
20 The Open Signal Processing Journal, 2010, 3, 20-29  

 

 1876-8253/10 2010 Bentham Open 

Open Access 

Tailoring of Minimum Sidelobe Cosine-Sum Windows for High-Resolution 
Measurements 

Hans-Helge Albrecht* 

Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany 

Abstract: Cosine-sum windows with minimum sidelobes (minimum sidelobe windows) have good properties in terms of 

peak sidelobe level (PSL) and equivalent noise bandwidth (ENBW). But neighboring windows (the number of coeffi-

cients differ by one) have quite large PSL differences. If, for a special data analysis, the PSL of the window should not 

exceed a given value, then often windows with a much lower PSL than specified have to be used. Due to increasing 

ENBW in the case of decreasing PSL, this leads, amongst others, to more uncertainty in the determination of signal amplitudes.  

This article describes how to design modified minimum sidelobe windows which have similar properties to minimum 

sidelobe windows for a given PSL. Their ENBW were, however, traded off against PSL. Using such a design, windows 

can be created exactly for a given value of PSL at small ENBW. The adjustment of the asymptotic decay of the sidelobes 

and the determination of the window coefficients will be done without solving linear systems of equations to avoid known 

numerical problems. By using the proposed algorithm, more than 6000 windows with PSL values greater than -350 dB 

were created. The parameters and coefficients of selected windows will be given in the article. 

Keywords: Window function, spectral analysis, Fourier transform, signal processing. 

1. INTRODUCTION 

 For the purpose of spectral analysis, often a short section 

of the duration Tw  is to be cut from a time varying signal. 

Spectral leakage occurs, if Tw  is not an integer multiple of 

the signal period. In the worst case, spectral leakage makes it 

impossible to detect neighboring spectral terms of small 

amplitude. This is a major problem in the spectral analysis of 

signals, when their period changes or is not known. 

 Window functions may reduce the effect of spectral 

leakage [1-3]. Due to their high peak sidelobe level, 

rectangular windows often cannot be used to detect weak 

signals in spectra with high dynamics. Windows with a low 

peak sidelobe level enable the detection of such signals, but 

they have a higher equivalent noise bandwidth than the 

rectangular window. This, amongst others, leads to larger 

uncertainties in the determination of the signal amplitudes. 

 Cosine-sum windows with minimum sidelobes (called 

minimum sidelobe windows in the following) [2, 4] have 

good properties in terms of both equivalent noise bandwidth 

and peak sidelobe level. Their weighting factors (as for all 

cosine-sum windows) can be determined very easily for 

different window lengths. For each number of window 

coefficients C 2  with a given asymptotic decay of 

sidelobes of 20 (2k +1)  dB/decade, with integer k  and 

0 k (C 2) , there is exactly one minimum sidelobe 

window. For peak sidelobe levels between 43  dB and 
350  dB and a decay of the sidelobes of 20  dB/decade, 
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there are only 12  minimum sidelobe windows (parameters 

of the first 10  windows are given in [5]). The difference 

between values of neighboring windows for the equivalent 

noise bandwidth and the peak sidelobe level is quite large. In 

practice, for a given maximum peak sidelobe level, one 

should use the window with the highest permissible peak 

sidelobe level, and one has to accept in most cases a higher 

equivalent noise bandwidth than expected for a window 

designed with the given maximum peak sidelobe level. 

 The peak sidelobe level of cosine-sum windows can be 

traded off against the mainlobe width [2]. Based on this 

property, this article describes a method for modifying 

minimum sidelobe windows. Windows are presented which 

have similar low equivalent noise bandwidth to minimum 

sidelobe windows, but can be constructed exactly for a 

specified peak sidelobe level. They fill, therefore, the gap 

between neighboring minimum sidelobe windows. The 

design of modified minimum sidelobe windows for an 

asymptotic decay of the sidelobes >20 dB/decade is 

described. The adjustment of the decay of the sidelobes and 

the determination of the window coefficients will be 

performed without solving linear systems of equations to 

avoid known numerical problems. For six selected windows, 

the window parameters and coefficients will be given 

explicitly in Tables 1 and 2. 

2. THE COSINE-SUM WINDOW 

 In this paragraph, the necessary theoretical background 

of the cosine-sum window function and its Fourier 

transform, of the asymptotic decay of sidelobes, of the shift 

of zeros of the Fourier transformed window function, of the 

determination of the coefficients by using the zeros, and of 

the determination of window parameters, is given. 
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 Due to the absence of all minus signs in [5], important 

equations are presented in the following subsection in a 

correct version. 

