
 The Open Signal Processing Journal, 2009, 2, 7-13 7

 1876-8253/09 2009 Bentham Open

Open Access

FPGA-Based Image Processor for Sensor Nodes in a Sensor Network

Masaki Yoshimura, Hideki Kawai, Taketoshi Iyota and Yongwoon Choi*

Faculty of Engineering, Soka University, 1-236 Tangimachi Hachioji, Tokyo, Japan

Abstract: A field-programmable-gate-array- (FPGA-) based image processor which can be used for sensor nodes in a

sensor network has been proposed and developed. Image processors for the nodes must satisfy requirements such as low

power consumption, small circuitry scale, and modifiability of the hardware architecture. By developing an image proces-

sor designed using an FPGA, SRAM modules, and the vector code correlation method which is suitable for the construc-

tion of the target hardware architecture, it was possible to ensure that the processor satisfies these requirements. In this

paper, we present the details of this image processor, which employs the template matching method for target tracking as

well as the background subtraction method for object extraction. In addition, in order to verify its applicability in sensor

nodes, we demonstrate the usefulness of the image processor from the results of an experiment in which the template

matching and background subtraction methods were implemented simultaneously.

Keywords: FPGA-based image processor, Sensor network, Template matching, Background subtraction, Real-time processing,
Low power consumption.

1. INTRODUCTION

 Much of the research focusing on sensor nodes that are
composed of microprocessors, sensors, and actuators has
been conducted in the field of sensor networks [1, 2]. Sensor
nodes are linked to each other with either wired or wireless
interfaces to form sensor networks, which are mounted on
doors, floors, walls and other structural elements of various
facilities. These sensor nodes are used for obtaining informa-
tion on the environmental conditions and the behavior of the
users, such as robots and humans, and the information pro-
vided by their own or other sensor nodes is used for operat-
ing and controlling their actuators. Therefore, sensor nodes
in sensor networks play an essential role in implementing
functions such as smart sensing and environmental monitor-
ing [3].

 The image sensors which are often used in sensor nodes
due to their features, such as no contact and wide sensing
range, do not necessarily satisfy the requirements for sensor
nodes due to the limitations of the performance of general
microprocessors in terms of power consumption and real-
time response [4-6]. Accordingly, image processors which
solve these problems have also been investigated from the
viewpoint of hardware architecture in order to achieve real-
time response [7-12]. However, all such studies have been
conducted with the aim of developing effective solutions
based on the limitation for the size and the type of the target
images to be processed [7-9]. Furthermore, such studies have
given preference to the performance-related specifications of
the processors, which entail large-scale circuitry and high
clock frequencies and high power consumption [9-12].

 As a means to overcome these limitations, we have pro-
posed and developed the hardware architecture of a proces-

*Address correspondence to this author at the Faculty of Engineering, Soka

University, 1-236 Tangimachi Hachioji, Tokyo, Japan; Tel: +81 42 6918197;

Fax: +81 42 6918197; E-mail: choi@soka.ac.jp

sor which is suitable for use as an image sensor in sensor
nodes. In order for an image processor to be used in sensor
nodes, it should satisfy the following requirements.

1) In order to achieve low power consumption, the proces-
sor should be designed as small as possible in terms of cir-
cuitry scale, and should run as low as possible in terms of
clock frequency.

2) It should be able to process images of video graphic array
(VGA) size at speeds which are higher than the processing
speed of general-purpose software.

3) It should be easily modifiable when designing hardware
architectures for specific applications.

 In order to satisfy these requirements, the image proces-
sor was built by using a static RAM (SRAM), a field-
programmable-gate-array (FPGA) whose internal structure
can be altered in accordance with the target application, and
the vector code correlation (VCC) method, which is suitable
for the construction of the desired hardware architecture
[13]. In this paper, we present the details of the proposed
image processor, which is used with the template matching
method for target tracking and the background subtraction
method for object extraction. In addition, in order to verify
its applicability in sensor nodes, we also demonstrate the
high performance of the image processor on the basis of the
results of an experiment in which the template matching
method and the background subtraction method were applied
simultaneously by slightly modifying the original architec-
ture.

