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Abstract: This paper proposes solution to the following non-convex optimization problem: 

  
min || x ||

p
 subject to || y Ax ||

q
 

Such an optimization problem arises in a rapidly advancing branch of signal processing called ‘Compressed Sensing’ 

(CS). The problem of CS is to reconstruct a k-sparse vector xnX1, from noisy measurements 
 y = Ax+ , where AmXn 

(m<n) is the measurement matrix and mX1 is additive noise.  

In general the optimization methods developed for CS minimizes a sparsity promoting l1-norm (p=1) for Gaussian noise 

(q=2). This is restrictive for two reasons: i) theoretically it has been shown that, with positive fractional norms (0<p<1), 

the sparse vector x can be reconstructed by fewer measurements than required by l1-norm; and ii) Noises other than Gaus-

sian require the norm of the misfit (q) to be something other than 2. To address these two issues an Iterative Reweighted 

Least Squares based algorithm is proposed here to solve the aforesaid optimization problem. 
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1. INTRODUCTION 

 Finding sparse solution to a system of under-determined 

equation is of considerable interest to the rapidly growing 

branch of signal processing called Compressed Sensing 

(CS). It has widespread applications in blind source separa-

tion, source coding, imaging, channel estimation etc. In a 

typical CS setting, the problem is to reconstruct a k-sparse 

signal ‘x’ of length n, (a vector of k non-zeroes and n-k ze-

roes). This signal is not sampled directly but is measured via 

a measurement matrix A (size mXn, m<n); and a measure-

ment vector ‘y’ of length m is obtained. 

  
y

m 1
= A

m n
x

n 1
            (1) 

 In any practical situation, the measured signal is cor-

rupted by noise, so a more practical model for the measure-

ment process is, 

  
y = Ax + ,  where  is the noise           (2) 

 The problem of CS is to reconstruct x from noisy under-

sampled measurements y. 

 If the measurement matrix satisfies certain properties, it 

is possible to reconstruct the k-sparse signal by solving the 

following problem [1], 

  
min || x ||

0
 subject to || y Ax ||

2
         (3) 

 In (3) it is assumed that the noise is Gaussian, and there-

fore the l2-norm for the misfit is used.  
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 The k-sparse signal can be recovered by solving (3) from 

only   m = 2k +1 measurements [2]. However, solving (3) is 

known to be an NP hard problem. To achieve a practical 

solution, a convex surrogate of the NP hard problem is 

solved instead 

  
min || x ||

1
 subject to || y Ax ||

2
         (4) 

 It has been proved that under certain conditions, the solu-

tions (3) and (4) are equivalent [3]. This is good because, it 

allows solution of (4) via well known quadratic program-

ming methods instead of solving an NP hard problem (3). 

But, sparse signal recovery via solving the l1-norm minimi-

zation problem requires more measure-

ments
  
m = Ck log

n

k
[1].  

 In practical situations, the cost of acquiring the measure-

ments is proportional to the number of measurements (m); 

therefore the challenge is to reconstruct the signal with the 

least number of measurements possible. Theoretically the 

least number of measurements required for reconstruction is 

  m = 2k +1 , however this will require solution of an NP hard 

problem (3) – which is not practical. It is shown in [1], that 

by minimizing a fractional norm p (0<p<1) it is possible 

reconstruct the k-sparse signal from 

  
m = C

1
k + pC

2
k log

n

k
measurements. One can directly see 

that when the value of p is small, the contribution due to the 

second factor (
  
pC

2
k log

n

k
) is negligible and the number of 

required measurements is only proportional to the sparsity of 

the vector ( 1C k ). Based on this theoretical result, several 

previous studies proposed methods for solving the signal 
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reconstruction problem for the noiseless case via the follow-

ing optimization: 

  
min || x ||

p
 subject to y = Ax,0 < p 1          (5) 

 Generally gradient descent [2] or iterative least squares 

[1, 4 and 5] is used to solve (5).  

 In this work we will consider the problem of sparse sig-

nal reconstruction under noisy conditions. Moreover our 

method will consider any additive noise and will not be re-

stricted to the Gaussian noise model. Therefore, we propose 

to solve the following optimization problem, 

  
min || x ||

p
 subject to || y Ax ||

q
         (6) 

where p and q can take any positive value. 

 We follow an Iterative Reweighted Least Squares (IRLS) 

methodology for solving (6). The rest of the paper will con-

sist of several sections. Section 2 discusses the main algo-

rithm. The experimental results are described in section 3. 

The conclusions are discussed in section 4. 