2.1. Window Function and its Fourier Transform 

 The weighting function w(t)  of the cosine-sum window 

with real coefficients Ap  are as follows:  

w(t) =
p=0

G

1( )
p
Ap cos 2 p

t

Tw
, for 0 t Tw

0, otherwise

    (1) 

Its Fourier transform is the spectral window W ( f ) .  

W ( f ) =
1

Tw 0

Tw

w(t)e j2 ft dt            (2) 

Resulting from (1) and (2) with the normalized frequency
1
 

Q = fTw , one has  

W (Q) =
sin( Q)

p=0

G

1( )
p
Ap

Q

Q2 p2
e j Q

        (3) 

with the limits  

lim
Q 0

W (Q) = A0           (4a) 

 

lim
Q p

W (Q) = 1( )
p 1

2
Ap , for p =1, 2,…,G        (4b) 

and  

W (Q) =
sin( Q)

p=0

G

1( )
p
Ap

Q

Q2 p2
         (5) 

with the limits  

lim
Q 0

W (Q) = A0           (6a) 

 

lim
Q p

W (Q) =
1

2
Ap , for p =1, 2,…,G        (6b) 

 Zeros of (3) and (5) occur with integer Q  for 

Q G +1( ) . Additional zeros produced by the term  

p=0

G

1( )
p
Ap

Q

Q2 p2
           (7) 

can be used to optimize the window characteristics. Their 

location is determined by the coefficients Ap . 

 Term (7) can be written as the quotient of two 

polynomials. In the following, we consider the case of 

symmetric real zero pairs ±Qk . For one real zero pair, the 

following results  

                                                
1In the following, the normalized frequency Q  is used. Bandwidths are also normal-

ized and given without units. 

(Q +Qk )(Q Qk ) =Q
2 Qk

2
          (8) 

and with the constant V1 , the following is obtained for real 

coefficients Ap  and for the number of real zero pairs G 1   

p=0

G

1( )
p
Ap

Q

Q2 p2
=
V1
Q k=0

G 1 Q2 Qk
2

Q2 (k +1)2
         (9) 

Accordingly, (3) can be expressed in the form  

W (Q) =
sin( Q) V1

Q k=0

G 1 Q2 Qk
2

Q2 (k +1)2
e j Q

       (10) 

with the limits  

lim
Q 0

W (Q) =V1
k=0

G 1 Qk
2

(k +1)2
        (11a) 

lim
Q p

W (Q) =V1
k=0

G 1

p2 Qk
2( )

2
m=0
m p

G

p2 m2( )
for p =1, 2,…,G     (11b) 

2.2. Adjustment of the Asymptotic Sidelobe Decay 

 In the frequency domain, a different asymptotic decay of 

the sidelobes is reached by calculating the limits of the 

Fourier transformed window function for L  of the G  pairs 

of zeros | ±Qk | . In the following, the case L <G  will 

be considered. Here at least one pair of zeros is available for 

the optimization of window properties. 

 With V2 = lim
Q 0

W (Q)  and (11a) and after formation of the 

limits | ±Qk |  for L  of the whole of G  zero pairs, the 

following relation is obtained from (10)  

W (Q) =
sin( Q)

1( )
L V2
Q k=0

G L 1Q2 Qk
2

Qk
2

k=1

G k2

Q2 k2
e j Q

for 0 L < G and Qk 0

       (12) 

with the limits  

lim
Q 0

W (Q) =V2         (13a) 

lim
Q p

W (Q) = 1( )
L
V2

(G!)2

k=0

G L 1 p2 Qk
2

Qk
2

2
m=0
m p

G

p2 m2( )

     (13b) 

                
 
for p =1, 2,…,G  

Some simplifications of (13b) give  

lim
Q p

W (Q) = 1( )
p
V2

k=0

p 1 G k

G + k +1 k=0

G L 1Qk
2 p2

Qk
2       (14) 

                
 
for p =1, 2,…,G  
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The gain of the spectral window is set using the constant V2 . 

 Calculating the limits | ±Qk |  of (12) and (14) for all 

other pairs of zeros, one gets the Fourier transformed Rife-

Vincent window class I [6]. 

 For 
 
Q G , the sidelobes of (12) decay asymptotically 

with Q (2L+1)
, this means 20 (2L +1)  dB/decade. 

 An approach in the time domain for the same asymptotic 

decay of the sidelobes, where the coefficients Ap  fulfill a 

linear system of equations derived from the derivatives of 

the window function w(t) , is given in [4]. 