2. VECTOR CODE CORRELATION

 One of the widely adopted techniques for finding a target
in a given image is the template matching method. This
method is used to detect the target by comparing the tem-
plate image of the target with all partial images of an input
image. However, this common method has the disadvantage
of relying on complex algorithms for finding the target in

8 The Open Signal Processing Journal, 2009, Volume 2 Yoshimura et al.

captured images. In order to overcome this, we have devel-
oped a kind of template matching method—the vector code
correlation (VCC) method—which can efficiently improve
the performance of the algorithm and the robustness against
illumination changes. The VCC method is especially useful
in conditions involving both illumination changes and the
need for high-speed processing. VCC is a method for calcu-
lating the degree of similarity between images by comparing
corresponding bits which are encoded into two bits referred
to as vector code, rather than comparing the intensity of the
pixels, which is a commonly used method in image process-
ing. The vector code described here is in fact a combination
of three kinds of codes for calculating the gradient of an ap-
proximate plane. The gradient of an approximate plane is
composed of a square 3 3 pixels in size, which is con-
structed by taking into account the intensity of the 8 neigh-
boring pixels of the target pixel, as shown in Fig. (1). Each
pixel in the image has a vector code of 4 bits composed of a
pair of the 2-bit sequences 01, 00, and 10, for both the x and
the y direction. For example, the vector code for the gradient
of the 3 3-pixel square in the ‘template image’ of Fig. (1) is
0101, where each vector code for the gradient is 01 (corre-
sponding to a "positive" gradient) for both the x- and the y-
direction. Likewise, the vector code for the gradients of the
region given in the ‘partial image’ is encoded as 1001 since
the sequence for the x-direction is 10 (negative), and that for
the y-direction is 01 (positive), respectively. The similarity is
calculated by performing an XOR operation on the two en-
coded vector codes, and the result in this case is 1100. By
counting the number of ‘1’s in the result (1100), we obtain
the correlation value for the two vector codes, which is 2 in
this case. This indicates the degree of similarity between the
vector codes for two given regions. Therefore, the smaller
the correlation value, the greater the similarity between the
two images.

Fig. (1). Schematics of the vector code correlation method.

 The VCC method for comparing two images relies on the
coded gradient of each pixel instead of the intensity, and
therefore it has the advantage of robustness against illumina-
tion changes. Moreover, adopting the VCC method not only
reduces the amount of image data, but also simplifies the
algorithm for template matching. Thus, the hardware archi-
tecture for an image processor based on VCC can be effec-
tively designed on circuitry scale.

3. HARDWARE ARCHITECTURE

 Fig. (2) shows the hardware architecture for an image
processor based on the VCC method. This hardware archi-

tecture consists of an FPGA, including several modules and
an SRAM module for storing image data. Images captured
through a camera or sent via the communication interface by
a microprocessor are stored to the SRAM. After that, the
input image from the camera and the stored image are simul-
taneously converted into vector codes by each encoder mod-
ule. The image processing block is where the internal design
can be modified in accordance to the desired application. For
example, if it is necessary to realize the template matching
method for target tracking or the background subtraction
method for object extraction with the VCC method, the im-
age processing block is replaced with the block shown in
Fig. (3a) or (3b).

Fig. (2). Schematics of the hardware architecture based on the VCC

method.

Fig. (3) Processing modules in the modifiable image processing

block of Fig. (2): (a) Modules for template matching, (b) Module

for background subtraction.

 Since each module in the architecture operates and per-
forms matching for the partial images at the frequency of the
pixel clock, the processing speed for the template matching
and the background subtraction methods is the same as the
frame rate of the camera. Therefore, we have pursued a
hardware architecture which can perform processing in real
time by using sensor nodes. In this chapter, we describe the
details of the modules in our designed architecture.

3.1. Encoder Module for the Vector Code

 Fig. (4) shows the schematics of the two encoder mod-
ules, which generate the vector codes for the image inputted
from the camera and the image stored in the SRAM. Al-
though these modules are identical in terms of their function,
they process image data inputted from different sources.
Each module consists of four memory buffers, two selectors,
3 3 shift registers, respective filters for the x and y direc-

Camera

SRAM

Encoder module
for the input image

Encoder module
for the stored image

Image processing block

Micro-
processor

FPGA Image processor

Camera
interface

Communication
interface

Template image X

YIntensity

Partial image X

YIntensity

Vector code
Positive

01

Neutral Negative

1000

Coding 01 01
X direction Y direction

Coding 10 01
X direction Y direction

XOR
operation 1100

Count

2
Correlation value

Image processing block Image processing block

Correlation calculation
module

Comparison module

Subtraction module

Vector codes Vector codes Vector codes Vector codes

Coordinates Subtraction value

(b) (a)

