 0.193 0.000(**) 0.497 0.382

r 0.628 -0.248 0.764 --- 0.421 --- --- --- 0.002
NMHF

p 0.004(**) 0.266 0.000(**) --- 0.020(*) --- --- --- 0.972

r 0.103 -0.338 --- --- 0.599 0.089 0.184 --- -0.015
NMODF

p 0.675 0.124 --- --- 0.000(**) 0.595 0.114 --- 0.809

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

APPENDIX F. PAIRWISE CORRELATIONS BETWEEN THE MAIN METRICS UNDER STUDY

Table F-1. Pairwise Correlations between the Metrics Under Study at the Level of the Grand Sample

 ABPL RBR NSL NCD NDS NDVI NDP NFR NLiS

ABPL r 1.000 0.187 0.522 0.517 0.538 0.510 0.525 0.502 0.508

 p --- 0.001(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**)

RBR r 0.187 1.000 0.058 0.004 -0.005 0.014 0.078 0.089 0.054

 p 0.001 (**) --- 0.286 0.945 0.929 0.800 0.147 0.101 0.319

NSL r 0.522 0.058 1.000 0.914 0.902 0.810 0.977 0.981 0.937

 p 0.000(**) 0.286 --- 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**)

NCD r 0.517 0.004 0.914 1.000 0.992 0.879 0.884 0.879 0.919

 p 0.000(**) 0.945 0.000(**) --- 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**)

NDS r 0.538 -0.005 0.902 0.992 1.000 0.870 0.882 0.861 0.914

 p 0.000(**) 0.929 0.000(**) 0.000(**) --- 0.000(**) 0.000(**) 0.000(**) 0.000(**)

NDVI r 0.510 0.014(*) 0.810 0.879 0.870 1.000 0.772 0.823 0.906

 p 0.000(**) 0.800 0.000(**) 0.000(**) 0.000(**) --- 0.000(**) 0.000(**) 0.000(**)

NDP r 0.525 0.078 0.977 0.884 0.882 0.772 1.000 0.975 0.909

 p 0.000(**) 0.147 0.000(**) 0.000(**) 0.000(**) 0.000(**) --- 0.000(**) 0.000(**)

NFR r 0.502 0.089 0.981 0.879 0.861 0.823 0.975 1.000 0.944

 p 0.000(**) 0.101 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) --- 0.000(**)

NLiS r 0.508 0.054 0.937 0.919 0.914 0.906 0.909 0.944 1.000

 p 0.000(**) 0.319 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) 0.000(**) ---

*0.01 ≤ p ≤ 0.05; ** 0.001 ≤ p ≤ 0.01; *** p < 0.001.

APPENDIX G. RESULTS OF THE FACTOR ANALYSIS AT THE LEVEL OF THE GRAND SAMPLE
Table G-1. Results of the Factor Analysis at the Level of the Grand Sample for the Selected Metrics

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

LCHM 0.423 0.105 0.142 0.549 0.053

NSMA -0.907 0.195 0.271 -0.194 0.065

NSL -0.981 0.152 -0.023 -0.002 -0.044

NGCL -0.985 -0.112 -0.006 0.110 -0.035

NCL -0.618 0.706 0.061 -0.123 -0.171

NI -0.779 0.263 0.286 -0.179 0.385

NCD -0.892 0.236 -0.330 -0.100 0.059

NCI -0.811 0.238 -0.507 -0.047 -0.002

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 21

Table G-1. contd….