2.3. Shift of the Zeros Qk  

 Designing the cosine-sum window, it is of interest just 

how the shift of the pairs of zeros ±Qk  influences the 

Fourier transformed window function. With (12) one gets 

with a constant Q  for the differential  

dW (Q,Qk ) = 2 W (Q,Qk )
k=0

G L 1 Q2

Qk (Qk
2 Q2 )

dQk  

                for Qk > 0 and |Q | Qk              (15) 

Because for Qk > 0   

Q2

Qk (Qk
2 Q2 )

> 0, for |Q |<Qk

= 0, for Q = 0

< 0, for |Q |>Qk

       (16) 

the level of all sidelobes of |W (Q,Qk ) |  for |Q |<Qk  will 

increase and for |Q |>Qk  will decrease as a result of the shift 

of a zero Qk  by + . With the increasing distance between 

the zero Qk  and the current Q, this influence from dQk /Qk  

on dW (Q,Qk )  will decrease. This property allows a simple 

algorithm to minimize the sidelobe level. Thus, it is 

necessary to consider only the direct neighboring sidelobe 

maxima of a zero (see section 4). 

2.4. Calculation of the Window Coefficients Ap  from 

Zeros Qk  

 Using (3) and (12), a linear system of equations for the 

determination of the coefficients Ap  from the known zeros 

Qk  can be set up. One degree of freedom remains to 

normalize the coefficients. Due to the limitations of 

computer arithmetic, it is difficult to obtain sufficient 

accuracy of the coefficients by solving the system of 

equations numerically. 

 However, the limits of the spectral window allow a direct 

determination of the coefficients Ap . This simple approach 

requires less numerical precision. From (4), (13a) and (14) 

the result for Qk 0  is  

 

A0 =V2

Ap =V2 2
k=0

p 1 G k

G + k +1 k=0

G L 1Qk
2 p2

Qk
2

        for p = 1, 2,…,G and 0 L < G

  

     
(17)

 

The constant V2  is used to normalize the coefficients. For 

the windows indicated in Tables 1 and 2, the coefficients 

fulfill the condition 
p=0

G

Ap =1 . 

2.5. Calculation of Window Parameters 

 The mainlobe bandwidths and the peak sidelobe level can 

be obtained by using the window coefficients Ap  with (5) 

and (6). Also the peak signal gain and equivalent noise 

bandwidth can be calculated on the basis of the window 

coefficients. 

2.5.1. Peak Signal Gain 

 The peak signal gain [2] is defined as PSG =W (0) . With 

(4a)  

PSG = A0           (18) 

follows. 

2.5.2. Equivalent Noise Bandwidth 

 The equivalent noise bandwidth of a window is the width 

of a rectangular window with the same peak power gain, 

which would accumulate the same noise power as the 

analyzed window [2]. The following applies for the 

equivalent noise bandwidth (normalized by 1 /Tw ) in the 

frequency range  

ENBW =

+

|W (Q) |2 dQ

W 2 (0)
         (19) 

where Q  is the normalized frequency. Due to Parseval's 

theorem and if w(t) = 0  for t < 0  and t > Tw , (19) can be 

written as  

ENBW =

1
Tw 0

Tw

w2 (t)dt

W 2 (0)
         (20) 

With (1) and (4a) one gets for the cosine-sum window with 

real coefficients Ap   

ENBW =
1

A0
2Tw

S +
p=0

G

Ap
2

0

Tw
2cos 2 p

t

Tw
dt     (21a) 

with  

S =
i=0

G

j=0
j i

G

1( )
i+ j( ) AiAj

0

Tw

cos 2 i j( )
t

Tw
dt  
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+
0

Tw

cos 2 i + j( )
t

Tw
dt       (21b) 

After integration (the definite integrals in (21b) are equal to 

0 ) and simplification  

ENBW =
1+

1

2A0
2

p=1

G

Ap
2 , for G 1

1, for G = 0

       (22) 

is obtained. The equivalent noise bandwidth of the 

rectangular window is 1 . All cosine-sum windows with 

G 1  have a higher equivalent noise bandwidth. 

3. DESIGN OF COSINE-SUM WINDOWS WITH 

ADJUSTABLE PEAK SIDELOBE LEVEL 

 Using the design of minimum sidelobe windows with an 

asymptotic decay of sidelobes of 20 (2L +1) dB/decade 

based on the design for L = 0  given in [5], the design of the 

modified minimum sidelobe windows will be described here 

for a given peak sidelobe level with a low equivalent noise 

bandwidth. These windows have similar properties to 

minimum sidelobe windows but the peak sidelobe level is 

traded off for equivalent noise bandwidth. 