FPGA-Based Image Processor for Sensor Nodes in a Sensor Network The Open Signal Processing Journal, 2009, Volume 2 9

tions, and four comparators. Selector 1 selects one of the
memory buffers and sends the intensity data of one row of
the input image in a sequential manner. At the same time,
selector 2 selects three memory buffers, in which the inten-
sity data are already stored, and sends the intensity data of
one pixel from each memory buffer to the shift registers by
following the order of the columns. Thus, the intensity data
for 3 3 pixels are stored in the shift registers. Subsequently,
the stored intensity data are used for calculating the gradients
through the respective filters for the x and y directions. Each
gradient is encoded into a 2-bit vector code by comparing it
to the thresholds of Th1 and Th2 inside the comparators.
Each vector code comprises a pair of 2-bit sequences,
namely 01, 10, or 00, which indicate positive, negative, and
neutral gradients, respectively. Therefore, the vector code for
a certain pixel is thus created with 4 bits for the x and y di-
rections. After all vector codes for the three memory buffers
are generated, selector 2 designates three memory buffers for
the next row. By building the encoder module as shown in
Fig. (4), the column intensity data for 3 3 pixels is stored at
a rate corresponding to the pixel clock frequency, and there-
fore the input image can be converted into vector codes at a
rate which is the same as the frame rate of the camera.

Fig. (4). Details of two encoder modules shown in Fig. (2).

3.2. Architecture for Template Matching

 The template matching method is implemented by using
the VCC method on the FPGA with the hardware architec-
ture connected to the modules in the image processing block,
as shown in Fig. (3a). The correlation calculation module
generates the correlation values, which are obtained by
counting the number of ‘1’s in the result of the XOR opera-
tion applied to the vector codes of the partial image and the
template image, which are converted by the two encoder
modules. In the comparison module, the correlation value of
a given location is compared with that of another location in
order to obtain the minimum correlation value. After per-
forming a comparison with all correlation values for the in-
put image, the comparison module sends the minimum cor-
relation value and the coordinates of the target location to the
SRAM, after which those data are transmitted to the micro-
processor through the communication interface. The details
of each module for the template matching method are ex-
plained in the following sections.

3.2.1. Correlation Calculation Module

 Fig. (5) shows the schematics of the correlation calcula-
tion module, which is used for template matching between a
given template image and one of the partial images of an
input image. The size of both the template and the partial
image is 32 32 pixels. This module is composed of two
clusters of 32 32 shift registers (SR1 and SR2), a 31-unit
FIFO buffer, and XOR and SUM operator modules. The
vector codes encoded by the two encoder modules are se-
quentially inputted to the SR1 and SR2 shift registers, start-
ing with the upper left corner of the respective images.

Fig. (5). Details of the correlation calculation module shown in Fig.

(3a).

 In particular, the vector codes of 32 rows of the input
images are first stored to the respective registers of 32 rows
in order to form a partial image in the 32 32 SR1 shift regis-
ters, and the remainders in each row for the input image are
saved to the respective 31-unit FIFO buffer. Here, the FIFO
buffer only has the capacity to subtract the vector codes of
the 32 shift registers from the vector codes of a single row of
the input image. Therefore, when the vector codes com-
pletely occupy the shift registers of SR1, each XOR operator
generates the result for the vector code corresponding to the
same position of the registers in SR1 and SR2, sending it to
the RR register. The number of ‘1’s (the correlation value) in
the results saved in the RR register is calculated by the SUM
operators and is outputted to the comparison module. Thus,
since the flow in this module is implemented in parallel at
the pixel clock frequency over the entire constituent ele-
ments forming the module, the processing speed with respect
to the input image matches the camera frame rate.

