
Send Orders for Reprints to reprints@benthamscience.net

38 The Open Software Engineering Journal, 2013, 7, 38-52

 1874-107X/13 2013 Bentham Open

Open Access

Reflection Support: Java Reflection Made Easy

Zalia Shams* and Stephen H. Edwards

Virginia Tech, Department of Computer Science, 114 McBryde Hall (0106), Blacksburg, VA 24061, USA

Abstract: Large software projects often require the ability to load and manage new code assets that were not originally
available during system compilation. Moreover, testing tools need to inspect and run code components regardless of their
structures. Reflection in Java supports these tasks by providing programmers with facilities to dynamically create objects,
invoke methods, access fields, and perform code introspection at runtime. These capabilities come at the cost of reduced
readability and writeability, since code written using Java’s reflection classes is clunky, bulky and unintuitive. Common
tasks such as object creation, method invocation, and field manipulation need to be decomposed into multiple steps that
require try-catch blocks to guard against checked exceptions. Type casts and explicit use of class types as parameters
make development and maintenance of code difficult, time consuming and error prone. In this paper, we discuss the diffi-
culties of using reflection in Java. We also present an open-source library called ReflectionSupport that addresses these
problems and makes reflection in Java easier to use. ReflectionSupport provides static helper methods that offer the same
reflective capabilities but that encapsulate the overhead of coding with reflection. This paper focuses on improving the us-
ability of Java reflection by presenting an API that allows programmers to obtain the benefits of reflection without the
hassle.

Keywords: Open-source Software, Software Testing, Java, Reflection, Library, API.

1. INTRODUCTION

Automated software testing tools inspect and evaluate
programs without requiring compile-time access to the pro-
gram’s structure. Similarly, many software development
platforms (e.g., Google Web Toolkit) manage code compo-
nents in a fashion that reduces compile time dependencies
between them. Moreover, educational software tools ma-
nipulate and inspect student programs regardless of their
structures for various purposes, such as providing feedback,
evaluating correctness, and measuring performance. There-
fore, there is a need for programs to be able to inspect and
execute other software without requiring any compile-time
structural dependency on that code.

Reflection is a useful and widely adopted technique for
writing code without compile-time dependencies in many
programming languages, including Java. Bobrow et al. de-
fines reflection this way [1]:

“Reflection is the ability of a program to manipulate as
data something representing the state of the program during
its own execution. There are two aspects of such manipula-
tion: introspection and intercession. Introspection is the abil-
ity for a program to observe and therefore reason about its
own state. Intercession is the ability for a program to modify
its own execution state or alter its own interpretation or
meaning. Both aspects require a mechanism for encoding
execution state as data; providing such an encoding is called
reification.”

*Address correspondence to these authors at the Virginia Tech CS
Dept., 114 McBryde Hall (0106), Blacksburg, VA 24061, USA;
Tel: 1-540-449-2826; Fax: 1-540-231-6075;
E-mails: zalia18@cs.vt.edu; zaliashams@gmail.com, edwards@cs.vt.edu

Reflection is a powerful tool for increasing flexibility. It

provides mechanisms for assembling software pieces at run-
time, profiling applications, and supporting plugin-driven
architectures. JavaBeans, for example, uses reflection to ma-
nipulate software components via builder tools [2].

In Java, however, the benefits of reflection are overshad-
owed by the complex, unintuitive and verbose nature of the
library classes that Java provides for this purpose. Java’s
reflection API has three main drawbacks:

1. Common tasks such as object creation, method invo-
cation, and field manipulation require multiple steps
to complete.

2. Because any of the steps may fail during execution,
explicit try-catch blocks are required to handle excep-
tions that may be generated.

3. If code that is invoked through reflection throws an
exception, Java’s reflection API will wrap that excep-
tion inside a new InvocationTargetException, mak-
ing it more difficult to handle with regular user-
provided exception handlers.

Taken together, these issues cause code written using
Java reflection to be more difficult to write, read, and main-
tain.

This paper investigates the difficulties of the Java reflec-
tion API with a focus on its usability. We present an open-
source library, Reflection Support, which enable program-
mers to write code using intuitive API methods in a straight-
forward way. Reflection Support provides methods similar to
those of the Java reflection library for object creation,

Reflection Support: Java Reflection Made Easy The Open Software Engineering Journal, 2013, Volume 7 39

method invocation and field manipulation. These API meth-
ods internally handle all required sub-steps for each task,
check for exceptions, cast types appropriately, and expose
any exceptions caught during execution of the underlying
code by unwrapping InvocationTargetException objects
where necessary. By careful use of overloading and variable
parameter lists, these methods can be invoked in flexible
ways under different conditions. Careful use of generics al-
lows the methods to be type-safe and prevents the need for
explicit type casting in many situations. Hence, a program-
mer does not need to write extra steps, add try-catch blocks,
cast types, or unwrap InvocationTargetException objects
when using this library.

This paper is organized as follows. Section 2 gives an
overview of reflection and discusses the difficulties that arise
when using the Java reflection API. Section 3 summarizes
existing approaches to simplifying Java’s reflection API. Our
solution to these issues in the form of the Reflection Support
API is presented in Section 4. Reflection Support is evalu-
ated in comparison with the Java reflection library and other
alternative approaches in Section 5. Finally, we conclude in

Section 6 with a summary of the strengths and weaknesses of
Reflection Support in comparison to other existing ap-
proaches.

2. ISSUES WITH JAVA’S REFLECTION API

Reflection is the capability of a computer program to ob-
serve and modify its own structure and behavior. Maes et al.
[3] define reflection as the activity performed by a program
when doing computations about itself. Reflection in Java
allows the developer to perform runtime actions based on the
descriptions of the objects involved: one can create objects
given their class names, call methods by their name, and
access field values given their name [4]. The Java core re-
flection library [4, 5] provides the programmer with many
reflective features. These features add flexibility by provid-
ing for runtime type information (RTTI), introspection,
method invocation, and dynamic instantiation.

2.1. An Example

To show how reflection might be used, Fig. (1) presents
the ScoreBoard class as an example that one might wish to

Fig. (1). The ScoreBoard class.

.
 1 import java.util.Date;

 2 public class ScoreBoard

 3 {

 4 private String team1, team2;

 5 private Date startTime, endTime;

 6 private long elapsedTime, totalTime;

 7 private int team1Score, team2Score;

 8

 9 // Constructor: sets value of team1, team2, totalTime

10 public ScoreBoard(String team1, String team2) { ... }

11

12 // Setter/getter methods

13 public void setTeam1Score(int score) { ... }

14

15 // Other setter and getter methods omitted for brevity

16 ...

17

18 // Sets startTime and initializes elapsed time

19 public void startGame() { ... }

20

21 // Sets endTime and updates elapsed time

22 public void stopGame() { ... }

23

24 // Increases team1Score by score

25 public void increaseScoreTeam1(int score) { ... }

26

27 // Increases team2Score by score

28 public void increaseScoreTeam2(int score) { ... }

29

30 // Calculates how much time remains until the end of the game

31 public String remainingTime() { ... }

32

33 // Calculates the winner of the game from the scores

34 public String getWinner() { ... }

35 }

40 The Open Software Engineering Journal, 2013, Volume 7 Shams and Edwards

manipulate via reflection. This rudimentary class represents
a scoreboard at an athletic event and might be part of a con-
trol interface for an electronically controlled scoreboard. The
ScoreBoard class has several fields and methods. We will
focus on the constructor, the field team1Score, the setter
method setTeam1Score(), and the remainingTime() method,
since together these features represent a simplified example
of the most common features that classes provide. Manipula-
tion of such a ScoreBoard object using a GUI may be more
realistic, but for simplicity no GUI is presented here. Instead,
the ScoreBoard class is just an example that will allow
discussion of how class features can be exercised with and

cussion of how class features can be exercised with and
without reflection.

