
Send Orders of Reprints at reprints@benthamscience.net

24 The Open Software Engineering Journal, 2013, 7, 24-37

 1874-107X/13 2013 Bentham Open

Open Access

An Empirical Study of Different Types of Changes in the Eclipse Project

Pitamber Tiwari, Wei Li, Raouf Alomainy* and Bingyang Wei

Computer Science Department, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

Abstract: This paper studied the distribution of different types of changes in the various contexts of the system and the
relationship between artifact (file and module) size and different changes. We used the change data in the open source
Eclipse Project through its decade-long evolution history. The latest release has 220 modules, 33904 files, 3780201 lines
of code, and 49853 changes (accumulatively). This study focused on two levels of software artifacts: module and file; and
four contexts of changes: all changes, error changes, non-error changes, and 19 change categories.

At the module level, we found that the power-law distribution was a common phenomenon for three contexts of changes
at both the module and file levels: it existed in all changes, in error changes, and in non-error changes. When we analyzed
the 19 change categories, the files and modules exhibited different behavior: the power-law distribution existed in all but
one category at the module level, but, about two third of the change categories did not show the power-law distribution at
the file level.

On the relationship between artifact size and changes, we found, at the module level, a few modules that had the majority
of changes accounted for the majority of the code size; however, this phenomenon disappeared when we separated the er-
ror from non-error changes. At the file level, this phenomenon did not exist at all. We did not find any correlation between
artifact size and changes at either the module or file level.

Keywords: Software change distribution, large object-oriented system, Post-release evolution.

1. INTRODUCTION

Making changes to a large object-oriented software sys-
tem is a common, difficult, and error-prone process that
many software engineers face daily. Software changes are
triggered by two types of events: to fix errors (bugs) and to
make changes for non-error reasons, such as refactoring [1].
Understanding change characteristics in software systems,
especially where they concentrate at various levels of arti-
facts, can help us find effective methods to handle changes.

1.1. Software Errors

Software error (bug) distribution has been investigated by
many studies. Basili and Perricone found that the majority of
errors were due to incorrect functionality specifications or
requirements. They also found that 62% of the changes were
due to error correction and 38% were due to modifications
[2]. Shen and colleagues discovered the inverse relationship
between size and number of errors up to the size of 500 lines
[3]. Withrow found that the error density rose with respect to
size beyond 255 lines and suggested that the testing should
focus on modules of size either less than 200 lines or greater
than 500 lines [4]. Moller and Paulish discovered that the
changes in the source code increased error rate and the per-
centage of changed code and number of errors had inverse
relationship [5]. Ohlsson and Alberg showed that 60% of the

*Address correspondence to these authors at the Computer Science Depart-
ment, University of Alabama in Huntsville, Huntsville, Alabama 35899,
USA; Tel: +1 (256) 509-1468; Fax: +1 (256) 8240-6239;
E-mail: ralomain@cs.uah.edu

errors were located in 20% of the modules [6]. A study con-
ducted by Hatton showed that the errors were concentrated in
modules with 200 to 400 lines of code (LOC) [7]. Fenton
and Ohlsson showed that errors followed “Pareto principle of
distribution” but did not find LOC as a good predictor [8].
The study conducted by Ostrand and colleagues showed
support for Pareto principle in errors and discovered LOC as
the strongest predictor [9]. Andersson and Runeson showed
that errors followed “Pareto principle of fault distribution”
and size metrics were good predictor of pre-release errors in
modules [10]. Zhang discovered that Weibull probability
distribution function described the error distribution more
precisely [11]. El Emam and colleagues studied a large C++
system and found the confounding effect of class size on the
prediction of software faults, and suggested that class size
was a major predictor of class faults [12].

These studies suggested that Pareto principle was a
common phenomenon for software errors, whereas the rela-
tionship of artifact (class, file, or module) size and errors was
less clear. Our research objective is to verify the results from
the previous error distribution studies by using the data from
a large open source system: Eclipse, in its decade long evo-
lution history.
1.2. Error Categories

Although there have been many studies on software er-
rors, few have analyzed software errors in detailed catego-
ries. The Institute of Electrical and Electronics Engineers
(IEEE) published the Standard Classification for Software
Anomalies [13] that introduced error categories. Other error

An Empirical Study of Different Types of Changes in the Eclipse Project The Open Software Engineering Journal, 2013, Volume 7 25

classifications were introduced by Li and colleague [14], Lo
and colleagues [15], and Pan and colleagues [16] .

Previous work has focused on error vs. no error. Our re-
search objective is to classify errors into more detailed cate-
gories and verify the research results from previous studies.
Knowing where each type of error concentrates will help us
develop more focused methods that avoid introducing them
or find a certain type of errors in software. For example, if
we know that the memory-related errors: memory leaks,
dangling pointers, and array-out-of-bounds, are concentrated
in a small set of modules that share certain characteristics,
we can develop tools that monitor the module characteristics
and alert programmers to watch out for memory-related er-
rors when these modules are being developed or maintained,
thus reducing memory errors in code. This knowledge also
allows us to be more precise about where and how to find
certain types of errors. For example, we can increase the
testing effort to hunt for memory errors when those modules
are identified and tested.

1.3. Non-Error Changes

Often, software engineers make changes to software sys-
tems for non-error reasons (such as refactoring). The studies
on changes that were not caused by fixing errors were scarce.
Understanding where non-error changes concentrate is not
less important to that of errors, because changes, regardless
of the triggers, are prone to errors and affect software qual-
ity. Soares and colleagues in their study [17] presented a
technique to identify issues, mainly on semantics, which
resulted from non-error refactoring effort. Görg and
Weißgerber showed how incomplete refactoring can cause
long standing bugs [18].