3.2.2. Comparison Module

 Fig. (6) shows the schematic details of the comparison
module. Register 1 in the comparison module stores the first
correlation value from the correlation calculation module.
The value of register 1 is compared to the next correlation
value in the comparator, which creates a signal named "comp
signal". Depending on the resulting comp signal, selector 1
sends the smaller correlation value to register 1. Subse-
quently, the values of the counters for the x and y directions
are stored to register 2 and register 3, respectively, which
represent the x and y coordinates of the pixel with the
smaller correlation value. After comparing all input correla-
tion values of an image, the correlation value and the x and y
coordinates are stored to register 4 and are outputted to the
microprocessor. The partial image with the minimum corre-
lation value processed on the basis of the input image indi-

-1/6

-1/6

-1/6

0

0

0

1/6

1/6

1/6

-1/6

1/6

0

-1/6

1/6

0

-1/6

1/6

0

X direction filter Y direction filter

Shift registers

4-bit vector code

1
2
3
4

Selector 2

Memory buffers

Intensity data Selector 1

Gradient

Th1 Th2

Comparator Comparator Comparator Comparator

Th1 Th2

Gradient

FIFO

FIFO

32× 32 shift register SR1Vector code of the
input image

XOR
operators

Correlation valueSUM operators

Vector code of the
template image

32× 32 shift register SR2

32× 32 Register RR

10 The Open Signal Processing Journal, 2009, Volume 2 Yoshimura et al.

cates the target, and corresponding the x and y coordinates
indicate its position.

Fig. (6). Details of the comparison module illustrated in Fig. (3a).

3.3. Architecture for Background Subtraction

 The background subtraction method is used for extracting
only the changed portions of the image by subtracting the
previously obtained background image from the input image.
Fig. (7) shows a notional diagram which explains the back-
ground subtraction method, which is based on the VCC
method. The background subtraction method is implemented
by comparing all partial images of the same location of the
input image and the given background image. For example,
if the results for two partial images with coordinates (x1, y1)
in both images are different, it is considered that an ‘object’
has appeared in the background image. If the results are
similar, as shown in location (x2, y2), the partial image is
classified as ‘background’. This method can be implemented
by replacing the image processing block of Fig. (2) with the
subtraction module shown in Fig. (8).

Fig. (7). Notional diagram explaining the background subtraction

method.

 Fig. (8) shows the schematics of the subtraction module,
which is composed of two clusters of 8 8 shift registers
(SR1 and SR2), two FIFO buffers comprising 7 units each,
XOR and SUM operators, and a comparator. This module is
prepared on the basis of a similar idea to that of the module
in Fig. (5), which is described in Section 3.2.1. However, the
shift registers for the partial images are formed with respect
to 8 8 pixels, as opposed to the 32 32 registers in SR1 and
SR2 of Fig. (5). Accordingly, each FIFO in this module has

the capacity to store the vector codes of 7 pixels for one row
of the input image.

Fig. (8). Details of the subtraction module illustrated in Fig. (3b).

 The vector codes from the two encoder modules are si-
multaneously inputted to the SR1 and SR2 shift registers,
respectively. When the vector code for each upper left pixel
of the partial images is stored to the respective bottom right
shift registers of SR1 and SR2, 8 8-pixel partial images are
formed in SR1 and SR2 for the same location in both the
input image and the background image, and the result of the
XOR operation is in turn stored to the RR registers at each
clock cycle. The correlation values for the stored results are
calculated by using the SUM operators and are compared to
a threshold in the comparator at each clock cycle. The result
of the comparison is outputted as the subtraction value,
where a subtraction value of ‘1’ indicates the presence of an
‘object’ if the correlation value is equal to or greater than the
threshold, and ‘0’ indicates ‘background’ if the correlation
value is smaller than the threshold.

4. EXPERIMENTS

4.1. Experimental Environment

 In order to verify the running state of the hardware archi-
tectures designed as shown in Figs. (2) and (3), we per-
formed target tracking and object extraction experiments in
an indoor environment. The camera shown in Fig. (9) has the

Fig. (9). Setup used to verify the running state of our hardware

architecture.