The MainScoreBoard class in Fig. (2) shows how one
can use the ScoreBoard class by directly accessing its fea-
tures (i.e., without reflection). Its main() method creates a
ScoreBoard instance and then invokes setTeam1Score() and
remainingTime().

Fig. (3) depicts an equivalent class called Reflective-
ScoreBoard that performs exactly the same tasks, but that
uses reflection instead of directly accessing the features of

Fig. (2). Manipulating a ScoreBoard using direct access.

Fig. (3). Manipulating a ScoreBoard using reflection.

1 public class MainScoreBoard

2 {

3 public static void main(String args[])

4 {

5 ScoreBoard sb = new ScoreBoard("VT", "GT");

6 sb.setTeam1Score(20);

7 String remaining = sb.remainingTime();

8 }

9 }

 1 import java.lang.reflect.*;

 2 public class ReflectiveScoreBoard

 3 {

 4 public static void main (String args[])

 5 {

 6 try

 7 {

 8 Class<?> scBoard = Class.forName("ScoreBoard");

 9 Constructor ctr = scBoard.getConstructor(String.class, String.class);

10 Object scb = ctr.newInstance("VT", "GT");

11 Method setT1S = scBoard.getMethod("setTeam1Score", int.class);

12 setT1S.invoke(scb, 20);

13 Method prt = scBoard.getMethod("remainingTime");

14 String rTime = (String)prt.invoke(scb);

15 }

16 catch (ClassNotFoundException e) {

17 System.out.println("Cannot find the class named ScoreBoard.");

18 }

19 catch (InstantiationException e) {

20 System.out.println("Failed to create a ScoreBoard object.");

21 }

22 catch (IllegalAccessException e) {

23 System.out.println("Attempted to invoke a non-public method.");

24 }

25 catch (SecurityException e) {

26 System.out.println("Insufficient security permissions.");

27 }

28 catch (NoSuchMethodException e) {

29 System.out.println("No method with the given name and parameter types was found.");

30 }

31 catch (IllegalArgumentException e) {

32 System.out.println("Actual arguments do not match "

33 + "formal parameters.");

34 }

35 catch (InvocationTargetException e) {

36 System.out.println("A method invoked via reflection threw an exception.");

37 }

38 }

39 }

Reflection Support: Java Reflection Made Easy The Open Software Engineering Journal, 2013, Volume 7 41

the ScoreBoard class. ReflectiveScoreBoard can be com-
piled without access to the source code or the compiled byte
code for the ScoreBoard class. It resolves creation of and
method invocation on ScoreBoard objects at execution time.
However, the price of this added flexibility is clumsy code—
the three lines of code in MainScoreBoard are transformed
into about ten times as many when using Java’s reflection
API. Although the multiple catch clauses in the try-catch
block could be combined to reduce the code size, they are
shown separately here to indicate the potential for handling
different problems with unique responses. With all of the
exception handling, type casts, and multi-step decomposition
of tasks, code written using reflection is less readable as well
as less writable.

2.2. Three Key Problems

Code written using Java’s reflection classes is verbose,
clunky, and bulky because:

1. Common tasks, such as creating an object, invoking a
method, setting a field, etc., take multiple steps, any
one of which can fail.

2. Because the methods used to complete these steps of-
ten throw checked exceptions if they fail, explicit try-
catch blocks are required.

3. If the underlying code invoked by reflection happens
to throw an exception of its own, that exception is
wrapped inside an InvocationTargetException be-
fore propagating out of the reflection API. When an
exception is wrapped this way, it can no longer be
caught directly by the handlers one would write if re-
flection were not used.

As an example of the first issue, consider the call to set
Team1Score() on line 6 of Fig. (2). In the reflective version
shown in Fig. (3), this single action corresponds to two steps
on lines 12–14, which involve looking up the Method object
representing the setTeam1Score() method and then calling
invoke() with the actual parameters. In other cases where a
non-public method is invoked, it also is necessary to set the
accessibility of the Method object.

On line 12 of Fig. (3), getMethod() may fail to find a
method matching the given name and parameter profile, or
the method may not be accessible (not declared public),
since getMethod() only supports the retrieval of public
methods. For non-public methods, getDeclaredMethod()
must be used instead. However, getDeclaredMethod() does
not automatically retrieve methods declared in superclasses,
so the programmer must know in which specific class a
method has been declared in order to retrieve it.

Because method mismatches are reported using checked
exceptions, a try-catch block is required around get
Method(). Even if getMethod() succeeds and returns a valid
Method object, the actual invocation via setT1S.invoke()
could potentially throw an IllegalArgumentException if the
actual parameter(s) did not match the formal parameter
type(s) declared for the method. The call to invoke() returns
the value produced by the method, if any, but without any
type information. As a result, the programmer must manually
cast the returned object to the proper type for methods that

return a value (this is not necessary for setTeam1Score(),
since it does not return a value).

Finally, the method being invoked might throw an excep-
tion while executing, which would result in an Invocation
TargetException. Since InvocationTargetException is a
checked exception, another try-catch handler is mandatory,
even for methods like setTeam1Score() that have no de-
clared throws clauses.

Because of these issues, writing code using Java’s reflec-
tion API requires more work than necessary, and providing
appropriate handlers for all errors that may arise in general
can be tedious. Further, the exceptional messages that are
produced when things go wrong can be difficult to interpret
and often lack important information. For example, the call
to getMethod() will throw a NoSuchMethodException if
no matching method is found. However, this same excep-
tion—with the same message—is thrown irrespective of the
reason for the mismatch: an incorrect method name, the
wrong number of parameters, a mismatch in the type of one
or more formal parameters, or if the method is not public.
Terse or cryptic exception messages make correcting reflec-
tion-based code more difficult. Taken together, all of these
issues often overshadow the benefits of reflection in Java.

3. RELATED WORK

Others have investigated the difficulties associated with
Java’s reflection interface. However, efforts for providing a
simpler API often are pieces of larger software packages
rather than products that stand on their own. Hence, such
APIs are not as well known or as readily available for other
programmers to use.

3.1. Java Beans and Reflection

Java Beans provides API methods that use reflection for
object creation and method invocation. Theses capabilities
are provided by the java.beans.Expression and java.beans.
Statement classes. These classes are used internally within
the Java Beans framework to manipulate software compo-
nents via builder tools, but are also available for use in client
programs.

Both classes allow one to invoke methods using reflec-
tion, where object construction is achieved by using the spe-
cial name “new” as the method to invoke. Generally, an Ex-
pression object is used to invoke a method (or constructor)
that returns a value, whereas a Statement object is used to
call void methods. An Expression or a Statement is instan-
tiated with three parameters: 1) a class or object that repre-
sents the receiver of the call, 2) a method name to be called,
and 3) a list of actual arguments to use when invoking the
specified method. Invocation of the desired method occurs
when the getValue() method (on an Expression) or the exe-
cute() method (on a Statement) is invoked. The getValue()
method returns the value produced by the method being in-
voked, while execute() ignores any such value. If getValue()
or execute() encounter any errors internally, they throw an
Exception that wraps the actual exception that occurred.
Therefore, the tasks of object creation or method invocation
require exactly two steps: creating an instance of Expression
or Statement representing the desired action, and then call-

42 The Open Software Engineering Journal, 2013, Volume 7 Shams and Edwards

ing getValue() or execute() to perform that action. All inter-
nal subtasks such as finding a matching method, or handling
any exceptions that occur while invoking the method, are
handled internally by these classes.