1.4. Is Software Size an Effective Predictor of Error Rate

Many previous studies investigated whether the size of a
module is an effective predictor of the module’s error rate [5,
9, 10, 12, 19, 20]. The majority of these studies found the
two correlated. Our research goal in this aspect is to investi-
gate if a correlation between the two exists in the large open
source system’s evolution history.

1.5. The Scope of this Research Study

In this study, we have investigated the power-law distri-
bution (Pareto principle) in many contexts: at module level, a
file level, for all changes, for error changes, for non-error
changes, and for each of the 19 change categories. We also
examined the relationship between changes and artifact size
in the same contexts. We studied 220 modules, 33,904 files,
and a total of 3,780,201 lines of code (LOC) - the total num-
ber of lines in the source code excluding the comments and
blank spaces - and 5,908,044 physical lines - the total lines
in the source code including the blank lines, single braces or
parentheses, - and a total of 49,853 unique change identifiers
in the Eclipse Project’s evolution history that spanned more
than a decade.

1.6. Research Objectives

The objective of this research is twofold: to study the
change distribution and to investigate the relationship be-
tween changes and artifact size. We are interested in verify-
ing the Pareto principle in change distribution, that is, a

small percentage of artifacts (modules and files) contain the
majority of changes (all changes, error changes, non-error
changes, and each category of changes). The following are
the research hypotheses:

Hypothesis #1: Changes have the power-law distribu-
tion at the module and file level.

Hypothesis #2: Both error changes and non-error
changes follow the power-law distribution.

Hypothesis #3: Changes in each classification category
follow the power-law distribution.

Hypothesis #4: The artifact size is correlated with
changes in the artifact.

Hypothesis #5: Modules and files with majority of
changes contain most of the code size.

2. MATERIALS AND METHODOLOGY
Eclipse is a large composite open source software system

that is made of many subsystems, primarily written in the
Java programming language. Each subsystem is made of
several projects. Out of several Eclipse subsystems, we fo-
cused on the Eclipse Project subsystem. Eclipse Project con-
sists of five projects: e4, Eclipse Project Incubator (EPI),
Java Development Tool (JDT), Plugin Development Envi-
ronment (PDE), and Eclipse Platform (EP). JDT, PDE, and
EP are further divided into subprojects. Each subproject
comprises of modules and module alias. A module is made
of source files. A module alias is a virtual module that is
made of source files that come from other modules. For ex-
ample, Module A has two source files: A1.java and A2.java,
and Module B has two source files: B1.java and B2.java. A
module alias MA may be made of A1.java and B2.java.
Every project or sub-project under Eclipse Project is a com-
bination of several modules and/or module aliases. We only
analyzed modules in this study because module alias did not
contribute any new files to the system.
2.1. The CVS and Bugzilla Repositories

Eclipse uses Concurrent Versioning System (CVS) re-
pository to keep track of changes in project files [21]. CVS is
a version control system that maintains history of the files
throughout their development and evolution.

We created a crawler tool to extract information from the
Java files located in the Eclipse CVS repository. To classify
each error change to a specific error category, we tried the
change description field from the CVS repository first. The
change descriptions (known as bug descriptions in CVS and
Bugzilla) extracted from the CVS repository were the titles of
the changes. They did not have enough information to de-
scribe a change completely for classification purpose. On sev-
eral runs, we found the change descriptions to be misleading
and inappropriate, sometimes even empty. To mitigate the
problem of insufficient information in the CVS repository, we
went to Bugzilla, another change repository for the Eclipse
system, which had more detailed change description for each
change identifier (bugID) that we found in the CVS reposi-
tory. The crawler tool extracted the module name, file name,
revision, bug number (bugID), and bug description from the
CVS repository and then used the bugID to extract the detailed
description of the changes from the Bugzilla.

26 The Open Software Engineering Journal, 2013, Volume 7 Tiwari et al.

2.2. Change Categories

We classified the changes into 19 specific categories and
studied the change distribution in each category. The change
categories that we adopted came from the combination and
customization of the categories suggested and used by Li and
colleagues [14], Pan and colleagues [17], Lo and colleagues
[15], and IEEE Standard Classification for Software Anoma-
lies [13]. Table 1 summarizes the change categories that we
used in our study.
Table 1. List of Change Categories

Bug Category  Description 

Adaptive Maintenance A type of maintenance performed
to change software so that it will work in an
altered environment, such as when
an operating system, hardware platform,
compiler, software library or database
structure changes, compatibility changes, etc.

Enhancement Actions performed to add a new capability or
improve the existing capability to software;
Bugs that cause failure to meet the perform-
ance requirements of the product.
Examples:
Functions correctly but runs/respond slowly.
Takes longer time to perform a task.
Addition of a new feature.

Not Bugs Test cases, simple updates.
Example:
File name update, copy right update, and test
case addition.

Refactoring Changes of source code without modifying
the functional behavior to improve some
nonfunctional attributes, such as readability,
reduced complexity, or maintainability, of the
software.

Coding Bugs in the decision logic, branching, se-
quencing, computational logic, and typos in
programming.
Examples:
Wrong concept employed in coding.
Navigation not coded correctly in source code.
The control flow is incorrectly implemented.
Incorrect processing and evaluation of expres-
sion and equations.

Concurrency Bugs that happen in multithreading or multi-
process environment, including data race,
deadlock and synchronization.

Data Bugs in definition, structure, mapping, access,
scope, use, or initialization.
Examples:
Incorrect object type or dimension.
Incorrect initial default values.
Incorrect duplication or failure to create a
duplicate object.
Incorrect access to object.
Use of incorrect variable names.

Documentation Bugs in the specifications and Java docu-
ments.
Bugs in program help.

Functionality Function is incorrect, ambiguous, inconsis-
tent, missing, incomplete, that do not need to
be present, or do not behave as expected.
Bugs related to core functionality implemen-
tation. Functions that do not meet the specifi-
cation requirement or the standards with the
software version, or coding conventions,
representation. Any other semantic bug that
does not meet the design requirements.
Examples:
Unnecessary features.
Duplicate features.
Misplaced features.
Missing Validation.