2. THE OPTIMIZATION PROBLEM 

 As mentioned earlier, the signal model is given by (2) 

 
y = Ax +  

 The problem is to obtain x by solving the optimization 

problem 

  
x̂ = min || x ||

p

p  subject to || y Ax ||
q

q
         (7) 

 The form in (7) is equivalent to (6) since the minimizer 

for || . ||m is the same as of || . ||mm . The first term || ||ppx is the 

modeling term and the second term || ||qqy Ax is the misfit.  

 The above constrained form can be converted to the 

following unconstrained form 

  

x̂ = min
1

p
|| x ||

p

p
+

q
|| y Ax ||

q

q
          (8) 

 The constant  is related to . But the relationship be-

tween  and  can not be found analytically. In many situa-

tions the term  is not even known beforehand; consequently 

trying to find  is meaningless. In this paper, we propose a 

regularization method which will not require specification of 

 and . 

2.1. Convergence 

 Critics of non-convex optimization are apprehensive stat-

ing that the solution to such problems does not reach a global 

minima. The statement is true in general but not for our 

problem; since this problem is quasi-convex. And for quasi-

convex problems the local minima and the global minima are 

the same. 

 The misfit term 
  
|| y Ax ||

q

q
is convex, since the value of 

‘q’ is always an integer. We will show that the modeling 

term 
  
|| x ||

p

p
is quasi-convex. 

A function 
  f : R

n
R ' is said to be quasi-convex if it satis-

fies the following relationship for 
 

(0,1)
 

  
f ( x + (1 )y) max[ f (x), f ( y)]  

 The above relationship is satisfied by the modeling term. 

  

|| x + (1 )y ||
p

p
= ( x

i
+ (1 )y

i
) p

i

let z
i
= max[x

i
, y

i
]

 || x + (1 )y ||
p

p ( z
i
+ (1 )z

i
) p

i

                                  (z
i
) p

i

= max[|| x ||
p

p , || y ||
p

p ]

 

 As our optimization problem is quasi-convex it is guaran-

teed to reach a global minima. 

2.2. Modeling Term 

 In the IRLS method the modeling term (lp-norm) is 

approximated by a weighted l2-norm. 

  

1

p
|| x ||

p

p 1

2
||W

m
x ||

2

2
           (9) 

 The weight matrix is updated at each iteration. The 

weight matrix at iteration t is given by 

  

W
m

(t) = diag(
2

p
| x(t 1) |( p / 2 1) )         (10) 

 When the solution converges (assuming that it does), we 

have ( 1) ( )x t x t= . Therefore, 

  

1

2
||W

m
x(t) ||

2

2
=

1

2

2

p
x

i
(t) p / 2 1

x
i
(t)

i

i.e 
1

p
x

i
(t) p

i

=
1

p
|| x(t) ||

p

p

 

 The choice behind the particular weight matrix is now 

clear. It is based on the idea that, when the solution reaches 

convergence, the weighted l2-norm behaves as a near perfect 

approximation of the original lp-norm. 

 When the coefficients in x become zeroes (which is ex-

pected since x is sparse) the corresponding diagonal ele-

ments of the weight matrix approach infinity. To avoid such 

a situation, the weight matrix is perturbed slightly, so that 

  

W
m

(t) = diag(
2

p
| x(t 1)+ (t) |( p / 2 1) )        (11) 

 The perturbation  binds the elements of the weight ma-

trix. At each iteration, the perturbation  is reduced so that 

when the solution converges, the weighted l2-norm is a good 

approximation of the desired lp-norm. The idea of perturbing 

the IRLS was proposed in [1]. It showed that the perturbed 

method was significantly better than the unperturbed ones 

such as [5]. 
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 Other methods (based on thresholding) to bind the values 

of the weight matrix have been proposed in [6] (the problem 

in [6] was to solve the problem of Total Variation minimiza-

tion; it is related to ours but not exactly the same). However 

such methods are in general not convergent, while ours is. 

The convergence of perturbed IRLS have been proved in [7]. 

2.3. Misfit 

 The lq-norm misfit is manipulated in the same way as the 

modeling term. It is approximated by a weighted l2-norm. 

  

1

q
|| y Ax ||

q

q 1

2
||W

f
( y Ax) ||

2

2
        (12) 

 At each iteration, the actual misfit is approximated in the 

way shown in (12). The weight matrix is updated at each 

iteration. It has the form, 

  

W
f
(t) = diag(

2

q
| y Ax(t 1) |(q / 2 1) )        (13) 

 It can be easily verified, that this form of the weight ma-

trix leads to perfect approximation of the desired lq-norm 

when the solution converges.  