Fig. (4) shows an example of using Expression and
Statement to manipulate a ScoreBoard object. Each of the
three actions from Fig. (2) is repeated in Fig. (4). Note that
these Java Beans classes pre-date Java 1.5, and so they do
not take advantage of variable arguments or generics.

One feature that is somewhat unique in the Java Beans
reflection classes is that they search for the most specific
matching method for the given actual parameters, where the
alternative libraries discussed in this section instead look up
a method using a signature that must be specified exactly.
Because the API methods automatically convert actual pa-
rameters to formal parameters, executed code is usually less
error prone. Moreover, the API methods unwrap any Invoca-
tionTargetException that may occur and re-throw the un-
derlying exception if possible.

However, there are several limitations to these classes as
well. The API does not support manipulation of fields. Ex-
plicit type casts for the method return values are usually re-
quired. Because the getValue() and execute() methods are
declared to throw Exception objects, explicit try-catch
blocks are required even when the underlying code being
invoked cannot throw checked exceptions. Finally, each task
requires two steps, although they can be combined into a
single statement if desired. Overall, the Java Beans approach
offers an improvement over Java’s native reflection API
when a programmer does not need to access fields directly,
although it still has some limitations.

3.2. Fluent Interfaces and Reflection

Some researchers have used fluent interfaces [Sch07] to
simplify reflection. Fluent interfaces is a technique for con-
structing a tiny domain-specific language formed by method

call chaining and well-chosen method names. Fluent inter-
faces offer the opportunity to enhance readability and im-
prove clarity when method names and chaining patterns are
chosen carefully. Such an interface offers an API to maintain
the instruction context for a series of method calls [1].
Chaining setter methods and factory methods to create and
initialize objects is one area where the fluent interface ap-
proach has been applied, with an underlying implementation
using reflection. However, a fluent interface can be designed
to provide an easy way to call any method, especially those
that are called often.

Stephan Schmidt in his blog [6] described a basic fluent
interface for creating Java objects, powered by a reflection-
driven proxy. The technique he described only focuses on
object creation tasks, with the aim of replacing constructors
that contain a laundry list of initialization parameters with a
more readable alternative. Creating a ScoreBoard object
using Schmidt’s approach would look like this:

ScoreBoard scoreboard = ScoreBoard.with()
 .HomeTeam("VT").VisitorTeam("GT")
 .create();

Here, the with() method is a new static method that has
been added to the ScoreBoard class. In effect, this static
method generates a factory object that is responsible for cre-
ating the new ScoreBoard instance. This factory object sup-
ports a number of methods named after the properties of the
ScoreBoard that can be used to set the initial values for the
corresponding fields. Each of these methods modifies and
then returns the factory object so that they can be chained
together. Finally, the create() method on the factory object
returns the newly created, properly initialized ScoreBoard
instance.

This single line of code corresponds to lines 8-11 in Fig.
(3), along with a number of associated exception handlers.
The advantage of this approach is the simpler, cleaner inter-

Fig. (4). Manipulating a ScoreBoard using Java.Beans.

 1 import java.beans.Expression;

 2 import java.beans.Statement;

 3 public class ExpressionScoreBoard

 4 {

 5 public static void main(String args[])

 6 {

 7 try {

 8 Expression crtExpr = new Expression(ScoreBoard.class, "new",

10 new Object[] {"VT", "GT"});

11 ScoreBoard sb = (ScoreBoard)crtExpr.getValue();

12 Statement st1ScoreStmt = new Statement(sb, "setTeam1Score", new Object[] {20});

14 st1ScoreStmt.execute();

15 Expression rTimeExpr = new Expression(sb, "remainingTime", null);

17 String rTime = (String)rTimeExpr.getValue();

18 } catch (Exception e) {

19 e.printStackTrace();

20 }

21 }

22 }

Reflection Support: Java Reflection Made Easy The Open Software Engineering Journal, 2013, Volume 7 43

face for object creation. In Schmidt’s implementation, each
of the property-oriented methods on the factory object is
shorthand for the reflection-based invocation of a setter
method on the underlying ScoreBoard object. However, the
reflective calls are completely encapsulated and protected so
that none of the complexities of interacting directly with
Java’s reflection API are visible.

While this approach to constructors is not a general sub-
stitute for Java’s native reflection API, it does address some
of the issues raised with the native API. Section 2.2 summa-
rizes three main issues with Java’s native reflection API: that
common actions often take multiple steps, these steps often
require handlers for checked exceptions, and if the underly-
ing operation produces an exception it will be wrapped in an
InvocationTargetException. Consider these issues with
respect to the fluent interface approach.

First, invoking a constructor using the native Java reflec-
tion API may involve two or three steps. One must look up
the constructor using the Class object, set its accessibility if
the constructor is not public, and then invoke the constructor.
Schmidt’s fluent interface design encapsulates all of these
actions internally so that the programmer does not have to
deal with this issue. Second, with the native API any one of
these steps might throw an exception under some conditions.
Again, the fluent interface approach to object construction
encapsulates handlers for the checked exceptions that might
be produced, allowing the programmer to write object crea-
tion code without the need to write try-catch blocks for such
exceptions. However, Schmidt’s implementation is intended
for use when no such exceptions would occur in practice, so
it prints out and swallows any exceptions produced by the
native Java reflection API without propagating them and
does not provide any additional diagnostic information.
Third, if the underlying constructor (or a setter method)
throws an exception of its own, it is similarly printed and
swallowed without propagation.

One disadvantage of this approach is that the program-
mer must write explicit code to support it. In this example,
the programmer is responsible for providing the static with()
method, as well as writing a factory class (or at least an in-
terface). Since this must be done for each class one wishes to
manipulate, the amount of manual work is worth consider-
ing.

While others have proposed similar ideas, Schmidt’s
main contribution is the idea of using dynamic proxies to
provide a common implementation for the factory objects.
By careful use of a single generic class and dynamic proxies,
Schmidt’s version of this fluent object creation technique
only requires a programmer to write the interface for the
factory object, with the corresponding implementation pro-
vided automatically.

Another significant disadvantage of this approach, how-
ever, is that client code must have direct access to the class
to be manipulated (i.e., the ScoreBoard) and to the interface
for the factory object. It is not possible to use this strategy
directly to create objects of a class that is not available at
compile-time. Also, this strategy does not address the more
general problem of invoking arbitrary methods on an object
using reflection, or of accessing fields.

3.3. Fixtures for Easy Software Testing

Fixtures for Easy Software Testing (FEST) is an open-
source collection of APIs designed to make writing software
tests easier [7]. It includes a reflection module called FEST-
Reflect that takes the concept of a fluent interface farther to
provide a more comprehensive reflection API.

FEST-Reflect provides static methods for common re-
flection tasks such as object creation, method invocation, and
setting or getting the value of a field. These methods gener-
ate intermediate objects that provide fluent interfaces for
specifying the parameters needed. Type casting, checked
exception handling, and many other requirements of Java’s
native reflection API are handled internally by these calls,
greatly simplifying the task of writing reflection-based code.

Fig. (5) shows an example of using FEST-Reflect to ma-
nipulate a ScoreBoard object. Note that each major task is
rendered as a single statement consisting of a sequence of
chained method calls. All the checked exceptions related to a
particular task are handled within the FEST-Reflect API.
Overall, the code is a significant improvement over the ver-
sion using Java’s native reflection API in Fig. (3).