3.1. Minimum Sidelobe Window 

 To minimize the sidelobes all pairs of real zeros ±Qk  

will be placed outside the mainlobe of the Fourier 

transformed window function. In this case the zero-crossing 

bandwidth of the main lobe is not given by one of the pairs 

of zeros, one gets W (Q)  for |Q | (G +1)  the mainlobe and 

for |Q |> (G +1)  the sidelobes of the window function. 

 If the real zero pairs ±Qk  with 

 
(G +1) <|Q0 | |Q1 | … |Q(G L 1) |  are chosen so that for 

|Q |> (G +1)  the maximum of the function  

|Wnorm (Q) |=
W (Q)

W (0)
         (23) 

becomes the minimum, the window is a minimum sidelobe 

window. Using (12) and (13a), (23) can be expressed as  

|Wnorm (Q) |=| D1D2D3 |        (24a) 

with  

D1 =
sin( Q)

D2 =
1

Q k=0

G L 1

Q2 Qk
2( )

k=1

G 1

Q2 k2

D3 = (G!)
2

k=0

G L 1 1

Qk
2

     (24b) 

 Term D2  in (24b) allows the minimization of the 

sidelobes of the window function. Due to the symmetry of 

(24), only the case Q 0  with positive zeros +Qk  will be 

considered in the following. D2  shows a local extremum 

between two neighboring positive zeros and for Q >Q(G L 1)  

(Fig. 1). The multiplication of D2  with D1  forms – for Q  

with (G +1) <Q Q0  – at least one additional local 

extremum. D3  is a constant for normalization only (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

Fig. (1). Plot of D2 (Q)  for the 5-term minimum sidelobe window 

(G = 4, L =1).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Plot of D1(Q) D2 (Q) D3  for the 5-term minimum 

sidelobe window (G = 4, L =1).  M  indicates the local maxima of 

the absolute value of the shown function. 

 

 Equation (24) has, therefore, within each of the intervals  

 

G +1( ),Q0( , Q0 ,Q1[ ],

…, QG L 2( ) ,QG L 1( ) , QG L 1( ) , )
       (25) 

a local maximum Mk  for 
 
k = 0,1,2,…,G L . When the 

zero Qk  is shifted by the value + , the amplitude of the 

local maxima Mk  for Q <Qk  increases and for Q >Qk  

decreases and vice versa (see subsection 2.3.). 

 In case of the same amplitude of all maxima, any shift of 

a zero by ±  results in the increase of 
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max M 0 ,M1,…,MG L( ) . It is, therefore, assumed that the 

minimal peak sidelobe level is reached here. 

3.2. Modified Minimum Sidelobe Window 

 As well as the minimum sidelobe window also the 

modified minimum sidelobe window has pairs of zeros ±Qk . 

Due to the symmetry of the zeros in (24) only the case 

Q 0  with positive zeros +Qk  will be considered her. 

 Any shift of at least one zero of a minimum sidelobe 

window increases the peak sidelobe level. By modifying the 

window with the lower peak sidelobe level in such a way, 

one can adjust peak sidelobe levels between two neighboring 

minimum sidelobe windows (with equal L).  In most cases, 

this procedure does not lead to windows with a low 

equivalent noise bandwidth for a given peak sidelobe level. 

 For the equivalent noise bandwidth of the cosine-sum 

window following (17) and (22) for Qk 0  one has  

ENBW =1+ 2
p=1

G

k=0

p 1 G k

G + k +1 k=0

G L 1Qk
2 p2

Qk
2

2

 

               for G 1 and 0 L < G         (26) 

If Qk >G  for all (G L)  zeros Qk  of the Fourier 

transformed window function, then in (26) all differences 

will be (Qk
2 p2 ) > 0 . Each shift of Qk  by the value +  

leads to an increasing equivalent noise bandwidth. 

 In the following, the zero Q0  will be used to control the 

peak sidelobe level. If, for a minimum sidelobe window with 

(G L) 2  the zero Q0  with Q0 > (G +1)  will be shifted in 

the direction Q =G  with the remaining zeros unchanged, the 

equivalent noise bandwidth and the level of the maximum 

M 0  decreases. At the same time the level of all other 

maxima will increase. For G Q0 (G +1)  the maximum 

M 0  disappears and the zero-crossing bandwidth of the 

mainlobe will be determined by Q0 . For Q0 =G  the number 

of window coefficients decreases from (G +1)  to G , 

because the coefficient AG  vanishes (17). 