Matching
results

Comp signal

Minimum
value

X coordinate

Y coordinate

Selector 2
Selector 3

Selector 1

Y counter

X counter

Correlation
value

Comparator

Register 4

Register 1

Register 2

Register 3

Background image Input image

Partial image

Compare

Partial image

(x1,y1) (x1,y1)

Partial imagePartial image

(x2,y2) (x2,y2)

Object Background

Compare

Subtraction value

FIFO

FIFO

8× 8 shift register SR1

SUM operators
XOR operators

FIFO

FIFO
Comparator

Threshold

Vector code of
the background image

Vector code of
the input image

8× 8 shift register SR2

8× 8 register RR

Camera

FPGA evaluation board

Image capture board

PC

FPGA-Based Image Processor for Sensor Nodes in a Sensor Network The Open Signal Processing Journal, 2009, Volume 2 11

following parameters: CCD 60fps, 640 480 pixels/frame,
and 8bits/pixel. The operation clock of the FPGA used here
was equal to that of the camera, which is 25MHz. The image
capture board connected to the camera is linked to the FPGA
evaluation board. For the purpose of evaluating the designed
hardware architecture, we used a Cyclone FPGA and a serial
port for communication between the FPGA and the PC.

4.2. Target Tracking Experiment

 We performed an experiment for target tracking based on
the template matching method using the VCC method. Fig.
(10) shows an input image and the template image of a target
in the image. The template image for target tracking, which
is 32 32 pixels in size, is in the middle of the input image.
By horizontally moving the target to the right or to left in
stages, it was confirmed that the matching accuracy was high
and the processing speed matched the frame rate of a camera.
Fig. (11a) and (11b) illustrate the trace of the x and the y
coordinates for the central position of the target in the image,
respectively. For example, the graph in Fig. (11a) indicates
that the target is in a steady state with respect to the horizon-
tal axis of the stages corresponding to frames 0-170 and 700-
900, and that it is moving to the left in frames 170-320 and
550-700 and to the right in frames 320-550. Fig. (11b) shows
that there is no significant movement along the y axis in the
image since the trace is almost leveled. From the experimen-
tal results, we concluded that the matching accuracy is
within ±5 pixels of the acceptable range and that the process-
ing time is 1/60 seconds per frame.

Fig. (10). Input and template images used in the experiment.

4.3. Object Extraction Experiment

 We performed experiments for object extraction by using
the background subtraction method, which was implemented
on our hardware architecture. In these experiments, we at-
tempted to evaluate whether a human body as an object can
be detected and extracted as a roughly outlined region. Fig.
(12) shows one of the experimental results for object extrac-
tion. The image shown in Fig. (12c) was obtained by sub-
tracting the background image from the input image, which
are shown in Fig. (12a) and (12b), respectively. As demon-
strated by the experimental result in Fig. (12c), although
some parts of the object were not detected, it was confirmed
that the rough shape of a human body can be extracted. This
means that an area corresponding to a human body can be
obtained when using the image sensor on the sensor nodes.

Additionally, there was mp undesirable noise in the sub-
tracted image, which implies that our hardware architecture
can be used in small-scale image sensors since there is no
need for additional complicated algorithms for noise elimi-
nation. From the experimental results, we confirmed that it is
possible to use our hardware architecture for object extrac-
tion, as well as that its performance is sufficiently high for
the implementation of the background subtraction method by
using small-scale image sensors.

Fig. (12). Images used in the experiment and the image resulting

from the background subtraction experiment: (a) Background im-

age, (b) Input image, (c) Subtracted image.

Fig. (11). Experimental results for template matching: (a) Transi-

tion of the x coordinates in accordance with the stage, (b) Transi-

tion of the y coordinates in accordance with the stage.

Template imageInput image

(0,0) (639,0)

(0,479) (639,479)

(338,338)

0

80

160

240

320

400

480

560

640

0 100 200 300 400 500 600 700 800 900

C
oo

rd
in

at
es

 (p
ix

el
)

Times (sec)

0

80

160

240

320

400

480

0 100 200 300 400 500 600 700 800 900

C
oo

rd
in

at
es

 (p
ix

el
)

Times (sec)

(a)

(b)

(b) (a)

(c)

12 The Open Signal Processing Journal, 2009, Volume 2 Yoshimura et al.

4.4. Circuitry Scale and Power Consumption

 Table 1 shows the dimensions of the circuitry and the
estimated power consumption of our hardware architecture,
which was implemented with the latest Cyclone III
(EP3C25) FPGA. The size of this FPGA is moderate, and it
runs with lower power consumption than other FPGA device
families. Our architecture for the template matching and
background subtraction methods was realized with FPGA
ratios of 75% and 11% for the logic elements and 27% and
20% for the internal memory buffers, respectively. From
these results, we confirmed that these methods can be im-
plemented on a typical FPGA on circuitry scale. Also, the
estimated power consumption for executing these two tasks
was 229mW and 165mW, respectively. As a power con-
sumption of 1W or less is usually considered low, the devel-
oped architecture can be considered to have satisfied the
requirements for power consumption.