Generic Unknown bugs.
Bugs related to security.
Bugs related to scalability.
Bugs with missing bug description.

GUI Bugs related to graphical user interface and
CSS bugs.
Examples:
Incorrect alignment of components.
Incorrect size and shape of interface.
Incorrect layout of reports.
Incorrect coloring.

Handling
Event/Exception

Missing event handling or improper event
handling.
Do not have proper exception handling.
Anomalies caused by exception.
Examples:
Null pointer exception.
Class cast exception.
Missing key press or mouse movement han-
dling.
Incorrect mouse click, hover, and double click
handling.
Incorrect action selection.
Timer expiration.

I/O, Serialization Bugs related to I/O handling, import and
export of files, serialization of objects.
I/O–related to read from and write to files,
memories, sockets.

Internationalization:
Localization with
Resource Bundles

Bugs due to adaption to various languages and
regions without engineering changes. Bugs
due to adaption of internationalized software
for a specific region or language.

Memory Bugs related to memory.
Examples:
Buffer overflow.
Memory access violations.
Memory leak.
Dangling pointer.
Null pointer dereference
Double free.

Message Defects in message and logs, inadequate,
incorrect, misleading, or missing bug mes-
sages in source code or bug logs.

Regression/rollback Bugs due to changes in some function or
code, change rollback, and changes not made

An Empirical Study of Different Types of Changes in the Eclipse Project The Open Software Engineering Journal, 2013, Volume 7 27

properly.
Examples:
Incorrect merging of codes.
You commit a fix, but it did not work so the
changes have to be rolled back.

Third Party Bugs due to third party software.

The top four categories are non-error changes, whereas

the remaining categories are all error categories.

2.3. Classification and Conflict Resolution

Change categorization or classification is a difficult task.
Sometimes, a change could be classified into several differ-
ent categories. There seems to be no universally correct way
to categorize changes to a particular change category.
Change categories, literally, can be infinite [22].

We tried the automated text (change) classification tech-
niques of the Support Vector Machine [20] and the Naïve
Bayes [19] and the tool provided by Dr. Paul Wofgang [23],
and found that the classification accuracy was not accept-
able. Therefore, we performed the change classification
manually. Based on the history information, change descrip-
tion, comments, reviews from developers, each change
(bugID) was placed in only one category. We tried to resolve
the conflicts based on the conscience of the comments in
Bugzilla. When a bug could not be placed in a known cate-
gory, it was placed in the Generic category. When a non-
error change could not be placed in any of the three clearly
defined non-error categories, it was placed in the Not Bugs
category.

Out of the 220 modules that we examined, 52 modules
were change free. We classified the changes in 140 modules,
which accounted for 83.3% of the modules that had changes.

3. ARTIFACT SIZE AND CHANGES

To analyze the relationship between artifact size and
changes, we used Resource Standard Metrics (RSM), a
source code metrics and quality analysis tool, to get the size
metrics. For our study, we used the tool’s default source
code size metrics for modules and files. The source code size
metrics available from the tool are the Lines of Code (LOC),
Effective Lines of Code (eLOC), Logical Lines of Code
(lLOC), Comment, and Lines.

LOC is the total number of lines in the source code ex-
cluding the comments and blank lines.

eLOC gives the count of the total number of source code
lines that are not comments, blank lines, standalone paren-
thesis or braces. The eLOC metric is a result of subtracting
total number of single braces or parenthesis from the LOC
metric. Many programmers put single brace or parenthesis
on a new line to make source code clean and readable. This
programming style leads to the increase of the LOC metric,
but not eLOC.

lLOC represents the total number of lines in the source
code that are terminated by a semicolon. The ‘for’ loop con-
trol statement contains two semicolon, however it accounts
for only one in the calculation of the lLOC metric.

Comment represents the total lines of comments in the
source code. This metric is a general measure of the effort by
the developer to make the program more understandable.

Lines is the total lines in the source code including the
blank lines, single braces, or parenthesis. It is sometimes
called Physical Lines of Code.

3.1. Metric Calculation

We use an example, adapted from the documentation of
RSM, to show how the RSM tool calculated the metrics. In
Table 2, the presence of check mark () indicates the par-
ticular line in the sample source code is included in the count
of the respective metrics. The table indicates that the tool
considered four lines of source code for the calculation of
LOC, two lines of source code for the calculation of eLOC,
one line of source code for the calculation of lLOC, two lines
of source code for the calculation of Comment, and six lines
of source code for the calculation of Lines.

4. RESEARCH DESIGN

To test the hypotheses, we collected the change data from
220 modules that contained 33,904 files from the Eclipse
Project. The number of changes ranged from 0 to 6365 per
module and from 0 to 202 per file. The total number of
changes in modules and files was 49,853. Modules and files
had sizes ranging from 20 LOC to 405,951 LOC per module
and 1 to 48,596 LOC per file.

The power-law distribution [24] occurs in many situa-
tions of software development and evolution. The study con-
ducted by Potanin and colleagues [25] illustrated the power-
law distribution in the incoming and outgoing references in
object graphs. Wheeldon and Counsell [26] confirmed the
power-law distribution in object-oriented class relationships.
Hatton [27] illustrated the power-law distribution in the equi-

Table 2. An Example Showing the Process Used by RSM to Determine the Size Metrics

Source Code LOC eLOC lLOC Comments Lines

if(score>90) //if statement test condition

{

//assign the grade

grade = ‘A’;

}

28 The Open Software Engineering Journal, 2013, Volume 7 Tiwari et al.

librium component size of a system. These studies suggested
that the power-law distribution was a common phenomenon
in software systems.

Relatively small numbers of modules or files are believed
to have most of the bugs in software systems [5, 7, 8, 10].
This idea can be summed up by the Pareto Principle [28],
also known as the 20-80 rule. The power-law and Weibull
distribution are commonly used distributions to confirm the
Pareto Principle.