 If Q0  is fixed, G L 1  zeros remain, which can be 

chosen in such a way that a low equivalent noise bandwidth 

is reached at a given peak sidelobe level. For a given peak 

sidelobe level lying between the values of two neighboring 

minimum sidelobe windows, it is possible to create windows 

with different equivalent noise bandwidth, but with equal L  

and G . Simulations for L = 0  and G = 2 , as well as L = 0  

and L =1  for G = 3 , show that the window with the same 

level of the sidelobe maxima M1  up to MG L  has the lowest 

equivalent noise bandwidth. This condition is similar to that 

for minimum sidelobe windows. But in the case of modified 

minimum sidelobe windows, the sidelobe maximum M 0  (if 

it exists) is not considered, because it does not influence the 

peak sidelobe level. 

 The equivalent noise bandwidth and the peak sidelobe 

level are shown as a function of both zeros Q0  and Q1  for 

windows with G = 2  and L = 0  in Fig. (3) and for windows 

with G = 3  and L =1  in Fig. (4), respectively. For a 

constant Q0  with an increasing Q1 , starting with Q1 =Q0 , 

the equivalent noise bandwidth increases due to the 

increasing distance of the zero Q1  from the mainlobe (26). 

At the same time, the level of the maximum M1  increases 

and the level of the maximum M 2  and, consequently, the 

peak sidelobe level decreases. This behavior persists until 

the two maxima M1  and M 2  neighboring the zero Q1  have 

the same level (dots in Figs. 3 and 4). If Q1  increases 

further, the equivalent noise bandwidth and the peak 

sidelobe level then determined by the level of M1  increase. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Equivalent noise bandwidth (ENBW) and peak sidelobe 

level (PSL) as a function of the zeros Q0  and Q1  of cosine-sum 

windows with G = 2  and L = 0 . For Q0 = 2 , windows follow with 

G =1  and L = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The same as Fig. (3) but for cosine-sum windows with 

G = 3  and L =1 . For Q0 = 3 , windows follow with G = 2  and 

L =1 . 

 

 Fig. (5) shows |Wnorm (Q) |  (24) for the minimum sidelobe 

window and for a modified minimum sidelobe window (both 
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windows for G = 2  and L = 0),  where the peak sidelobe 

level of the modified minimum sidelobe window is only 

about 2  dB lower and the equivalent noise bandwidth 

somewhat higher than for the minimum sidelobe window 

with G =1  and L = 0 . Note the lower mainlobe zero-

crossing bandwidth of the modified window due to Q0 . 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Absolute value of the normalized Fourier transformed 

minimum sidelobe window (solid line) and of a modified minimum 

sidelobe window (dashed line), both windows with G = 2  and 

L = 0 . 

 

 For the design of modified minimum sidelobe windows 

with a given peak sidelobe level it is possible to develop a 

simple algorithm on the basis of simulation results. Starting 

with a minimum sidelobe window with desired L  (where 

(G L) 2)  and next lower peak sidelobe level, Q0  will be 

shifted in the direction of Q =G . The remaining G L 1  

zeros have to be optimized in such a way, that the maxima 

M1  up to MG L  of |Wnorm (Q) |  (24) reach the same level. 

Because there is a non-linear relation between Q0  and the 

peak sidelobe level, Q0  has to be optimized so that the 

modified minimum sidelobe window has the desired peak 

sidelobe level. 

 D1(Q) D2 (Q) D3  of a modified 5-term minimum 

sidelobe window designed by the proposed algorithm is 

shown in Fig. (6) in comparison to the 5-term minimum 

sidelobe window (see also Fig. 2). The values for |Q | 5  

belonging to the mainlobe are not shown. 

4. DETERMINATION OF THE ZEROS 

4.1. Zeros of the Minimum Sidelobe Window 

 For the optimization of the zeros for the same level of the 

maxima, a simple algorithm is used. The result of the first 

step is an approximation of the zeros. In the next step, the 

zeros will be determined with high accuracy. 

4.1.1. First Step, Approximated Zeros 

 The following initial values can be used for the zeros:  

 
Qk =G + k + 2, for k = 0,1,…, (G L 1)        (27) 

At the beginning of each optimization cycle, the level Mk  

and the position of the maxima QMk
 for 

 
k = 0,1,…, (G L)  

are determined by using (12). Additionally the ratio  

 

R =
max(M 0 ,M1,…,MG L )

min(M 0 ,M1,…,MG L )
        (28) 

is calculated. If R  falls below a given value, approximations 

for all zeros are found. Otherwise, for each zero a step width 

Qk  will be calculated by using the distance between 

neighboring maxima with a fixed number of steps S :  

Qk =
QMk+1

QMk

S
         (29) 

Each zero Qk  is shifted by + Qk , i.e., Qk :=Qk + Qk , if 

the levels of neighboring maxima Mk < Mk+1 . The zero will 

be shifted by Qk , i.e., Qk :=Qk Qk , if Mk > Mk+1 . Qk  

is not changed in the case of Mk =Mk+1 . In the next step, the 

optimization cycle starts again with the calculation of the 

level and the position of the maxima. 