5. PERFORMANCE

 An experiment was conducted in order to verify the ap-
plicability of the designed hardware in real indoor environ-
ments. The experiment consisted of tracking the region of
the body and the face of a person in a captured image. This
might be useful for the detection of persons entering and
leaving a room, for example, in the field of monitoring and
surveillance. The purpose of this experiment was to examine
whether our hardware can be used in sensor nodes in the
field of sensor networks, and whether it is suitable in terms
of scale and performance for implementing the template
matching and background subtraction methods, which are
often used in this field. However, in order to perform this
experiment, we added the modules shown in Fig. (13) to the
image processing block illustrated in Fig. (2). We provide an
explanation of the details regarding the added modules in the
following sections.

Fig. (13). Modules in the image processing block of Fig. (2)

designed for the current experiment.

5.1. Hardware Architecture for this Experiment

 The schematics of the additional modules in the image
processing block necessary for implementing the template

matching and background subtraction methods simultane-
ously are shown in Fig. (13). The input image and the stored
image, which are encoded as vector codes, as shown in Fig.
(2), are inputted to both the correlation calculation module
and the subtraction module. The input data are processed in
the same manner as explained in Sections 3.2 and 3.3, re-
spectively. As a result, the minimum and the maximum co-
ordinates for the entire body and face regions of a person are
outputted into the register. Fig. (14) shows the schematics of
the region module illustrated in Fig. (13).

Fig. (14). Details of the region detection module.

 This module consists of two counters for the x and y co-
ordinates, four comparators, four selectors, and four regis-
ters. The registers store the minimum or the maximum coor-
dinates for the x and y axes by comparing the coordinates of
each counter for the region formed when the subtraction
value is regarded as an object. After comparing it to all sub-
traction values for an image, the stored coordinates corre-
sponding to the region of the target object are outputted to
the PC.

5.2. Results of the Experiment

 The result of the simultaneous implementation of the
template matching method with the template image in Fig.
(15a) and the background subtraction method with the back-
ground image in Fig. (15b) is shown in Fig. (15c). It is clear
from Fig. (15c) that the large rectangular region surrounding
the entire body and the small rectangle inside it correspond
to the region of the object extracted with the background
subtraction method and the location of the human face de-
tected with the template matching method, respectively.
From these results, we know that the two methods can be
implemented at a rate matching the camera frame rate with
the hardware architecture constructed on one FPGA used in
our experiments. Regarding the FPGA used in this experi-
ment, the usage rate for the logic elements, the internal
memories, and the estimated power consumption was 85%,

Table 1. Circuitry Scale and Power Consumption of the FPGA (Cyclone III: EP3C25)

 Template Matching Background Subtraction

Logic elements 18,533 (75%) 2,819 (11%)

Internal memories 163,840 bits (27%) 122,880 bits (20%)

Power consumption 229mW 165mW

Subtraction module

Region module

Correlation calculation
module

Comparison module

Image processing block

Vector codes Vector codes

CoordinatesRegister

X counter

Selector
Selector

Comparison

Y counter

Selector
Selector

Comparison

Subtraction value

Minimum X

Maximum X

Minimum Y

Maximum Y

Comparison

Comparison

Region

Register

Register

Register

Register

Register

FPGA-Based Image Processor for Sensor Nodes in a Sensor Network The Open Signal Processing Journal, 2009, Volume 2 13

37%, and 242mW, respectively, as shown in Table 2. This
means that the hardware architecture is useful in terms of
power consumption, circuitry scale, and processing speed as
required for the sensor nodes in a sensor network. In particu-
lar, the obtained processing speed suggests that our hardware
architecture exceeds the processing speed of general-purpose
software.

Fig. (15) Excerpt of the results of the experiment combining the

two methods: (a) Template image, (b) Background image, (c) Re-

sulting image.