We used the Alberg Diagram, as suggested by Fenton
and Ohlsson [8], and used by Timea and Barbara [29] and
Anderson and Runeson [10], for testing Hypothesis #1. We
sorted the modules and files in decreasing order with respect
to the number of changes. We plotted the accumulative per-
centage of changes on the y-axis of the Alberg Diagram and
the accumulative percentage of the modules or files on the x-
axis. The Alberg Diagram provides the visual identification
of a possible power-law distribution. To be certain, we used
the function built in Matlab [30] as described by Aaron and
colleagues [31], to test the power-law distribution at the
module and file level.

To test Hypothesis #4, we calculated the Pearson correla-
tion coefficient [24] between the size metrics and the
changes at the module and file level.

To test Hypothesis #5, we computed and analyzed the
sizes of modules and files that were responsible for a large
percentage (80% for example) of the changes. We sorted the
modules and files in decreasing order relative to the number
of changes, and then plotted the accumulative percentage of
changes and the LOC metric on the y-axis with respect to the
accumulative percentage of modules or files on the x-axis to
see if the two curves were close.

5. DATA ANALYSIS RESULTS

In this section, we present the results of the hypothesis
testing. In testing Hypothesis #1, we show both the visual
plots and the statistical tests to illustrate how we analyzed
the data. In subsequent hypothesis tests, we only show the
summary of the statistical tests to save the space.

Hypothesis #1: Changes have the power-LAW distribu-
tion at the module and file level.

We collected 49,853 bugIDs (the unique identifiers for
the changes) that affected 220 modules in the Eclipse Pro-
ject. The modules were sorted in descending order with re-
spect to the number of changes. Table 3 summarizes the dis-
tribution data for the modules.

5.1. The Alberg Diagram for Modules

Fig. (1) shows the Alberg Diagram for the distribution
data in Table 3. The accumulative percentage of changes is
on the y-axis and the accumulative percentage of modules is
on the x-axis.

At the module level, 20% of the modules were responsi-
ble for about 92% of the changes, and 76.36% of the mod-
ules were responsible for almost100% of the changes.
Roughly a quarter of the modules did not report any changes.
Fig. (1) shows the existence of the Pareto principle and the
possibility of the power-law distribution.

5.2. Power-law Distribution for Modules Using the Statis-
tical Tool

Aaron and colleagues provided several Matlab functions
to test the power-law distribution [30]. We used the plfit(x)
function, which estimated the lower cutoff value xmin and α

Table 3. Distribution of Change Percentage Over Module Percentage

of Modules % of Modules # of Changes % of Changes

11 5 30505 61.19

22 10 40275 80.79

33 15 43997 88.25

44 20 45838 91.95

55 25 47138 94.55

66 30 47949 96.18

77 35 48572 97.43

88 40 48975 98.24

99 45 49268 98.83

110 50 49475 99.24

121 55 49626 99.54

132 60 49746 99.79

143 65 49806 99.91

154 70 49835 99.96

165 75 49850 99.99

168 76 49853 100.00

An Empirical Study of Different Types of Changes in the Eclipse Project The Open Software Engineering Journal, 2013, Volume 7 29

(alpha) by implementing the maximum likelihood estimator
and the goodness-of-fit. This function used the number of
changes (x), given in Table 3, as input. The calculated lower
cutoff value (by the function) xmin was 53. To visualize the
fitted distribution, we used the plplot(x, xmin, alpha) func-
tion, where x is the number of changes per module and xmin
and α are the values computed by the plfit function. This
function plotted the data and the fitted power-law distribu-
tion in log axes in Fig. (2), where the dashed line is the
power-law distribution and the circled line is the module
data. Fig. (2) shows that most of the module data fell on the
line given by the power-law distribution.

We used the function plpva(x, xmin) that took the number
of changes in modules (x) and lower cutoff value xmin to
calculate the p-value for the Kolmogorov-Smirnov test [24].
This function estimated the p-value over many repetitions.
The default number of repetitions was 1000, which was the

number that we used. The p-value computation was a slow
process. In our case, it took hours to compute one p-value.
The time was dependent on the number of samples and the
value of each sample. The p-value, for 1000 repetitions, com-
puted by the function for the number of changes in modules
was 0.049. We used the threshold value of 0.05 suggested by
Aaron and colleagues [30]. If the computed p-value is greater
or equal to 0.05, the distribution follows the power law; oth-
erwise, it does not follow. The p-value 0.049 was close
enough to 0.05, so we treated it as being equal to 0.05 and
accepted the Hypothesis #1 for the modules and concluded
that the total changes (error and non-error changes together)
followed the power-law distribution at the module level.

The p-value that we used thereafter is the p-value sug-
gested by Aaron and colleagues [30] and the tools imple-
menting their work. This p-value is different from the p-
value commonly used to reject null form of a hypothesis.

Fig. (1). Percentage of modules versus percentage of changes.

Fig. (2). Plot of the number of changes per module and power-law distribution for x greater than or equal to xmin.

% of Modules

%
 o

f C
ha

ng
es

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

104103102101100
10-3

10-2

10-1

100

30 The Open Software Engineering Journal, 2013, Volume 7 Tiwari et al.

5.3. The Alberg Diagram for Files

Table 4 summarizes the data for files. We did the same
tests for files as we did for modules.

Fig. (3) shows the Alberg Diagram for the distribution of
changes at the file level. At the file level, 20% of the files
were responsible for more than 90% of the changes. Ap-
proximately 32% of the files had 100% of the changes; that
is, about two-third of the files did not report any changes.

5.4. Power-Law Distribution for Files Using the Statisti-
cal Tool

Fig. (4) shows the power-distribution plot for the file
data. Visually, we can see that the file data followed the
power-law distribution line very closely. The calculated p-
value was 0.106, which was greater than the threshold value
of 0.05. Therefore, we accepted Hypothesis #1 for files and
concluded that the total changes at the file level followed the
power-law distribution.