 The elements of the weight matrix needs to be bounded. 

Therefore, the weight matrix is slightly perturbed by a factor 

. The perturbation is reduced at each iteration, so that it is 

negligible when the solution converges. The perturbed 

weight matrix takes the form, 

  

W
f
(t) = diag(

2

q
| y Ax(t 1)+ (t) |(q / 2 1) )        (14) 

 Such reweighted schemes for approximating the lq-norm 

misfit have been employed earlier [6]. The earlier work em-

ployed a thresholding scheme to bound the weight matrix. 

Our method of perturbing the misfit iteratively showed faster 

convergence. There are other advantages of using the pertur-

bation method compared to thresholding which we will ex-

plain later. 

2.4. General Algorithm 

 The sole purpose of this work is to solve the problem (8). 

With the approximations made in sections 2.1 and 2.2, (8) 

can be represented (approximately) in the following form 

  
x̂ = min

1

2
||W

m
x ||

2

2
+

2
||W

f
( y Ax) ||

2

2
       (15) 

 Alternatively (15) can be expressed in the form 

  

x̂ = min
1

2

W
f

0

0 W
m

A

I
x

y

0
2

2

       (16) 

 The closed form solution to (16) is 

  
x̂ = ( W

m

T
W

m
+ A

T
W

f

T
W

f
A) 1

A
T
W

f

T
W

f
y        (17) 

 It is possible to apply (17) iteratively by updating the 

weight matrices till the solution converges. In fact this is the 

solution proposed in [6] for the problem of Total Variation 

minimization. Applying (17) directly for our purpose has one 

major drawback – choosing the regularization parameter . 

 We set forth to solve (7). There is a relation between the 

amount of misfit  in (7) and the regularization parameter  

of (8). In general there is no analytical relation between these 

two. To make things worse, in many practical situations even 

the misfit  is not known. Studies that develop algorithms 

dependent on regularization parameter mostly guess/tune its 

value. In this work, we propose a solution that does not re-

quire such parameter tuning. 

 With a change of variable, 
  
u =W

m

1
x (this is just a rescal-

ing, the sparsity of original variable x and the transformed 

one u is the same), the closed form solution becomes, 

  
û = ( I +W

m

T
A

T
W

f

T
W

f
AW

m
) 1

W
m

T
A

T
W

f

T
W

f
y       (18) 

 The usual way to solve it is by conjugate gradient 

method. (18) can be solved very efficiently by making 

0= and control the number of iterations of the conjugate 

gradient (CG) algorithm for regularization [8]. 

 The number of CG iterations is to be controlled based on 

Global Cross Validation (GCV). Following [8], the follow-

ing approximate GCV criterion is used to control the number 

of iterations for the CG algorithm. 

  

GCV (t) =
|| Ax(t) y ||

2

2

(N t)2
         (19) 

where N is the length of the vector x. The iterations (t) are to 

be stopped when the GCV criterion reaches a minimum. 

 The GCV criterion is very cheap to compute, it only re-

quires dividing the current residual by a scalar. How the 

GCV acts as a regularizer can be intuitively understood. The 

numerator (misfit) reduces at each CG iteration so that the 

solution is a better fit for the observed data. But at every 

iteration the denominator in (19) reduces as well, so that the 

reduction in misfit is penalized. For a theoretical understand-

ing, the reader is asked to read [9]. 

 Our discussion behind the algorithm is complete. The 

complete algorithm is expressed tersely in the following 

pseudo code.  

 Initialization – set (0) = 0 and 

  
x̂(0) = min || y Ax ||

2
2 solved by regularized CG. 

 At iteration t – continue the following steps till conver-

gence (i.e. either  is less than 10
-6

 or the number of itera-

tions has reached maximum limit) 

1. Find the current modeling and misfit weight matrices 

from equations (11) and (14). 

a. 

  

W
m

(t) = diag(
2

p
| x(t 1)+ (t) |( p / 2 1) )  

b. 

  

W
f
(t) = diag(

2

q
| y Ax(t 1)+ (t) |(q / 2 1) )  
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2. Form a new matrix as required by (18),
 
L =W

f
AW

m
. 

3. Scale y as required by (18), 
 
t =W

d
y . 

4. Solve 
  
û(t) = min || t Lu ||

2

2
via regularized CG. 

5. Find x by rescaling u,
  
x(t) =W

m
u(t) . 

6. Reduce  by a factor of 10 if ||y-Ax||q has reduced. 

 This algorithm has several desirable features. First, it is 

applicable to explicit matrices as well as fast operators. Sec-

ond, it is non-parametric – it does not require specifying pa-

rameters like  or thresholding hyper-parameters as in [6]. 