FEST-Reflect has several limitations, however. First, to
invoke methods, the programmer must know the specific
class in which the method is declared—there is no inheri-
tance-based lookup of methods. Second, the programmer

Fig. (5). Manipulating a ScoreBoard using FEST-Reflect.

 1 import static org.fest.reflect.core.Reflection.*;

 2 public class FestReflectiveScoreBoard

 3 {

 4 public static void main (String args[])

 5 {

 6 ScoreBoard scb = constructor().withParameterTypes(String.class, String.class)

 7 .in(ScoreBoard.class).newInstance("VT", "GT");

 8 method("setTeam1Score").withParameterTypes(int.class).in(scb).invoke(20);

 9 String rtime = method("remainingTime")

10 .withReturnType(String.class).in(scb).invoke();

11 }

12 }

44 The Open Software Engineering Journal, 2013, Volume 7 Shams and Edwards

must describe the signature exactly as declared by the opera-
tion—there is no provision for automatically handling over-
load resolution or potential argument conversions during
method or constructor lookup (only during invocation, as
provided by Java’s native API). Third, there is no special
support for automatic conversions provided by Java on
primitive types. Fourth, FEST-Reflect does not pinpoint er-
rors or unwrap any InvocationTargetExceptions when er-
rors occur to report the exact cause of failure. This means
that exception handlers written in the absence of reflection
cannot be used as-is.

3.4. Enterprise Reflection APIs

Some open-source software products have developed re-
flection helper APIs for their own use, but without releasing
their reflection APIs as independent libraries. For example,
both XStream [8] and XUI [9] include their own reflection
helper libraries. XStream is an API for serializing Java ob-
jects to and from XML. XUI is a Java and XML Rich Inter-
net Application platform for building smart web applica-
tions. The main reason such projects include reflection
helper libraries is to reduce and simplify the reflection-
driven code that appears elsewhere in the project and to in-
crease efficiency, typically through caching. These libraries
include APIs to create objects, handle getter and setter meth-
ods of fields, and serialize or deserialize objects. Fig. (6)
shows an example of creating and manipulating a Score-
Board object using XUI’s internal reflection API.

XUI’s reflection API provides static methods for object
creation and setting or getting field values. All the steps nec-
essary for these tasks are performed within the API methods.
However, the XUI library does not provide APIs for invok-
ing methods other than constructors. Therefore, its reflection
services are not adequate for many applications that need to
use Java reflection. XStream’s internal reflection API is
similar, in that it only supports object creation and field ac-
cess.

The biggest limitation to these internal libraries is that
they are built for use within a single project, and as such do
not systematically address all the features of Java’s native
reflection API. For example, these libraries often do not sup-
port invoking methods that are not setters or getters, and do
not support other class introspection features. The features
included are biased by the needs of the larger project, and

features that are not needed in that project are usually omit-
ted.

3.5. Library Support for Performance Improvement

Another major issue with Java reflection is performance.
Reflection in Java is much slower than direct calls to meth-
ods or constructors. This is due to the added overhead of
searching for methods by name and signature, the run-time
type checking required for parameters, and the additional
steps involved in reflective method calls. Many attempts
have been made to speed up reflective access in Java, includ-
ing strategies for moving reflective actions from run-time to
compile-time [4, 10] or load-time [11]. However, introspec-
tion must take place at run-time when code looks for un-
known services. Smart Reflection [12] has been successful at
moving most of the overhead due to dynamic introspection
from run-time to compile-time with a different approach to
reification. Using the stub idea from the Java RMI interface
[13], Smart Reflection can transform a reflective method call
into a direct call in intermediate steps of compilation and
execution. This allows performance penalties related to dy-
namic resolution of many details such as type checking to be
eliminated by performing checks statically where possible.
In this paper, however, we are concerned with the API pro-
grammers use to express reflective actions. The performance
problems associated with reflection are orthogonal to the
issues of how one can improve the usability of the API. In
principle, existing approaches to addressing the performance
issues of Java reflection are just as applicable to the interface
presented here.

4. REFLECTIONSUPPORT: A MORE USABLE JAVA
REFLECTION LIBRARY

ReflectionSupport is a simplified API for performing re-
flection in Java. It is intended as an easier-to-use replace-
ment for Java’s native reflection API that addresses the is-
sues discussed in Section 3. This library provides static
methods for performing the basic tasks of reflection, with
names similar to those in the native API. Programmers gain
access to these features using a single static import state-
ment. The main purpose of this library is to make it easy to
perform object creation, method invocation, and field access
through reflection when necessary. The four basic methods
in the library focus on these tasks: create(), invoke(),get()
and set(). Each of these operations takes care of all of the

Fig. (6). Manipulating a ScoreBoard using XUI’s ReflectionHelper API.

 1 import net.xoetrope.xui.helper.ReflectionHelper.*;

 2 public class ReflectionHelperScoreBoard

 3 {

 4 public static void main (String args[])

 5 {

 6 Object scb = constructViaReflection("ScoreBoard", "VT", "GT");

 7 setFieldViaReflection(scb, "team1Score", 20);

 8

 9 // remainingTime() cannot be invoked

10 }

11 }

Reflection Support: Java Reflection Made Easy The Open Software Engineering Journal, 2013, Volume 7 45

required steps and error checking required by Java’s native
reflection API.

The ReflectionSupport methods use overloading and
genericity to provide for flexible usage while maintaining
type safety. Programmers can perform most actions in a sin-
gle statement without required try-catch blocks or explicit
type casts. Errors and exceptions that may occur have spe-
cific internal handlers so that the appropriate cause can be
reported in detail. Exceptions produced by code being in-
voked through reflection are unwrapped and propagated for
the programmer to handle using the same approach as with
non-reflection-based code.

Fig. (7) shows a version of the MainScoreBoard class
from Fig. (2) rewritten using ReflectionSupport. Aside from
the static import statement on line 1, there is a one-to-one
correspondence between the lines in the ReflectionSupport
ScoreBoard and the MainScoreBoard classes.

4.1. Creating Objects Using Create()

To create an object using reflection, the programmer uses
the create() method as shown on line 6 of Fig. (7). This
method takes an initial argument that identifies the class or
constructor to use, followed by zero or more parameters to
pass to the constructor. Fig. (8) summarizes the calling pat-
tern for the create() method.

The initial parameter to create() is most commonly either
a Class object or a class name provided as a string to indi-
cate the type of object to create. Alternatively, one can also

provide a Constructor object explicitly. These alternatives
are supported by providing three overloaded versions of cre-
ate() so the programmer can provide the type of object that
is most appropriate in a given situation. The versions of cre-
ate() that accept Class and Constructor objects are generic,
with a return type deduced from the first parameter so that
no explicit casting is necessary. A type cast is only required
if the programmer supplies the class name as a string.

In addition to the parameter identifying the type of object
to create, the create() method also takes a variable argument
list of actual values to pass to the constructor it calls. It dy-
namically loads the class if necessary, and then searches for
a constructor that will accept the given argument list. The
constructor signature does not have to be specified—the cre-
ate() method searches through the available constructors to
find one that will accept the given arguments, including sup-
port for legal method invocation conversions on any parame-
ter types.