Table 4. Distribution of Changes in Files

of Files % of Files # of Changes % of Changes

1696 5.00 30149 60.48

3391 10.00 38443 77.11

3871 11.41 39883 80.00

5086 15.00 42911 86.08

6781 20.00 45820 91.91

8476 25.00 47515 95.31

10172 30.00 49211 98.71

10814 31.90 49853 100.00

Fig. (3). Percentage of files versus percentage of changes.

Fig. (4). Plot of number of changes per file and the power-law distribution for x greater than or equal to xmin.

% of Files

%
 o

f C
ha

ng
es

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

103102
X

Pr
(X

 >
x)

10100
10-5

10-4

10-3

10-2

10-1

100

An Empirical Study of Different Types of Changes in the Eclipse Project The Open Software Engineering Journal, 2013, Volume 7 31

Since the changes at the module and file level followed
the power-law distribution, we accepted the Hypothesis #1.

Hypothesis #2: Both error changes and non-error
changes follow the power-law distribution.

To study the change distribution in each change category,
we had to classify the changes into different categories. We
tried an automated classification of the changes using data
mining tools and the change descriptions that we collected
from the CVS and Bugzilla repositories. Despite various
attempts and different techniques, we could not get more
than 65% accuracy of the automated classification. To ensure
the quality of the classification and the confidence in the
research results, we classified the changes manually. Out of
the 49853 changes, we classified 19419 (about 40%) of them
that affected 83.3% of the modules into 19 change catego-
ries. The manual classification was very time consuming, but
yielded the most accurate classification possible. The
changes that were classified were randomly chosen. Al-
though we did not classify all the changes, we believe that
enough changes were classified to give us an accurate ac-

count of the distribution. Of the 19 change categories, we
merged all the non-error categories into one group and all the
error categories into another. There were 9237 non-error
changes and 10,182 error changes in modules, or 47.57% of
the changes were non-error changes and 52.43% of the
changes were error changes.

Table 5 summarizes the test results for the power-law
distribution at the module and file level using the two
groups. All p-values were greater than the threshold 0.05;
therefore, we accepted Hypothesis #2 and concluded that
error and non-error changes followed the power-law distribu-
tion at the module and file level.

Hypothesis #3: Changes follow the power-law distribu-
tion in each classification category.

Table 6 summarizes the p-values calculated for each
change category at the module level; Table 7 is for files. The
Matlab functions did not report the p-value for the Interna-
tionalization and Third Party categories, because there were
less than 50 changes (50 was used as the cutoff value by the
functions) in the two categories.

Table 5. The p-Values for the Error and Non-Error Changes

p-value Error Changes Non-Error Changes

Modules 0.56 0.99

Files 0.11 0.45

Table 6. Distribution of Changes in Each Category at the Module Level

Category P value X min. # of Modules Affected Total Changes

Adaptive 0.032 5 50 474

Cleanup 0.738 2 43 553

Coding 0.312 13 59 667

Concurrency 0.925 5 32 542

Data 0.270 2 44 583

Doc 0.585 8 32 239

Enhancement 0.146 12 93 5459

Functionality 0.052 14 95 3236

Generic 0.176 5 86 1313

Gui 0.116 1 28 443

Handling 0.492 8 69 1285

I/O 0.167 8 3 255

Internationalization n/a n/a 31 10

Memory 0.254 6 28 254

Messaging 0.525 4 46 520

Not bug 0.788 20 81 1553

Refactoring 0.882 7 66 1751

Regression 0.409 2 40 272

Third Party n/a n/a 6 10

32 The Open Software Engineering Journal, 2013, Volume 7 Tiwari et al.

At the module level, all but one, Adaptive, categories had
the p-value greater than 0.05. Therefore, we concluded that
most but not all change categories followed the power-law
distribution at the module level.

At the file level, close to two-third of the categories had
the p-value less than 0.05; therefore, we concluded that most
change categories did not follow the power-law distribution
at the file level.

For Hypothesis #3, we obtained the mixed results: the
modules and files exhibited different behaviors when
changes were examined in each category. A detailed discus-
sion on this difference is presented in the Discussion of the
Findings section.

Hypothesis #4: The artifact size is correlated with the
changes in the artifact.

Table 8 shows the Spearman correlation coefficient val-
ues between the LOC, eLOC, lLOC, Comment, and Lines
metrics and the number of changes in the modules and files.
These coefficients were very low and not statistically signifi-
cant. Therefore, we rejected Hypothesis #4 and concluded
that there was no correlation between artifact size and the
changes.

Hypothesis #5: Modules and files containing majority
of changes contain most of the code size (LOC).

5.5. LOC for Modules

In order to test this hypothesis, we calculated the LOC
for each module using the RSM tool. There were 3,780,201
LOC across 220 modules. Table 9 summarizes the LOC data
for the modules.