NMD -0.915 0.257 0.276 0.044 -0.100

NMI -0.826 -0.005 -0.517 0.009 0.065

NII -0.933 0.205 -0.069 0.112 0.111

NOO -0.948 0.143 0.248 -0.015 -0.111

NPP -0.577 0.036 0.003 -0.519 0.583

NRP -0.691 0.230 -0.466 0.404 0.120

NFD -0.729 0.501 0.312 0.287 -0.004

NDS -0.884 0.213 -0.338 -0.187 0.010

NDVD -0.882 -0.365 0.070 -0.243 -0.131

NDVI -0.822 -0.024 -0.495 -0.007 0.021

MDCED -0.857 -0.280 0.134 -0.347 0.012

NEDE -0.591 0.029 -0.186 -0.588 -0.322

NDDTU -0.945 -0.231 0.130 -0.104 -0.002

NDR -0.897 -0.418 0.053 0.072 -0.098

NAIV -0.866 -0.467 0.069 0.026 -0.134

NROV -0.870 -0.460 0.069 0.034 -0.129

NPCD -0.898 -0.360 -0.020 0.235 0.005

NPFA -0.960 0.129 0.151 -0.090 -0.061

NDP -0.992 0.043 0.072 -0.070 -0.008

NS -0.982 -0.146 0.004 0.102 -0.047

NIO -0.831 -0.182 0.409 0.113 0.219

NOO -0.885 -0.181 0.379 -0.060 -0.054

NFR -0.992 0.008 -0.019 0.090 -0.005

NFFR -0.991 0.016 0.065 0.108 0.015

NIS -0.895 -0.240 -0.038 0.318 0.095

NLS -0.847 -0.477 -0.015 -0.037 -0.141

NEC -0.702 0.630 0.099 0.044 -0.288

NRS -0.887 -0.157 -0.131 0.257 0.198

NCFB -0.921 -0.230 -0.059 0.267 0.081

NLiS -0.939 -0.020 -0.266 -0.022 -0.088

NDST -0.983 -0.141 0.008 0.097 -0.045

NAM -0.754 0.567 0.125 0.158 -0.214

NFP -0.879 0.341 0.121 -0.017 0.279

Table G-2. General Results of the Factor Analysis Based on the Selected Metrics at the Level of the Grand Sample

Factors Eigenvalue % Total Variance Cumulative Eigenvalue Cumulative %

1 30.479 74.334 30.479 74.339

2 3.568 8.702 34.047 83.041

3 2.193 5.348 36.240 88.389

4 1.909 4.656 38.148 93.045

5 1.099 2.680 39.247 95.725

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENTS

We thank Harry M. Sneed for providing us with the Soft
Calc tool, which was essential for this research.

22 The Open Software Engineering Journal, 2013, Volume 7 Kozlov et al.

REFERENCES
[1] IEEE, “IEEE Std. 1061-1998, Standard for a software quality met-

rics methodology, revision”, Piscataway, N.J., IEEE Standards
Dept., 1998.

[2] R. Glass, “Facts and fallacies of software engineering”, Addison-
Wesley: USA, 2003, pp. 174-177.

[3] ISO/IEC 9126-1, “Software Engineering. Product Quality. Part 1:
Quality Model”, International Organization for Standardization
(ISO), Geneva, 2001.

[4] N.E. Fenton, and M. Neil,”A critique of software defect prediction
models”, IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675-689,
1999.

[5] G.J. Pai, and J.B. Dugan, “Empirical analysis of software fault
content and fault-proneness using Bayesian methods”, IEEE Trans.
Softw. Eng., vol. 33, no. 10, pp. 675-686, 2007.

[6] G. Alkhatib, “The maintenance problem of application software: an
empirical analysis”, J. Softw. Maint. Evol. Res. Pract., vol. 4, no. 2,
pp. 83-104, 1992.

[7] J.L. Elshoff, “An analysis of some commercial PL/I programs”,
IEEE Trans. Softw. Eng., vol. SE-2, no. 2, pp. 113-120, 1976.

[8] L. Erlikh, “Leveraging legacy system dollars for E-business”
(IEEE) IT Pro, 2000, pp. 17-23, 2000.

[9] J. Martin, and C. McClure. "Guidance on Software Maintenance".
Software Maintenance: The problem and Its Solutions. Prentice-
Hall, Inc: Englewood Cliffs, New Jersey, p. 189, 1983.

[10] J. Nosek, and P. Palvia, “Software maintenance management:
changes in the last decade”, J. Softw. Maint. Evol. Res. Pract., vol.
2, no. 3, pp. 157-174, 1990.

[11] H. van Vliet, “Software Engin: Principles and Practice”, Wiley:
USA 2000.

[12] A.G. Koru, and J. Tian, “Defect handling in medium and large
open source projects”, IEEE Softw., vol. 21, no. 4, pp. 54-61, 2004.

[13] Open Office. [Online]. Available: http://www.openoffice.org [Accessed
Nov. 30, 2012].

[14] Netbeans. [Online] Available: http://www.netbeans.org [Accessed Nov.
30, 2012].

[15] D. Kozlov, J. Koskinen, J. Markkula, and M. Sakkinen, “Evaluat-
ing the impact of adaptive maintenance process on open source
software quality”, In Proceedings of the 1st International Sympo-
sium on Empirical Software Engineering (ESEM), pp. 186-195,
2007.