Internally, the create() method handles all of the checked
exceptions that might be thrown if no appropriate constructor
is found—for example, if no constructor will accept the
given argument list, or if the constructor is not accessible. In
the Reflection Support library, a call to create() is treated as
a claim that the corresponding constructor does in fact exist.
As a result, an AssertionError is thrown when no appropri-
ate constructor is found, with a message describing both the
reason why as well as the closest matching constructor when
appropriate. Thus, in cases where the programmer is confi-
dent of no errors, code can be written entirely without the

Fig, (7). Manipulating a ScoreBoard using ReflectionSupport.

Fig, (8). Overview of the create() method.

 1 import static student.testingsupport.ReflectionSupport.*;

 2 public class ReflectionSupportScoreBoard

 3 {

 4 public static void main(String args[])

 5 {

 6 Object sb = create("ScoreBoard", "VT", "GT");

 7 invoke(sb, "setTeam1Score", 20);

 8 String rTime = invoke(sb, String.class, "remainingTime");

 9 }

 10 }

<type> result = create(<type> [, <parameters>...]);

Can be specified as a Class object (e.g., ScoreBoard.class), as a string

(e.g., "ScoreBoard"), or by providing a Constructor object.

The number and type of arguments

determine which constructor to use.

Deduced from the first

argument, if possible.

46 The Open Software Engineering Journal, 2013, Volume 7 Shams and Edwards

use of try-catch blocks. Failures are reported in a way that
will allow the problem to be identified quickly. In cases
where there is no guarantee the underlying constructor ex-
ists, Reflection Support provides a getConstructor() method
that performs the same search but returns the corresponding
Constructor without invoking it, or null if none is found.
This allows programmers to write conditional code that
checks for existence in a streamlined way, and then call cre-
ate() on the result.

What happens if the constructor that is invoked throws an
exception? For simplicity, the three versions of create() dis-
cussed above have no throws clauses in their declarations,
so they do not throw checked exceptions. If an Invocation-
TargetException is produced when the underlying construc-
tor is invoked, it is intercepted and the inner exception is
inspected. When the constructor throws any kind of un-
checked exception, the original exception is unwrapped and
re-thrown by create(), allowing any client code written to
intercept the original exception to be used without change. If
the underlying constructor throws a checked exception, how-
ever, it cannot be re-thrown directly. Instead, create() un-
wraps the InvocationTargetException to find the original
exception object, and then re-throws it after wrapping it in-
side a RuntimeException.

In those cases where the programmer expects that the un-
derlying constructor may throw a checked exception, the
createEx() method (“Ex” for exception) can be used instead.
This method behaves exactly the same as create(), but its
signature declares that it may throw an instance of Excep-
tion (or any of its subclasses). This requires the programmer
to include an explicit try-catch block, but allows cre-
ateEx()to re-throw checked exceptions produced by the un-
derlying constructor without any wrapping. The programmer
can then write try-catch blocks in terms of the native excep-
tion types that may be produced by the underlying construc-
tor without regard to the wrapping performed by the native
reflection API.

4.2. Invoking Methods Using Invoke()

Reflective method calls are implemented using invoke(),
as shown on lines 7 and 8 of Fig. (7). The invoke() method
is similar in many respects to create(). Fig. (9) summarizes
the parameters to invoke().

The first argument to invoke() determines the receiver of
the method call, which can either be a Class—for static
methods—or an Object—for instance methods. Optionally,
the programmer can also specify the visibility of the desired
method, which defaults to public if omitted. Next, the pro-
grammer specifies the expected return type of the method.
Note that this need not be the declared return type, but is
instead the programmer’s expectation of what kind of value
will be returned. The invoke() method is generic, so that if a
return type is specified by the programmer, that type will
also be used as the declared return type for invoke() itself, so
no explicit casting is required. If the return type is omitted,
the method is presumed to be a void method that produces
no return value.

The next parameter to invoke() is the name of the
method to call, provided as a string. Following the method
name, the programmer can provide a variable number of
actual arguments to pass to the method being called. As with
create(), the exact parameter profile of the method is not
specified. Instead, invoke() searches for a method with the
given name that will accept the given actual parameters, in-
cluding support for appropriate argument conversions. This
search takes inheritance into account, searching through all
methods that can be called on the receiver, regardless of how
far up the inheritance chain they are declared.

Just like the create() method, invoke() handles all of the
checked exceptions that might be thrown if no appropriate
method is found. Specific diagnostics are provided in the
form of an AssertionError containing a message describing
the reason no match was found and including the closest
(inexact) match where possible. For programmers who wish
to check for the presence of methods, getMethod() is pro-
vided. It performs the same search but returns null if no
method is found. An overloaded version of invoke() that
accepts a Method object instead of string name can then be
used to call the result if desired.

The invoke() method handles exceptions thrown by the
underlying operation the same way as create(). Any Invoca-
tionTargetException that arises is automatically un-
wrapped. If the original exception is an unchecked excep-
tion, it is re-thrown in its original form. If it is a checked
exception, it is re-thrown inside a RuntimeException. If the
programmer expects a method to throw a checked exception,

Fig. (9). Overview of the invoke() method.

[<return-type> result] = invoke(<receiver>, [<access-modifier>,]

 [<return-type>,] <method-name> [, <parameters>...]);

Can be a Class, for static methods,

or an Object, for instance methods.

Can be public, protected, or

private (default is public).

If provided, determines the

actual return type of invoke().

The number and type of arguments

determine which method to call.

Reflection Support: Java Reflection Made Easy The Open Software Engineering Journal, 2013, Volume 7 47

the invokeEx() method will unwrap and re-throw such ex-
ceptions in their original form so that try-catch blocks writ-
ten with the underlying method in mind can be used to han-
dle the exceptions.

4.3. Accessing Fields Using Set() and Get()

ReflectionSupport also allows programmers to get or set
fields via its get() and set() methods, which are similar in
style to create() and invoke(). Field access is not shown in
Fig. (7), since it is more common for programmers to utilize
the available public methods on a class rather than to access
fields directly. For completeness, however, reflective access
to fields is necessary. Further, there are some situations
where it is used in practice. When writing unit tests, pro-
grammers sometimes find it easier to directly access fields
that are normally encapsulated, either to set up an object in
an appropriate state for running a specific test, or to check
that internal conditions meet expectations after some method
executes. That is one reason why the FEST-Reflect library,
which was designed to provide the support needed for writ-
ing unit tests, includes its own reflection-based field access
support.

Fig. (10) summarizes the structure of calls to get() and
set(). Both methods transparently handle inherited and de-
clared fields, as well as take care of automatic boxing and
unboxing conversions for primitive and wrapper types. The
set() method takes the receiver as its first parameter—either
a Class, when accessing a static field, or an Object, when
accessing an instance field. In addition to the receiver, set()
takes the field name and the value to store in the field. The
field name can be specified as either a string value or as a
Field object. The method searches for the field, including
inherited fields if necessary, and checks that the actual value
is assignable to the field’s declared type. The get() method’s
parameters include the receiver (class or object), the ex-
pected type of the field, and the field’s name. As with cre-
ate() and invoke(), these methods throw an AssertionError
if problems occur.

To see how these methods might be used, consider set-
ting the team1Score field in a ScoreBoard object:

set(scoreboard, "team1Score", 20);
Similarly, the field value can be retrieved by reflection as

well:
int score = get(scoreboard, int.class, "team1Score");
As with create() and invoke(),get() is generic, taking its

actual return type from the type specified in the parameter
list. A getField() method is also provided for programmers
who wish to check for the presence of a field or retrieve a
Field object for further manipulation.