Table 7. Distribution of Changes in Each Category at the File Level

Category P Value X min. # of Files Affected Total Changes

Adaptive 0.019 1 343 474

Cleanup 0.044 1 404 553

Coding 0.000 1 431 667

Concurrency 0.028 1 283 542

Data 0.413 2 352 583

Doc 0.489 1 174 239

Enhancement 0.000 1 2481 5459

Functionality 0.608 4 1382 3236

Generic 0.634 3 815 1313

Gui 0.029 1 263 443

Handling 0.601 3 692 1285

I/O 0.000 1 164 255

Internationalization n/a n/a 10 10

Memory 0.023 1 173 254

Messaging 0.324 1 322 520

Not bug 0.000 1 1058 1553

Refactoring 0.326 3 952 1751

Regression 0.007 1 200 272

Third Party n/a n/a 9 10

Table 8. Spearman Correlation Coefficient Values for Modules and Files

Metrics Modules Files

LOC 0.63 0.36

eLOC 0.63 0.37

lLOC 0.63 0.38

Comment 0.65 0.42

Line 0.64 0.42

An Empirical Study of Different Types of Changes in the Eclipse Project The Open Software Engineering Journal, 2013, Volume 7 33

Table 9. Distribution of Accumulative Percentage of Changes and LOC for the Modules

of Modules % of Modules # of Changes % of Changes LOC % of LOC

11 5 30505 61.19 955419 25.27

22 10 40275 80.79 1970302 52.12

33 15 43997 88.25 2385225 63.10

44 20 45838 91.95 2569486 67.97

55 25 47138 94.55 3040524 80.43

66 30 47949 96.18 3135854 82.95

77 35 48572 97.43 3135931 85.00

88 40 48975 98.24 3136019 86.77

99 45 49268 98.83 3136118 88.14

110 50 49475 99.24 3136228 89.56

121 55 49626 99.54 3136349 90.50

132 60 49746 99.79 3136481 91.48

143 65 49806 99.91 3136624 93.44

154 70 49835 99.96 3136778 94.58

165 75 49850 99.99 3136943 95.32

168 76.36 49853 100.00 3137111 95.33

Fig. (5). Accumulative percentage of changes and LOC versus the accumulative percentage of modules.

Table 10. Distribution of Accumulative Percentage of Error Changes and LOC for the Modules

of Modules % of Modules # of Error Changes % of Error Changes LOC % of LOC

10 5.20 6677 65.58 879895 38.51

20 10.40 8073 79.29 1067303 46.72

30 15.60 8913 87.54 1465085 64.13

40 20.80 9417 92.49 1633979 71.52

50 26.00 9649 94.77 1701178 74.46

60 31.20 9818 96.43 1740594 76.19

70 35.88 9928 97.51 1788810 78.30

80 41.60 10036 98.57 1885703 82.54

90 46.80 10098 99.18 1914601 83.80

% of Modules

Cumulative % of LOC

Cumulative % of Changes

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

34 The Open Software Engineering Journal, 2013, Volume 7 Tiwari et al.

Table 10. contd…

of Modules % of Modules # of Error Changes % of Error Changes LOC % of LOC

100 52.00 10136 99.55 1996082 87.37

110 57.20 10162 99.80 2029362 88.82

120 62.40 10173 99.91 2085500 91.28

129 67.08 10182 100.00 2106066 92.18

Table 11. Distribution of Accumulative Percentage of Non-Error Changes and LOC for the Modules

of Modules % of Modules #of Non-Error Changes % of Non-Error Changes LOC % of LOC

10 5.20 6145 66.53 597260 26.14

20 10.40 7174 77.67 688207 30.12

30 15.60 7820 84.66 1020145 44.65

40 20.80 8286 89.70 1113032 48.72

50 26.00 8605 93.16 1352786 59.21

60 31.20 8811 95.39 1434835 62.80

70 36.40 8963 97.03 1460835 63.94

80 41.60 9068 98.17 1520795 66.56

90 46.80 9144 98.99 1895540 82.97

100 52.00 9198 99.58 1942151 85.01

110 57.20 9225 99.87 1968230 86.15

120 62.40 9235 99.98 2025147 88.64

122 63.44 9237 100.00 2026774 88.71

Fig. (6). Cumulative percentage of error changes and LOC versus the accumulative percentage of modules.

Fig. (7). Cumulative percentage of non-error changes and LOC versus the accumulative percentage of modules.

% of Modules

100%

80%

60%

40%

20%

0%
Cumulative % of LOC
Cumulative % of Error Changes

5% 10
%

16
%

26
%

36
%

47
%

57
%

62
%

68
%

73
%

78
%

83
%

88
%

94
%

99
%

52
%

42
%

31
%

21
%

100%

80%

60%

40%

20%

0%

Cumulative % of LOC
Cumulative % of Non-Error Changes

% of Modules

5% 10
%

16
%

26
%

36
%

47
%

57
%

62
%

68
%

73
%

78
%

83
%

88
%

94
%

99
%

52
%

42
%

31
%

21
%

An Empirical Study of Different Types of Changes in the Eclipse Project The Open Software Engineering Journal, 2013, Volume 7 35

Table 12. Distribution of Accumulative Percentage of Changes and LOC in Files

of Files % of Files # of Changes % of Changes LOC % of LOC

1696 5.00 30149 60.48 649563 17.18

3391 10.00 38443 77.11 937014 24.79

3871 11.42 39883 80.00 1000427 26.46

5086 15.00 42911 86.08 1216662 32.19

6781 20.00 45820 91.91 1411207 37.33

8476 25.00 47515 95.31 1538897 40.71

10172 30.00 49211 98.71 1736287 45.93

10814 31.90 49853 100.00 1796720 47.53

Fig. (8). Accumulative percentage of changes and LOC versus the accumulative percentage of files.

We sorted the modules in the descending order with re-
spect to the number of changes. Fig. (5) shows the plot with
the accumulative percentage of changes and LOC on the y-
axis with respect to the accumulative percentage of modules
on the x-axis. Visually, we see that the two curves were
fairly close and their trends were similar. Therefore, we ac-
cepted Hypothesis #5 for modules.

When changes were examined in two groups: non-error
changes and error changes, the phenomenon that we ob-
served for total changes disappeared. Table 10 and 11 sum-
marize the module LOC data for the error changes and non-
error changes. Fig. (6 and 7) are the plots of the data in Table
10 and 11. In both Fig. (6 and 7), the distance between the
two curves was big and the trends between them were not
similar. For error changes and non-error changes, we ob-
served different behavior from that of total changes in terms
of the accumulative percentage of modules and accumulative
percentage of LOC with respect to the accumulative percent-
age of the changes.