 For R =1.2  and S =100 , the zeros of windows with a 

peak sidelobe level > 350  dB were approximated. If S  is 

chosen to be too small, it is not possible to obtain adequate 

small values of R . In the other case, only the number of 

optimization cycles will grow. 

4.1.2. Second Step, High Accuracy Zeros 

 Initial values for the optimization are the approximated 

zeros and the associated Qk . At the beginning of each 

optimization cycle, levels and positions of the maxima and 

R , as described, will be calculated. If R  is smaller than all 

previous values, R  and the related zeros will be stored. The 

zeros will be shifted in the same way as described for the 

approximation, and the optimization cycle starts again. If Z  

consecutive optimization cycles do not result in a decrease of 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Plot of D1(Q) D2 (Q) D3  for a modified 5-term minimum 

sidelobe window (solid line) and for comparison the 5-term 

minimum sidelobe window (dashed line), G = 4  and L =1  for 

both windows. M  indicates the local maxima of the absolute value 

of the shown function. 
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R , the values of all Qk  will be divided by two. If during 

the shifting of a zero one gets Qk ± Qk =Qk  due to the 

limited accuracy of the arithmetic used, Qk  will be doubled 

and then the zero Qk  will be shifted. In all the following 

optimization cycles, Qk  is not decreased. The optimization 

ends, if thus after Z  consecutive optimization cycles 

without decreasing of R , no Qk  can be divided by two. 

 For zero optimization of the windows stated in Tables 1 

and 2, Z = 4  was used. 

4.2. Zeros of the Modified Minimum Sidelobe Window 

 In the case of modified minimum sidelobe windows only 

G L 1  zeros Qk  with 
 
k =1,2,…, (G L 1)  are 

available for minimizing the peak sidelobe level, because 

with the given zero Q0  the achievable peak sidelobe level, 

or respectively the equivalent noise bandwidth was 

determined. Q0  has to fulfill the condition G <Q0 <Q0/MSL , 

where Q0/MSL  is the zero Q0  of the minimum sidelobe 

window with the same G  and L  as the modified minimum 

sidelobe window. 

 The minimization of the peak sidelobe level is performed 

with an algorithm which is similar to that described for the 

minimum sidelobe window. The zero Q0  remains 

unchanged and the maximum M 0  (if it exists) will not be 

considered during the calculation of R . Further differences 

compared to the described algorithm are the initial values of 

the zeros  

 
Qk =Q0 + k, for k =1, 2,…, (G L 1)        (30) 

and the calculation of R   

 

R =
max(M1,M 2 ,…,MG L )

min(M1,M 2 ,…,MG L )
        (31) 

5. RESULTS 

 By using the described algorithm, the zeros and 

coefficients of cosine-sum windows with a peak sidelobe 

level of > 350  dB and 
 
L = 0,1,…, 21  were calculated. In 

the case of sufficient numerical accuracy of the coefficients, 

L = 21  corresponds to an asymptotic decay of the sidelobes 

of 860  dB/decade. The difference of the peak sidelobe level 

of neighboring windows with equal L  is not greater than 

0.5  dB. In Fig. (7) the equivalent noise bandwidth is shown 

as a function of the peak sidelobe level. Modified minimum 

sidelobe windows (small dots, appearing as a line in the first 

plot) have similar features to minimum sidelobe windows 

(large dots). The modified minimum sidelobe windows close 

the gap between minimum sidelobe windows with respect to 

equivalent noise bandwidth and peak sidelobe level. 

 Some of the minimum sidelobe windows shown in Fig. 

(7) are well known. In the case of rounded coefficients (2 

decimal places), the 2-term window (G =1, L = 0)  is 

identical to the Hamming window [1]. All 3- and 4-term 

windows (G = 2 , respectively G = 3 , 
 
L = 0,1,…,G 1)  

show a very good agreement with the windows given in [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Equivalent noise bandwidth (ENBW) as a function of the 

peak sidelobe level (PSL) of modified minimum sidelobe windows 

designed with the described algorithm (small dots, appearing as a 

line in the first plot). In comparison minimum sidelobe windows 

(large dots). 