5. EVALUATING THE IMPACT OF REFLECTION
SUPPORT ON CODE SIZE

ReflectionSupport is designed to provide a simpler inter-
face for manipulating objects with reflection. It resolves the
issues described in Section 2.2 more effectively than other
existing approaches. When writing code using Reflection-
Support, a programmer no longer needs to split basic actions
into multiple steps, employ mandatory try-catch blocks
when calling code that cannot throw checked exceptions,
explicitly cast the types of parameters or return values, or set
accessibility. When executing code that might throw excep-
tions, handlers can be written directly in terms of those na-
tive exceptions, without regard for InvocationTargetExcep-
tion wrappers.

To evaluate ReflectionSupport, we focused on how its
use affects program size. The amount of coding effort, num-
ber of bugs, and readability of a program are generally pro-
portional to its length. Writing code using Java’s native re-
flection features increases code size drastically, which nega-
tively affects programmer productivity and increases the
likelihood of defects. ReflectionSupport requires much less
additional code. This makes it more intuitive to learn and
makes the resulting code easier to maintain. Section 5.1 con-
siders an analytical comparison of relative source code sizes,

Fig. (10). Overview of the set() and get() methods.

set(<receiver>, <field-name>, <value>);

<type> result = get(<receiver>, <type>, <field-name>);

Can be a Class, for static fields,

or an Object, for instance fields.

Can be a string

or a Field ob-

Can be a string or

a Field object.

Can be a Class, for static fields,

or an Object, for instance fields.

Determines the return type of get().

48 The Open Software Engineering Journal, 2013, Volume 7 Shams and Edwards

while Section 5.2 presents simple measures of relative code
bloat based on a representative class.

5.1. Comparing Features Line-by-Line

As discussed in Section 2, the three primary object ma-
nipulation tasks are creating new objects, invoking methods,
and manipulating fields. We can examine the relative cost of
using ReflectionSupport in terms of “extra code” by compar-
ing it against the same tasks performed using Java’s native
reflection API. For example, consider simple object creation:

ScoreBoard scoreboard =
 new ScoreBoard("VT", "GT");

To accomplish this same task using Java’s reflection API
requires two method call statements, a try-catch block, and
an explicit type cast:

try {
 Constructor ctor = ScoreBoard.class
 .getConstructor(
 String.class, String.class);
 ScoreBoard scoreboard = (ScoreBoard)ctor
 .newInstance("VT", "GT");
}
catch (Exception e) {
 // perform some action
}

Here, the one line from the original becomes seven with
Java’s reflection API. Even more code would be needed if
one wished to pinpoint the source of the error. With Reflec-
tionSupport, the equivalent code segment is:

ScoreBoard scoreboard =
 create(ScoreBoard.class, "VT", "GT");

This form is much closer in size and readability to the
original. Because of the generic nature of create(), no type
cast is needed if a Class is provided as the first parameter.
No try-catch block or additional method calls are required.

Now consider the same situation, but where the construc-
tor may throw a checked exception:

try {
 ScoreBoard scoreboard =
 new ScoreBoard("VT","GT");
}
catch (CustomException e) {
 // perform some action
}

To accomplish this same task using Java’s reflection API
requires two method-call statements, a dynamic type check,
and an explicit cast:

try {
 Constructor ctor = ScoreBoard.class
 .getConstructor(
 String.class, String.class);
 ScoreBoard scoreboard = (ScoreBoard)ctor

 .newInstance("VT", "GT");
}
catch (InvocationTargetException e) {
 if (e.getCause() != null && e.getCause()
 instanceof CustomException) {
 CustomException ce =
 (CustomException)e.getCause();
 // perform some action
 }
}

The six lines from the original become ten with Java’s re-
flection API. With ReflectionSupport, the equivalent code
segment is:

try {
 ScoreBoard scoreboard = createEx(

ScoreBoard.class, "VT", "GT");
}
catch (CustomException e) {
 // perform some action
}
catch (Exception e) {
 // just to keep the compiler happy
}

ReflectionSupport is the same size as the original, except
for an extra catch clause for Exception, needed because cre-
ateEx() is declared to throw this more general type.

When examining methods, a similar pattern emerges. The
following statements call methods on a ScoreBoard:

scoreboard.setTeam1Score(20);
String remaining = scoreboard.remainingTime();

Repeating these same actions with Java’s reflection API
gives the following:

try {
 Method setT1S = scBoard.getMethod(
 "setTeam1Score", int.class);
 setT1S.invoke(scoreboard, 20);
 Method prt =
 scBoard.getMethod("remainingTime");
 String rTime = (String)prt.invoke(scoreboard);
}
catch (Exception e) {
 // perform some action
}

Here, the number of methods required doubles, a try-
catch block is required, explicit type casts are required for
methods that return values, and the two-line sequence grows
to nine lines. Using ReflectionSupport, however, produces a
code segment similar in size to the original:

invoke(scoreboard, "setTeam1Score", 20);
String remaining = invoke(scoreboard,
 String.class, "remainingTime");

Reflection Support: Java Reflection Made Easy The Open Software Engineering Journal, 2013, Volume 7 49

If we imagine that one of the methods might throw a
checked exception, the invokeEx() results in the same effect
shown above for createEx() when creating an object.

Finally, we can consider getting and setting a field. For
normal classes, one does not typically have direct access to
fields due to encapsulation choices commonly employed by
programmers. Under some circumstances, however, such as
when writing white-box software tests, direct access to nor-
mally encapsulated fields can be helpful. Given the correct
visibility constraints, a field within a scoreboard could be
read and written this way:

String oldValue = scoreboard.team1;
scoreboard.team1 = "Dodgers";

With Java’s native reflection API, the following code
would be necessary:

try {
 Field team1 = ScoreBoard.class
 .getDeclaredField("team1");
 team1.setAccessible(true);
 String oldValue =
 (String)team1.get(scoreboard);
 team1.set(scoreboard, "Dodgers");
}
catch (Exception e) {
 // perform some action
}

Note that two steps are required to gain access to the
field, in addition to the one required to read or write its
value. Here, the original two-line sequence has grown to
nine, including a required try-catch block and a required
type cast on the result of reading from the field. With Reflec-
tionSupport, however, the code is the same size as the origi-
nal:

String oldValue = get(
 scoreboard, String.class, "team1");
set(scoreboard, "team1", "Dodgers");

5.2. Measures of Code Size in a Representative Class

Section 5.1 compares ReflectionSupport code to equiva-
lent code written using Java’s native reflection API, showing
in principle that code written using ReflectionSupport is
similar in size to equivalent non-reflective code, while Java’s
native reflection API requires two to six times as much code.
However, such an analytical comparison does not necessarily
translate directly to realistic uses of reflection. Unfortu-
nately, there are no generally accepted benchmarks of how
reflection is typically used in programs. Indeed, many
frameworks take advantage of reflection, but in stylized
ways depending on their particular needs.

To address this issue and attempt to measure (on a small
scale) how ReflectionSupport affects code size in an actual
class, we selected a specific scenario to examine. We se-
lected the context of writing software tests for a simple class,
since software tests are intended to exercise all of the fea-
tures of the class under test. A JUnit test class, for example,

would provide a clean, self-contained “client example” that
attempts to fully utilize all of the methods and behaviors in
the class under test.

We selected a target class for the unit test that provides
getters and setters for basic properties, in addition to meth-
ods that implement behaviors using those properties. In all,
the target class provides eight public methods and one con-
structor, none of which are declared to throw checked excep-
tions. In addition, a corresponding JUnit test class was writ-
ten to check the behaviors of all public features. It included
eight separate test methods, each intended to double-check
all the behaviors of a specific public method in the class un-
der test. The test case also included a setUp() method that
created a fresh instance of the class under test for use in each
test method.