Third, the algorithm is guaranteed to converge (may be to a 

local minima owing to its con-convexity), since it follows 

IRLS methodology whose convergence has been proved in 

[7]. 

 The computational cost of the algorithm is dominated at 

each step by step 4, the least squares solution. We are em-

ploying a regularized version of the Conjugate Gradient 

method to solve this problem. At most ‘k’ CG iterations are 

run. For each CG iteration the computational cost is O(n
2
) 

for explicit matrices or O(nlogn) for fast operators. There-

fore the dominating cost at each step is O(kn
2
) or O(nlogn) as 

the case may be. 

3. EXPERIMENTAL EVALUATION  

 The experiments are performed on synthetic data. A 

sparse signal of length 150 with only 25 non-zero coeffi-

cients is generated at random. It is measured by a measure-

ment matrix A of size 100X150, which, in our case, is an 

i.i.d. Gaussian matrix with its columns normalized to unity. 

The measurement vector (length 100) is corrupted by addi-

tive noise. In all the experiments the value of the sparsity 

promoting norm (||.||p) was fixed at 0.6 as the best results 

were obtained at this value. Simulations were carried out 

10,000 times for all the experimental configurations. The 

results shown are the averaged over all simulations. 

It was theoretically shown in [2] that the results from the 

following two optimizations are nearly the same for Ga

 ussian noise. 

  
min || x ||

p
 subject to y = Ax       (20a) 

  
min || x ||

p
 subject to || y Ax ||

2
     (20b) 

 This implies that solution of the sparse reconstruction 

problem by the proposed method (20b) will be the same as 

the solution proposed in [1]. In the first experiment we will 

show that, practically such is not the case. Reconstruction 

errors from our proposed method is significantly less com-

pared to [1]. The normalized mean squared errors between 

the original (noiseless) signal and the reconstrucred one for 
different values of noise variance are tabulated in Table 1. 

 Results from Table 1 validate that the optimization 

method that incorporates noisyness of the data (20b) yields 

better values compared to the optimization which treats the 

data to be noiseless (20a). Results from (20b) show better 

performance when the data becomes progressively more 
noisy. 

Table 1. NMSE for Gaussian Noise 

2
 value for Gaussian Noise Optimization 

Constraint 
0.05 0.1 0.25 0.5 

y=Ax 0.027 0.030 0.037 0.054 

||y-Ax||2<  0.019 0.020 0.026 0.039 

 
 In the following experiment we will add non-Gaussian 
noise to the data. In such cases the ||.||2 for the misfit is not 
optimal. Tables 2 and 3 show the results for Poisson noise 
and Impulse noise respectively. The best results for Poisson 
noise are obtained when the norm of the misfit is 3 and for 
Impulse noise the corresponding value is 6. 

Table 2. NMSE for Poisson Noise 

Optimization Constraint NMSE 

y=Ax 0.124 

||y-Ax||2<  0.107 

||y-Ax||3<  0.057 

 

Table 3. NMSE for Impulse Noise 

Fraction of coefficients affected Optimization 

Constraint 
0.01 0.05 0.1 0.25 

y=Ax 0.050 0.052 0.052 0.055 

||y-Ax||2<  0.048 0.049 0.050 0.053 

||y-Ax||6<  0.036 0.039 0.040 0.042 

 
 Tables 2 and 3 show that the ability to vary the norm of 
the misfit helps in better denoising. By varying the norm 
according to the type of noise, it is possible to obtain signifi-
cantly better results. For Poisson noise the NMSE improved 
by around 40% and for Impulse noise the improvement is 
around 20%. 

4. CONCLUSION 

 Compressed Sensing addreses the problem of solving an 
under-determined system of linear equations where the solu-
tion is known to be sparse. Most of the recovery algorithms 
in this area propose to solve this problem by convex optimi-
zation methods. This is a major shortcoming since it is 
known that better solutions can be achieved via non-convex 
optimization. Moreover such solutions almost always as-
sume that the noise is Gaussian – which may not be the case. 
The few studies related to non-convex optimization are con-
fined to the noiseless case. This work addresses these short-
comings and s a non-convex optimization method that can 
handle any type of additive noise. 

 Our algorithm is simple to implement. We have made our 
code publicly available from [10]. The algorithm is non-
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parametric and does not require the knowledge of the noise 
variance or the amount of model misfit. Experimental results 
indicate that significant improvements can be achieved by 
our proposed method over previous non-convex methods. 
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p
 subject to y = Ax  
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