Table 2. Circuitry Scale and Power Consumption on the

FPGA (Cyclone: EP3C25) for the Application

 Application

Logic elements 20,932 (85%)

Internal memories 225,280 bits (37%)

Power consumption 242mW

6. CONCLUSION

 We have proposed an image processor which can be used
in the sensor nodes of a sensor network. Image processors on
sensor nodes must satisfy the requirements of power con-
sumption, circuitry scale, and modifiability of the hardware
architecture. We successfully developed a hardware architec-
ture which satisfies these requirements by developing an
image processor including a FPGA and SRAM. In terms of
power consumption and circuitry scale, a solution was found
in constructing the hardware architecture by adopting the
vector code correlation (VCC) method. The requirements for
our hardware architecture were satisfied for a camera frame
rate of 60fps with respect to the processing time and the low
power consumption of 242mW. We performed simultaneous

target tracking and object extraction with respect to an image
in order to verify that the requirements were satisfied. In
addition, from for the viewpoint of practical use, we con-
firmed that the processor based on our hardware architecture
has the advantage of exceeding the speed of general-purpose
software with respect to processing VGA images.

7. ACKNOWLEDGEMENT

 This research was partially supported by the "Collabora-
tion with Local Communities" Project for Private Universi-
ties on "Development of Ubiquitous Monitoring Network
Based on Distributed Sensor Nodes using Local Positioning /
Optical Sensory Nerves and their Industrial Applications", a
matching fund subsidy from MEXT (The Ministry of Educa-
tion, Culture, Sports, Science and Technology of Japan),
2006-2010.

REFERENCES

[1] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey”, Comput. Newt., vol. 38, pp.
393-422, March 2002.

[2] M. A. M. Vieira, C. N. Coelho Jr, D. C. da Ssilva Jr. and J. M. da
Mata, “Survey on wireless sensor network devices”, in 9th IEEE
International Conference on Emerging Technologies and Factory
Automation, 2003, pp. 537- 544.

[3] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor net-
works”, Computer, vol. 37, pp. 41-49, August 2004.

[4] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava, “Cyclops: in situ image sensing and interpreta-
tion in wireless sensor networks”, in 3rd International Conference
on Embedded Networked Sensor Systems, 2005, pp. 192-204.

[5] S. Hengstler, and H. Aghajan, “WiSNAP: a wireless image sensor
network application platform”, in 2nd International Conference on
Testbeds and Research Infrastructures for the Development of
Networks and Communities, 2006, pp. 6-12.

[6] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan, “MeshEye: a
hybrid-resolution smart camera mote for applications in distributed
intelligent surveillance”, in 6th International Conference on Infor-
mation Processing in Sensor Networks, 2007, pp. 360-369.

[7] T. T. Kwok, and Y. K. Kwok, “Computation and energy efficient
image processing in wireless sensor networks based on reconfigur-
able computing”, in International Conference on Parallel Process-
ing, 2006, pp. 43-50.

[8] H. Matsubayashi, S. Nino, T. Aramaki, Y. Shibata, and K. Oguri,
“Retrieving 3-D information with streamed template matching”, in
Technical Committee on Reconfigurable Systems, 2007, pp. 19-24.

[9] I. Ohmura, O. Mitamura, K. Nakahara, H. Takauji, S. Kaneko, M.
Shimizu, and Y. Miyashita, “A real time velocity sensor for agri-
motors by use of FPGA realization of orientation code matching”,
IEICE Trans. Info. Syst., vol. J91-D, pp. 1325-1335, May 2008.

[10] J. Gause, P. Y. K. Cheung, and W. Luk, “Reconfigurable shape-
adaptive template matching architectures”, in IEEE Symposium on
Field-Programmable Custom Computing Machines, 2002, pp. 98-
107.

[11] S. Hezel, A. Kugel, R. Manner, and D. M. Gavrila, “FPGA-based
template matching using distance transforms”, in IEEE Symposium
on Field-Programmable Custom Computing Machines, 2002, pp.
89-97.

[12] C. T. Huitzil, and M.A. Estrada, “FPGA-based configurable sys-
tolic architecture for window-based image processing”, EURASIP
J. Appl. Signal Process., vol. 2005, pp. 1024-1034, July 2005.

[13] M. Yoshimura, H. Kawai, T. Iyota, and Y. Choi, “Hardware design
of vector code correlation method for high-speed template match-
ing”, in International Conference on Control Automation and Sys-
tems, 2008, pp. 2529-2532.

Received: December 24, 2008 Revised: February 19, 2009 Accepted: February 25, 2009

© Yoshimura et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

(b) (a)

(c)