We then proceeded to create a purely reflective version
of the JUnit test that accessed the class under test using only
Java’s native reflection API. Reflection was used to create
instances and to invoke any public methods of the class un-
der test. Since all fields in the class under test were private,
and client code would normally utilize only the class’ public
features, we explicitly avoided using direct field access in
this example in order to be more representative of typical
practices. We also created a purely reflective version of the
JUnit test that used ReflectionSupport only, rather than
Java’s native reflection API. We wrote equivalent versions
of the same code using each of the other reflection APIs de-
scribed in Section 3 where possible—several of the APIs
were not expressive enough to perform all of the required
actions, however. Table 1 numerically summarizes the com-
parison among all the approaches, while Fig. (11) graphi-
cally summarizes the comparison.

Both the fluent interface approach and the enterprise re-
flection APIs were omitted from this comparison because
neither provides a mechanism for invoking general methods.
As a result, the example class used in this comparison could
not be expressed reflectively using either approach.

Writing code using Java’s native reflection API increases
code size by a factor of three. The growth in source code size
is due primarily to the addition of try-catch blocks and the
use of multiple statements to carry out each basic action.
Although the native reflection API version of the example
combines try-catch blocks where possible and uses just a
single catch clause per try, it still required nine such blocks
(essentially, one per test method) whereas the version using
ReflectionSupport required none. Among all the operations,
object creation and method invocation are the most frequent
and most significant in this example.

In Table 1, “operations invoked” refers to the raw num-
ber of underlying method calls or constructor calls on the
unit under test, which is the same across all five versions
(hence, it does not appear in Fig. (11). “Source lines” in Ta-
ble 1 and Fig. (11) refers to a count of non-comment, non-
blank lines of source code (NCSLOC), giving a measure of
the length of each version. The chart in Fig. (11) uses the
native reflection version as a baseline for comparison, so that
impact of each version can be seen relative to that of Java’s
native reflection API. The source code for the Reflection-
Support version was only one line longer than the original—

50 The Open Software Engineering Journal, 2013, Volume 7 Shams and Edwards

that line being the extra import statement needed for access-
ing ReflectionSupport’s features. The version using Java’s
native reflection API was almost three times as long as the
original, however, giving a better feel for the average code
bloat over a variety of operations. This size is consistent with
the two-to-six range described in Section 5.1. The FEST-
Reflect version was only three lines longer than the original.
The Java Beans version of the example class was almost as
long as the native reflection version, because it requires its
methods to be wrapped in try-catch blocks.

The “Method Calls” column in Table 1 and Fig. (11) is a
count of method calls or constructor calls appearing in the
source code. This shows a different measure of length than
measuring lines of source code. Interestingly, FEST-Reflect
employed the largest number of method calls in this exam-
ple. That is due to the use of chained method calls to form
argument lists in each basic action. Native reflection em-
ployed the second largest number of calls. ReflectionSupport
was closest to the original code in terms of the number of
method and constructor calls.

The “Required Try/Catch Blocks” column in Table 1 and
Fig. (11) refers to the number of try-catch blocks that were
added to the code due to checked exceptions potentially
thrown from API methods. In all cases, exception-handling
statements were combined where possible resulting in the
minimum number of try-catch blocks. More try-catch
blocks would be necessary in many cases if differentiating
the cause or source of errors were necessary. Java’s reflec-
tion API required the most try-catch blocks because it uses
checked exceptions in most methods. Java Beans requires

the same number of try-catch blocks since it also uses
checked exceptions for most methods. Both ReflectionSup-
port and FEST-Reflect required no try-catch blocks, since
they both avoid checked exceptions in method signatures
where possible.

Table 1 and Fig. (11) also compare the number of type
casts necessary under each approach. When type casts are
required, they are usually for converting method return val-
ues to a more specific type. The values reported here include
both explicit type casts and also manual unboxing operations
on wrapper types (e.g., calling the intValue() method on an
Integer, for example). While Java will automatically unbox
wrapped primitive values, in some contexts (such as when
method overloading prevents a unique interpretation) it is
necessary to manually unbox primitive values. Both Reflec-
tionSupport and FEST-Reflect required four type casts,
while Java Beans and the native reflection API required three
times this number. This is because both Java Beans and the
native reflection API use Object as the return type when
invoking methods by reflection, making type casts common-
place. Both ReflectionSupport and FEST-Reflect use generics
for inferring return types where possible. All four type casts
required by these two libraries were situations where manual
unboxing was necessary because of context—where the return
value of a method was being passed to a second, overloaded
method, so that the compiler could not automatically deter-
mine if unboxing was desired. The count of thirteen type casts
for both native Java reflection and Java Beans includes these
same four manual unboxing method calls, together with nine
explicit type casts on method return values.

Table 1. Numerical Comparison of the Impact of Each Approach to Simplifying Reflection

Reflection API
Operations

Invoked
Source Lines Method Calls

Required Try/
Catch Blocks

Type Casts
getClass()/.class

References

Original (no reflection) 12 34 20 0 0 0

Java Reflection API 12 93 49 9 13 17

ReflectionSupport 12 35 24 0 4 8

Java Beans 12 84 37 9 13 1

FEST-Reflect 12 37 60 0 4 15

Fluent Interfaces N/A N/A N/A N/A N/A N/A

Enterprise Reflection APIs N/A N/A N/A N/A N/A N/A

Fig. (11). A graphical comparison of the impact of each approach to simplifying reflection.

Reflection Support: Java Reflection Made Easy The Open Software Engineering Journal, 2013, Volume 7 51

The final column in Table 1 indicates the number of
times Class objects were explicitly accessed in the resulting
code, either to look up features or to provide type specifica-
tions as parameters in API methods. ReflectionSupport pro-
vides for using Class objects as parameters in create() and
invoke() to customize the return type, in effect taking the
place of explicit type casts on results. Java’s reflection API
uses these objects for many more purposes, including explic-
itly specifying the formal argument signatures of methods to
search for, identifying the declaring class of a method, and so
on. As a result, Java’s reflection API required roughly twice as
many uses of Class objects. Java Beans requires only one
Class object since it does not use generics. On the other hand,
FEST-Reflect requires all the parameter and return types to be
specified using a series of Class objects, leading to a count
much closer to that of the native reflection API.

Although this example is small, it shows how code bloat
caused by Java’s native reflection API can affect (and com-
plicate) even simple classes where reflection is employed. It
also shows that ReflectionSupport allows one to write purely
reflection-based code that is similar in size and structure to
equivalent direct-access code written without reflection. By
avoiding the extra code required by the native API, code
written using ReflectionSupport is simpler to read and easier
to maintain in comparison. In terms of code bloat, FEST-
Reflect is the approach closest to ReflectionSupport relative
to the size reduction over native reflection.

6. CONCLUSIONS

 Reflection is a practical tool with many uses, although in
Java, the native API for reflection is cumbersome to use.
Various projects have provided alternative APIs, attaining
partial success in resolving the three basic issues of native
reflection in Java: 1) Common tasks require multiple steps to
complete, 2) explicit try-catch blocks are required around all

the steps, and 3) reflection methods wrap any exceptions
thrown by the invoked code inside InvocationTargetExcep-
tion objects, making it more difficult to employ user-
provided handlers. The ReflectionSupport library addresses
all of these limitations, while trying to maximize ease of use
and minimize the amount of source code the programmer
must write.