5.6. LOC for Files

Table 12 summarizes the LOC data for files. We sorted
the files and LOC for the files in the descending order with
respect to the number of changes. Fig. (6) plotted the accu-
mulative percentage of changes and LOC on the y-axis with
respect to the accumulative percentage of files on the x-axis.
We plotted the graph for 10,814 files (about 32% of the to-
tal), because these files contained 100% of the changes.

We see in Fig. (8) that the two curves were not close and
the trends were not similar. The gap between the blue and
red lines was too big to accept Hypothesis #5 at the file
level.

For Hypothesis #5, we had the mixed results: At the
module level, we accepted it only for total changes, not for
error and non-error changes. At the file level, we rejected it
at the total change level. Once again, we noticed the different
behavior between modules and files for the total changes.
More discussion on the mixed results is presented in the Dis-
cussion of the Findings section.

The conclusion on modules for the total changes seems to
contradict the conclusion from that of Hypothesis #4 test. A
more detailed discussion on this issue is in the Discussion of
the Findings section.

6. DISCUSSION AND CONCLUSION

Finding the power-law distribution, also known as the
Pareto principle, as a common phenomenon in the change
history of the large object-oriented system in its post-release
evolution phase was not surprising. What was unexpected is
that the power-law distribution was sporadic at the file level,
in contrast to the finding at the module level. This finding by
and large agrees with previous research results from [8-10].

Another unexpected finding was the difference between
module and file in the relationship between size and the total

10%

0%
0% 5% 10% 15% 20% 25% 30%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cumulative % of LOC
Cumulative % of Changes

% of Files

36 The Open Software Engineering Journal, 2013, Volume 7 Tiwari et al.

changes. We found that the few modules that had the major-
ity of changes (> 80%) contained the majority of code size
(>70%). However, the same cannot be said for the files.

These expected and unexpected findings suggest that in
large object-oriented systems that are in their post-release
evolution phase, the change behavior of the software arti-
facts is different for modules and files, and is likely to be
more predictable at the module level than at the file level.

We found no correlation between the artifact size and
changes. This finding goes against the majority opinion that
the two are correlated [5, 9, 10, 12, 19, 20]. On the surface, it
seems to contradict our own finding that modules, which had
the most code size contained the majority of changes. For
correlation to exist between two groups of data they must be
in synchronization with their increasing and decreasing
trends, that is, when one group goes up (or down) in value,
the other group must follow suit. This trend apparently did
not exist in the data that we analyzed at either the module or
file level. However, if we ignore the synchronization aspect
of the trend, we did find that, at the module level, the total
changes concentrated in a few modules that had the most
code size. This finding suggests that the evolutionary
changes in large object-oriented systems may not be sensi-
tive to correlation.

Emam and colleagues found the confounding factor of
class size in using metrics to predict various factors in soft-
ware systems [12]. Since most Java files that we studied con-
tained only one class, we considered the file and class to be
the same artifact. Our findings showed mixed results. On one
hand, at the module level, the total changes concentrated in a
few modules that made up the bulk of the system size, al-
though correlation between the two did not exist. On the
other hand, the same cannot be said for error changes or non-
error changes at the module level; and no such phenomenon
was observed for files for any kind of changes. The practical
implication of our research findings is that the artifact size
alone will unlikely to be an effective predictor for change-
prone artifacts for files/classes.

We want to emphasize that all the suggestions and con-
clusions from our research apply to large object-oriented
systems that are in their post-release evolution phase. Large
systems that are in their development phase may exhibit dif-
ferent patterns in changes and in the relationship between
artifact size and changes.

We have analyzed the maintenance change history of the
Eclipse Project that consists of 220 modules (Java packages),
33904 files, 3780201 lines of code, and 49853 changes. We
investigated two levels of software artifacts: module and file.
At the module level, we found that the power-law distribu-
tion was a common phenomenon in total changes, error
changes, non-error changes, and for all but one change cate-
gories. At the file level, the power-law distribution existed in
total changes, error changes, non-error changes; however,
the majority of the change categories (about two third) did
not show power-law distribution.

For the relationship between artifact size and changes, we
found that at the module level, a few modules that had the
majority of the total changes accounted for the majority of
the code size; however, this phenomenon did not exist for

error changes and non-error changes. At the file level, the
few files that accounted for the majority of total changes did
not account for the majority of code size. We did not find
any correlation between artifact size and any kind of changes
at either the module or file level. Our findings cast doubt that
artifact size alone can predict the change probability for in-
dividual files and modules.

Our research findings suggest that in large object-
oriented systems, change-proneness prediction will likely be
effective at module level for large object-oriented systems
that are in their post-release evolution phase.

7. VALIDITY THREATS

There are some limitations in our research. We summa-
rize these limitations as the internal and external threats.

Internal Threats: We collected the change data from the
Eclipse Project’s public repositories: CVS and Bugzilla. Any
changes that were not logged in the two sources were not
considered in the study. We make no claim about the accu-
racy of the data logged in these two sources. The metrics
data were collected by using RSM–a commercial metrics
tool, - We do not make any claims about the accuracy of the
tool, but we believe that the tool collected the data consis-
tently.

The manual classification process is subjective. We clas-
sified the changes into 19 categories by using our judgment.
In the case where a change might be placed in multiple cate-
gories, we used our best judgment to place the change in the
most suitable category.

External Threats: The Eclipse Project is a mature indus-
trial software tool that has been in the post-release evolution
process for more than a decade. The conclusions from this
research are applicable to similar systems: large object-
oriented systems that have been released and are in their
post-release evolution phase. We do not suggest generalizing
our research results to systems that are under development,
because we believe that systems under development exhibit
different change patterns and different relationship between
changes and module/file.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENT

Declared none.

REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refac-

toring: improving the design of existing code, Addison Wesley:
USA, 1999.