 

 The described window design algorithm was 

implemented using the C programming language. The lowest 

achievable peak sidelobe level of the window is limited by 

the accuracy of the computer arithmetic. The long double 

type in C is the floating point data type with the highest 

available accuracy. For the computer used it corresponds to 

the double extended precision floating point data format in 

[7] and allows the design of windows with a peak sidelobe 

level greater than 350  dB. Using this data format, the 

implementation of the algorithm is on the safe side, because 

nowadays and probably for the near future the required peak 

sidelobe level for high resolution measurements should be 

significant greater than 350  dB. 

 Equation (12) to calculate W (Q)  by using the zeros ±Qk  

has good properties in terms of numerical requirements on 

the arithmetic accuracy. In the case of decaying sidelobe 

levels the difference of the values calculated for W (Q)  by 

using the coefficients Ap  and (3) differ increasingly from 

the values calculated with (12) (differences of almost the 

same numbers). If W (Q)  is calculated by using the zeros, it 

is possible to design windows with a peak sidelobe level far 
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below 350  dB. In this case, it is no longer possible to 

reproduce W (Q)  by using the coefficients Ap . Independent 

of both equations, the spectrum of the window function can 

be determined by FFT and zero padding. The normalized 

amplitude spectrum of two modified minimum sidelobe 

windows determined in this way is shown in Fig. (8) (FFT of 

one data set with 224  samples, window length 65587  

samples). The peak sidelobe levels of 85.06  dB and 

349.95  dB calculated by using the coefficients Ap  and (5) 

are in good agreement with the values determined from the 

spectrum. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). FFT plot of a modified 5-term (broken line) and a 

modified 14-term minimum sidelobe window (solid line). 

 

 Parameters and coefficients of selected windows are 

given in Tables 1 and 2. The bandwidths and the scallop loss 

were calculated by using (5), the peak signal gain and the 

equivalent noise bandwidth by using (18) and (22). The 

values for the peak sidelobe level are rounded up. To reach a 

good approximation for the computer internal number 

representation, the window coefficients are given with more 

decimal places than necessary for the accuracy of the used 

arithmetic. 

 Windows 1  to 3  have an asymptotic decay of the 

sidelobes of 60  dB/decade and windows 4  to 6  of 140  

dB/decade. The peak sidelobe level of the modified 

minimum sidelobe windows 2  and 5  is located between the 

values of the neighboring minimum sidelobe windows 1  and 

3 , or respectively, 4  and 6 . For windows 2  and 5  the 

zero-crossing bandwidth of the mainlobe is < 2(G +1) , 

meaning it is determined by the zero pair ±Q0 . Plots of 

|Wnorm (Q) |  of the windows 2  and 5 , calculated by using 

the coefficients Ap , are shown in Figs. (9 and 10).  

 A last example shows that for a given maximum sidelobe 

level, the use of modified minimum sidelobe windows 

enables a clear decrease of the width of the mainlobe and the 

equivalent noise bandwidth compared to what can be 

achieved by using a minimum sidelobe window. Part of the 

normalized power spectrum of the output signal of a 

simulated 8  bit ADC with additive noise at full-scale 

triggering with a sine signal and a sample frequency of  

100 MHz is represented in Fig. (11). The averaged power 

spectra (N =100)  were calculated on the basis of data sets 

with 32327  samples of the signal. The number of spectral 

lines was increased for the plot by zero padding (total length 

of the data set 221  samples). The scale was adapted to ensure 

a constant signal level. In the given example the maxima of 

the sidelobes of windows used have to be at least 15  dB 

below the noise of the ADC output signal. The 5-term 

minimum sidelobe window [5] with L = 0  and 

ENBW = 2.21535  (dashed line) fulfills the requirement in 

contrast to the 4-term minimum sidelobe window, but it has 

a peak sidelobe level less than required and, consequently, a 

broadened mainlobe and an increased equivalent noise 

bandwidth compared to the modified 5-term minimum 

sidelobe window with L = 0  and ENBW = 2.00415  (solid 

line). The spectra of the sampled but not quantized ADC sine 

wave input signal (dotted lines) show that the sidelobes of 

the modified window are 104.2  dB below the power of the 

driving sine wave signal Psine  and about 15.7  dB below the 

noise of the ADC output signal, near the required value of 

15  dB. In contrast, for the 5-term minimum sidelobe 

window the peak sidelobe level is about 40.3  dB below the 

noise. 