Table 2 summarizes the features of the various ap-
proaches to Java reflection discussed in this paper, in com-
parison with the native Java reflection API. The native re-
flection support provided as part of Java’s standard library is
expressive, but otherwise has weaknesses in all other issues.
Each approach discussed in Section 3 addresses some of the
weaknesses with the native library, but none of the alterna-
tive approaches address all of the weaknesses listed in Table
2. In comparison, ReflectionSupport addresses all of the
weaknesses listed.

For the key tasks of object creation, method invocation,
and field access, some approaches are bulkier, requiring mul-
tiple conceptual steps that are typically written as separate
program statements. Even when only one statement is re-
quired, some approaches rely on chaining multiple method
calls together, making the statement longer and more diver-
gent from non-reflective code that performs the same task.
Some approaches require the programmer to write try-catch
blocks because the API operations are declared to throw
checked exceptions, which can lead to bulkier code that is
more difficult to maintain. Except for ReflectionSupport and
Java Beans, however, all of the approaches in Section 3 al-
ways wrap any exceptions thrown by the code that is being
invoked reflectively (the fluent interface approach described
in Section 3 swallows such exceptions without propagating
them at all). Some approaches, such as the native reflection
API and the Java Beans API, declare the possibility of
checked exceptions, which is why those approaches require

Table 2. Summary of Features of Reflection APIs, where (+) Indicates a Strength and (−) Indicates a Weakness

Features Native Reflection API Java Beans
Fluent

Interfaces
FEST-Reflect

Enterprise

Reflection APIs
Reflection-

Support

Statements per task 2 or more (−) 2 (−) 1 (+) 1 (+) 1 (+) 1 (+)

Methods per task 2 or more (−) 2 (−) Many (−) Many (−) 1 (+) 1 (+)

Requires try-catch Yes (−) Yes (−) No (+) No (+) No (+) No (+)

Always wraps exceptions Yes (−) No (+) Swallows (−) Yes (−) Yes (−) No (+)

Allows catching inner
exceptions

No (−) Yes (+) No (−) No (−) No (−) Yes (+)

Requires type casts Yes (−) Yes (−) No (+) No (+) No (+) No (+)

Allows field access Yes (+) No (−) No (−) Yes (+) Yes (+) Yes (+)

Allows method invoca-
tion

Yes (+) Yes (+) No (−) Yes (+) No (−) Yes (+)

Inheritance-based method
lookup

No (−) Yes (+) No (−) No (−) No (−) Yes (+)

Overload resolution No (−) Yes (+) No (−) No (−) No (−) Yes (+)

Informative errors No (−) No (−) No (−) No (−) No (−) Yes (+)

52 The Open Software Engineering Journal, 2013, Volume 7 Shams and Edwards

try-catch blocks. Others, such as FEST-Reflect and the en-
terprise reflection APIs, wrap any exceptions in an un-
checked exception, such as RuntimeException, allowing
try-catch blocks to be omitted. Wrapping strategies prevent
the programmer from writing catch clauses for the actual
type(s) of exceptions thrown by the code being invoked,
however. Instead, the programmer must write reflection-
aware handlers that catch the wrapper exception, unwrap it,
and then dispatch appropriately. ReflectionSupport, on the
other hand, actively unwraps thrown exceptions that are un-
checked, and if the programmer indicates (by using an “Ex”
method), will also unwrap checked exceptions. This allows
the programmer to write catch clauses in terms of the actual
exception type(s) thrown by the code being invoked.

As discussed in Section 3, the native reflection and Java
Beans approaches use the type Object as the return type
when one is needed in a particular task. This requires the
programmer to use explicit type casts. Other approaches
avoid explicit type casts, often through the use of generics.
Also, only three of the approaches—the native API, FEST-
Reflect, and ReflectionSupport—provide support for the full
set of tasks: object creation, method invocation, and field
access. The other approaches leave out one or more of these
tasks because they were not intended to be comprehensive
reflection libraries. In addition, most approaches require the
programmer to know the specific class declaring a field be-
fore it can be accessed, or know the declaring class and exact
signature of a method before it can be invoked. Only Reflec-
tionSupport and Java Beans find methods using an inheri-
tance-based lookup process so that all methods on an object
can be invoked without regard for which (super) class de-
clares them, and perform argument matching with overload-
ing in mind in order to find the best method that will accept
the given arguments without requiring the programmer to
restate the exact method signature.

Finally, ReflectionSupport is the only approach discussed
here that takes steps to produce more informative exception
messages when problems arise. Instead of just reporting a
failure to find some feature (a method, constructor, or field),
it reports the reason no match was found when possible (i.e.,
what property of the desired feature could not be matched),
and will also describe the closest match it was able to locate.
This aids programmers in diagnosing the cause of reflective
binding failures when they do happen.

Reflection is an integral part of Java. In spite of its bene-
fits, programmers often avoid using reflection due to the
complex, verbose nature of code written using Java’s reflec-
tion API. Though there have been several efforts at creating
improved APIs for reflection, they are sometimes project-
specific and often do not support the full range of tasks one
can perform with reflection. The ReflectionSupport library

provides a straightforward mechanism for using reflection to
access and manipulate objects that addresses the full range of
shortcomings in Java’s native API.

We have discussed how the static methods provided by
Reflection Support help in writing clean code, while being
intuitive and easy to learn. These methods handle the three
basic tasks of object creation, method invocation, and field
reading/writing. The abstraction layer provided by Reflec-
tionSupport hides the complexities of Java reflection from
developers. Therefore, ReflectionSupport improves the read-
ability, writeability, and maintainability of Java programs
that use reflection. Source code for this project is available
at: http://sourceforge.net/projects/web-cat/files/Reflection-
Support/

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENT

Declared none.

REFERENCES
[1] D. G. Bobrow, R. P. Gabriel, and J. L. White, "CLOS in context:

the shape of the design space," In: Object-oriented programming,
MIT Press, USA, 1993, pp. 29-61.

[2] S. Chiba, "A metaobject protocol for C++," SIGPLAN Not., vol. 30,
pp. 285-299, 1995.

[3] P. Maes, "Concepts and Experiments in Computational Reflection,"
In: Proceedings of the 2nd Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’87),
Orlando, Florida, USA, 1987, pp. 147–156.

[4] I. R. Forman and N. Forman, Eds., Java Reflection in Action. Man-
ning Publications,USA, 2004.

[5] S. Microsystems, "JavaTM Core Reflection API and Specifica-
tion," February 1997.

[6] S. Schmidt, Code Monkeyism-The Blog for Developers. Available:
http://codemonkeyism.com/fluent-interface-and-reflection-for-
object-building-in-java [Last Accessed on August 31, 2012].

[7] A. Ruiz, FEST-Reflect. Available: http://docs.codehaus.org/-
display/FEST/Reflection+Module [Last Accessed on August 31,
2012].

[8] XStream. Available: http://xstream.codehaus.org/index.html [Last
Accessed on August 31, 2012].

[9] XUI. Available: http://www.xoetrope.com/xui [Last Accessed on
August 31, 2012].

[10] J. Gosling, B. Joy, and G. Steele, Eds., The Java Language Specifi-
cation. Addison-Wesley Longman Publishing Co., Inc: Massachu-
setts, 1996.

[11] S. Liang, Ed., Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley, Massachusetts, 1999.

[12] W. Cazzola, "Smart Reflection: Efficient Introspection in Java," J.
Object Technol, vol. 3, pp. 117-132, 2004.

[13] S. Microsystems, Java TM Remote Method Invocation - Distributed
Computing for Java, S.Microsystem: USA,1998.

Received: February 15, 2013 Revised: April 08, 2013 Accepted: April 11, 2013

© Shams and Edwards; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