[2] V.R. Basili, and B.T. Perricone, “Softw Errors and Complexity: An
Empirical Investigation,” Commun. ACM, vol. 27, No. 1, pp. 42-52,
1984.

[3] V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, “Identlfylng
error-prone software: an empirical study,” IEEE Trans. Softw.,
Eng., pp. 317-324, 1985.

[4] C. Withrow, “Bug density and size in ada software,” IEEE Softw.,
vol. 7,1, pp. 26-30, Jan/Feb. 1990.

An Empirical Study of Different Types of Changes in the Eclipse Project The Open Software Engineering Journal, 2013, Volume 7 37

[5] K.H. Moller, and D.J. Paulish, “An empirical investigation of soft-
ware fault distribution,” Proc., First Int’l Softw. Metrics Symp.
(Metrics ’93), pp. 82-90, 1993

[6] N. Ohlsson, H. Alberg, “Predicting fault-prone software modules in
telephone switches,” IEEE Trans. Softw. Eng, vol. 22, no. 12, pp.
886-894, 1996.

[7] L. Hatton, “Reexamining the fault density component size connec-
tion,” IEEE Softw., pp. 89-97, 1997.

[8] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE TSE, vol. 26, no. 8,
2000.

[9] T. J. Ostrand, E.J. Weyuker, and R. M. Bell, “Where the bugs are,”
In: Proc. ACM/International Symposium of Software Testing and
Analysis, Boston: USA, pp. 86-96, July 2004.

[10] C. Andersson and P. Runeson, “A replicated quantitative analysis
of fault distribution of complex software systems,” IEEE Trans.
Softw. Eng., vol. 33, no. 5, pp. 273-286, 2007.

[11] H. Zhang, “On the distribution of faults,” IEEE Trans. Softw. Eng.,
vol 32, no. 2, pp. 301-302, 2008.

[12] K. El Emam, S. Benlarbi, and S.N. Rai, “The confounding effect of
class size on the validity of object-oriented metrics,” IEEE Trans.
Softw. Eng., vol. 27, no.7, pp.630-650.

[13] IEEE standard, “IEEE standard classification for software anoma-
lies,” IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993), pp.
C1-15, 2010.

[14] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou and C. Zhai, “Have things
changed now? – an empirical study of bug characteristics in mod-
ern open source software,” In: ACM/Architectural Support for Pro-
gramming Languages and Operating Systems, San Jose: California,
pp. 25-33, 2006.

[15] D. Lo, H. Cheng, J. Han, S. C. Khoo, and C. Sun, “Classification of
software behaviors for failure detection: a discriminative pattern
mining approach,” In: Proc. ACM/International conference on
knowledge discovery and data mining, Paris: France, 2009.

[16] K. Pan, S. Kim, and E.J. Whitehead, “Bug Classification Using
Program Slicing Metrics,” In: IEEE/International Workshop on
Source Code Analysis and Manipulation, Philadelphia: USA, pp.
31-42, 2006.

[17] G. Soares, R. Gheyi, T. Massoni, M. Corn´elio, and D. Cavalcanti,
“Generating unit tests for checking refactoring safety,” SBLP, pp.
159-172, 2009.

[18] C. Görg, and P. Weißgerber, “Error detection by refactoring recon-
struction,” the 2005 International Workshop on Mining Software
Repositories, MSR 2005, Saint Louis, Missouri, ACM: USA, 2005.

[19] Z. Qin, “Naive Bayes Classification Given Probability Estimation
Trees, In: "Fifth International Conference on Machine Learning
and Applications (ICMLA), Orlando: FL, pp. 34-42, 2006.

[20] J. Thorstern, “A Probabilistic Analysis of the Rocchio Algorithm
with TFIDF for Text Categorization,” In: Fourteenth International
Conference on Machine Learning (ICML), Nashvlle, T.ennessee:
USA, pp.143-151, 1997.

[21] CVS and Eclipse, Available at: http://www.grape-
info.com/doc/win2000srv/filemanagement/cvs.html

[22] Boris Beizer, “Software Testing Techniques”, 2nd ed. The Coriolis
Group: USA, 1990.

[23] P. Wolfgang: “Text Classification Tools Version 0.11”. Available
on:
http://www.cis.temple.edu/~wolfgang/Text%20Classification%20T
ools.pdf [last accessed 15th October, 2012].

[24] A. G. Bluman, “Elementary Statistics: A Step by Step Approach”,
2nd ed. Wm. C. Brown Publishers: Dubuque, Iowa: USA, 1995.

[25] Potanin, J. Noble, M. R. Frean, and R. Biddle., “Scale-free geome-
try in object-oriented programs,” ACM Commun., vol. 48, no. 5,
2005.

[26] R. Wheeldon and S. Counsell, “Power law distribution in class
relationships,” In: IEEE/International Workshop on Source Code
Analysis and Manipulation, Computer Soc. Press: Los Alamitos,
pp. 45-54, 2003.

[27] L. Hatton, “Power-Law Distributions of Component Size in Gen-
eral Software Systems,” In: IEEE Trans Softw. Eng., vol. 35, no. 4,
pp. 566-572, 2009.

[28] J.M. Juran, F.M. Gryna, Jr., and F.M. Bingham, “Quality Control
Handbook”, 3rd ed, McGraw Hill: New York, 1979.

[29] I.Timea, and D. Barbara, “The vital few and trivial many: An em-
pirical analysis of the pareto distribution of defects,” Proc. Lecture
Notes in Informatics, pp.151-162, Nov, 2010.

[30] Matlab Official Website, Available at:
http://www.mathworks.com/products/matlab/

[31] Aaron, S. R. Cosma, and M.E.J. Newman, “Power-Law Distribu-
tion in Empirical Data,” Soc. Ind. Appl. Math., vol. 51, no. 4, 2009.

Received: February 02, 2013 Revised: February 12, 2012 Accepted: February 16, 2012

© Tiwari et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