[16] D. Kozlov, J. Koskinen, M. Sakkinen, and J. Markkula, “Assessing
maintainability change over multiple software releases”, J. Softw
Maint. Evol. Res. Pract., vol. 20, no. 1, pp. 31-58, 2008.

[17] L.C. Briand, J. Wust, S.V. Ilkonomovski, and H. Lounis, “Investi-
gating quality factors in object-oriented design: an industrial case
study”, In Proceedings of the 21 International Conference on Soft-
ware Engineering (ICSE), pp. 345-354, 1999.

[18] S.R. Chidamber, C.F. Kemerer, “A metrics suite for object-oriented
design”, IEEE Trans. Softw. Eng., vol. SE-20, no. 6, pp. 476-493,
1994.

[19] L.C. Briand, J. Wust, and H. Lounis, “Replicated case study for
investigating quality factors in object-oriented designs”, J. Empir.
Softw. Eng., vol. 6, no. 1, pp. 11-58, 2001.

[20] R. Ferenc, I. Siket, and T. Gyimóthy, “Extracting facts from open
source software”, In Proceedings of the 20th IEEE International
Conference on Software Maintenance (ICSM), 2004, pp. 60-69.

[21] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, “Exploring the
relationships between design measures and software quality in ob-
ject-oriented systems”, J. Syst. Softw., vol. 51, no. 3, pp. 245-273,
2000.

[22] V.R. Basili, L.C. Briand, and W.L. Melo, “A validation of object-
oriented design metrics as quality indicators”, IEEE Trans. Softw.
Eng., vol. 22, no. 10, pp. 751-761, 1996.

[23] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion”, IEEE Trans. Softw. Eng., vol. 31, no. 10, pp. 897-910, 2005.

[24] P.L. Li, J. Herbsleb, and M. Shaw, “Finding predictors of field
defects for open source software systems in commonly available
data sources: a case study of Open BSD”, In Proceedings of the
11th IEEE International Symposium on Software Metrics, pp 32-
41, 2005.

[25] Y. Zhou, and H. Leung, “Empirical analysis of object-oriented
design metrics for predicting high and low severity faults”, IEEE
Trans. Softw. Eng., vol. 32, no. 10, pp. 771-789, 2006.

[26] H.M. Olague, L.H. Etzkorn, S. Gholston, and S. Quattlebaum,
“Empirical validation of three software metrics suites to predict
fault-proneness of object-oriented classes developed using highly
iterative or agile software development processes”, IEEE Trans.
Softw. Eng., vol. 33, no. 6, pp. 402-419, 2007.

[27] F. Brito e Abreu, “Metrics for object-oriented environment”, In
Proceedings of the 3rd International Conference on Software Qual-
ity (ICSQ), pp. 67-75, 1993.

[28] J. Bansiya, and C.G. Davis, “A hierarchical model for object-
oriented design quality assessment”, IEEE Trans. Softw. Eng., vol.
28, no. 1, pp. 4-17, 2002.

[29] T.M. Khoshgoftaar, and J.C. Munson, “Predicting software devel-
opment errors using software complexity metrics”, IEEE J. Select
Areas Commun, vol. 8, no. 2, pp. 253-261, 1990.

[30] B. Lennselius, “Software complexity and its impact on software
handling processes”, In Proceedings of the 6th International
Conference on Software Engineering for Telecommunication
Switching Systems (ICSETSS), pp. 148-153, 1986.

[31] W. Harrison, and C.R. Cook, “A micro/macro measure of software
complexity”, J. Syst. Softw., vol. 7, no. 3, pp. 213-219, 1987.

[32] F. Akiyama, “An Example of Software System Debugging”, In
Proceedings of the IFIP Congress, pp. 353-359, 1972.

[33] N. Fenton, and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system”, IEEE Trans. Softw. Eng.,
vol. 26, no. 8, pp. 797-814, 2000.

[34] K. El Emam, W. Melo, and J. Machado, “The prediction of faulty
classes using object-oriented design metrics”, J. Syst. Softw., vol.
56, no. 1, pp. 63-75, 2001.

[35] T.J. Ostrand, E. Weyuker, and R.M. Bell, “Predicting the location
and number of faults in large software systems”, IEEE Trans. Soft-
w. Eng., vol. 31, no. 4, pp. 340-355, 2005.

[36] M. Lehman, D. Perry, and J. Ramil, “Implications of evolution
metrics on software maintenance”, In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM), pp. 208-217,
1998.