Table 1. Parameters of Selected Cosine-Sum Windows 

Window L G Peak Sidelobe 

Level in dB 

ENBW Peak Signal 

Gain in dB 

Scallop Loss 

in dB 

3.0-dB 

Bandwidth 

6.0-dB 

Bandwidth 

Zero Crossing 

Bandwidth 

1 1 8 232.523 2.99869 12.48929 0.37454 2.82255 3.97931 18.00000 

2 1 9 246.429 3.08023 12.72558 0.35519 2.89874 4.08740 19.01607 

3 1 9 260.832 3.16222 12.95664 0.33721 2.97537 4.19608 20.00000 

4 3 8 220.335 3.07249 12.69763 0.35654 2.89251 4.07736 18.00000 

5 3 9 234.774 3.14900 12.91506 0.33968 2.96386 4.17875 19.03439 

6 3 9 249.214 3.22289 13.11970 0.32449 3.03282 4.27667 20.00000 
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Table 2. Coefficients of Selected Cosine-Sum Windows  

Coeff. Window 1 Window 2 Window 3 

A0 2.374298741532465928226 · 10 01 2.310581202331358499435 · 10 01 2.249924617087535177329 · 10 01 

A1 3.994704373801009358001 · 10 01 3.922514736021656858831 · 10 01 3.851495428292902693259 · 10 01 

A2 2.362644608100282475133 · 10 01 2.385553629158978655597 · 10 01 2.403597686865028390968 · 10 01 

A3 9.620676838363516649024 · 10 02 1.021288669149117706979 · 10 01 1.077408077837851454781 · 10 01 

A4 2.591512168016078991738 · 10 02 2.977294169292394185833 · 10 02 3.373630665800276621290 · 10 02 

A5 4.307708101213669512442 · 10 03 5.586700597441296634013 · 10 03 7.046059650969717333158 · 10 03 

A6 3.904113541372495568636 · 10 04 6.129851690844686016343 · 10 04 9.096091349642873804482 · 10 04 

A7 1.508613505022821880403 · 10 05 3.295793164220405682537 · 10 05 6.357820763745181479203 · 10 05 

A8 1.320024271202038321705 · 10 07 5.899889578740096042846 · 10 07 1.853811776589548714026 · 10 06 

A9  9.538390427238738941684 · 10 10 1.152831741603563323368 · 10 08 

 

Coeff. Window 4 Window 5 Window 6 

A0 2.318028013590306028393 · 10 01 2.260721603916653632706 · 10 01 2.208079750255799111419 · 10 01 

A1 3.932575471789488615081 · 10 01 3.865459981017629121952 · 10 01 3.802118651876910669131 · 10 01 

A2 2.385434764970747429454 · 10 01 2.402581984804387251180 · 10 01 2.415403917487006169111 · 10 01 

A3 1.014370437785239811268 · 10 01 1.067615081338829512123 · 10 01 1.116054348065563230427 · 10 01 

A4 2.911516061918003918645 · 10 02 3.286350853942572526446 · 10 02 3.651863340899129180910 · 10 02 

A5 5.280988177252078698806 · 10 03 6.643005438025320617263 · 10 03 8.095170365080467720030 · 10 03 

A6 5.382909093381945363528 · 10 04 8.050608438216912274761 · 10 04 1.130070880344185806834 · 10 03 

A7 2.442086527507867730168 · 10 05 4.948590944767209041847 · 10 05 8.750729089136660902985 · 10 05 

A8 2.706153764205043532817 · 10 07 1.071744648495088830343 · 10 06 2.928936383994341281033 · 10 06 

A9  2.416881143872775668631 · 10 09 2.234978077570712238373 · 10 08 

 

6. SUMMARY 

 The modified minimum sidelobe windows presented here 

have similar properties to conventional minimum sidelobe 

windows. In contrast to conventional minimum sidelobe 

windows, modified minimum sidelobe windows can be 

designed for a given peak sidelobe level by continuously 

trading the peak sidelobe level for the equivalent noise 

bandwidth. This enables the adaptation of these window 

parameters to the processed data. Based on the zeros of the 

Fourier transformed window function the design algorithms 

for both windows are given. By using the described 

algorithms the coefficients of window functions with a peak 

sidelobe level higher than 350  dB and different asymptotic 

decay of the sidelobes were determined without solving a 

system of linear equations. The parameters and coefficients 

of selected window functions are presented. A catalog with 

coefficients and parameters of more than 6000  minimum 

sidelobe windows, or respectively, modified minimum 

sidelobe windows, is in preparation.  
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Fig. (9). Plot of |Wnorm (Q) |  of the modified minimum sidelobe 

window 2 (see Tables 1 and 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Plot of |Wnorm (Q) |  of the modified minimum sidelobe 

window 5 (see Tables 1 and 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (11). Normalized power spectrum of the output signal of a 

simulated ADC (sine wave input) using different windows. Hidden 

spectra of the windows (dotted lines). 
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