[37] P. Vixie, “Open Sources: Voices from the Open Source Revolu-
tion”, O’Reilly & Associates: USA, pp. 91-100, 1999.

[38] E. Raymond, “Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary”, p. 30, O’Reilly:
US, 1999.

[39] T. Koponen, “Evaluation framework for open source software
maintenance”, In Proceedings of the International Conference on
Software Engineering Advances (ICSEA), paper 52, 2006.

[40] H. Lintula, T. Koponen, and V. Hotti, “Exploring the maintenance
process through the defect management in the open source projects
– four case studies”, In Proceedings of the International Confer-
ence on Software Engineering Advances (ICSEA), paper 53, 2006.

[41] T. Koponen, and V. Hotti, “Open source software maintenance
process framework”, ACM SIGSOFT Softw Eng Notes, 2005, vol.
30, no. 4, pp. 1-5, In Proceedings of the Fifth Workshop on Open
Source Software Engineering 5-WOSSE, 2005.

[42] ISO/IEC 12207: 2008, “System and Software Engin — Software
life cycle processes”, International Organization for Standardiza-
tion, Geneva (Switzerland), 2008.

[43] ISO/IEC 14764: 2006, “Software Engin — Software Life Cycle
Processes”, Maintenance, Geneva, International Organization for
Standardization, 2006.

[44] IEEE, “Guide to the Software Engineering Body of Knowledge
(SWEBOK)”, IEEE Comput Soc., 2001.

[45] A.E. Hassan, and R.C. Holt, “The top ten list: dynamic fault predic-
tion”, In Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM), pp. 263-272, 2005.

[46] D. Kozlov, “Table of metrics measurable by SoftCalc”. [online]
Available: http://users.jyu.fi/~dekozlov/research/Table_of_metrics_
Soft Calc.doc [Accessed Nov. 30, 2012].

[47] “J text editor written in Java”. [Online] Available: http://source-
forge.net/projects/armedbear-j/ [Accessed Nov. 30, 2012].

[48] “Art of Illusion”. [Online] Available: http://source-forge.net/pro-
jects/aoi/ [Accessed Nov. 30, 2012].

[49] ”J Edit programmer's text editor written in Java”. [Online] Avail-
able: http://sourceforge.net/projects/jedit/ [Accessed Nov. 30,
2012].

[50] “TV Browser Java-based TV guide”.[Online] Available:
http://sourceforge.net/projects/tvbrowser/ [Accessed Nov. 30, 2012].

[51] “Jaxe Java XML editor”. [Online] Available: http://source-
forge.net/projects/jaxe/ [Accessed Nov. 30, 2012].

Fault-Proneness of Open Source Software The Open Software Engineering Journal, 2013, Volume 7 23

[52] “DrJava”. [Online] Available: http://sourceforge.net/projects/-
drjava/ [Accessed Nov. 30, 2012].

[53] “Buddi”. [Online] Available: http://sourceforge.net/projects/buddi/
[Accessed Nov. 30, 2012].

[54] “KoLmafia”. [Online] Available: http://sourceforge.net/projects/-
kolmafia [Accessed Nov. 30, 2012].

[55] “Source Forge”. [Online] Available: http://sourceforge.net [Ac-
cessed Nov. 30, 2012].

[56] S. Anderson, and M. Felici, “Quantitative aspects of requirements
evolution”, In Proceedings of the 26th Annual International Com-
puter Software and Applications Conference (COMPSAC), pp. 27-
32, 2002.

[57] H.M. Sneed, “Analysis, measurement and evaluation of existing
legacy systems”, In Tool Demonstrations of the 8th European Con-

ference on Software Maintenance and Reengineering (CSMR)
Tampere, Finland, pp. 2-3, March 24-26, 2004.

[58] H.M. Sneed, “Estimating the costs of software maintenance tasks”,
In Proceedings of the International Conference on Software Main-
tenance (ICSM), pp 168-181, 1995.

[59] C. Ebert, and R. Dumke, Software Measurement: Establish – Ex-
tract - Evaluate – Execute, Springer: NY 2007.

[60] IEEE 1219. “IEEE Standard for Software Maintenance”, IEEE
Computer Society Press, 1998.

[61] D.S. Moore, and G.P. McCabe, Introduction to the Practice of
Statistics, W.H. Freeman: USA, 2007.

[62] B.W. Boehm, Software Engineering Economics, Prentice-Hall:
USA, 1981.

Received: August 29, 2012 Revised: September 25, 2012 Accepted: September 27, 2012

© Kozlov et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

