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Abstract:

Introduction:

In this paper, we deal with the demosaicing problem when the Bayer pattern is used. We propose a fast heuristic algorithm, consisting of three
parts.

Methods:

In the first one, we initialize the green channel by means of an edge-directed and weighted average technique. In the second part, the red and blue
channels are updated, thanks to an equality constraint on the second derivatives. The third part consists of a constant-hue-based interpolation.

Results:

We show experimentally how the proposed algorithm gives in mean better reconstructions than more computationally expensive algorithms.
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1. INTRODUCTION

The demosaicing problem is  related to the acquisition of
RGB color  images by means of  CCD digital  cameras.  In the
RGB model, each pixel of a digital color image is associated to
a  triple  of  numbers,  which  indicate  the  light  intensity  of  the
red, green and blue channel, respectively. However, most cam-
eras  use  a  single  sensor,  associated  with  a  color  filter  that
allows only the measure at each pixel of the reflectance of the
scene at one of the three colors, according to a given scheme or
pattern,  called  Color  Filter  Array  (CFA).  For  this  reason,  at
each pixel, the other two missing colors should be estimated.
Different CFA’s are proposed for the acquisition [1 - 3]. The
most  common is  the  Bayer  pattern   [4].  In  this   scheme,  the
 numbers of  pixels in  which the  green color  is sampled are
 double  with   respect  to   those  associated  with  the   red and
 blue channels,  because of the higher sensibility of the human
eye to the green wavelengths. If we decompose the acq-uired
image  into  three  channels,  we   obtain   three  downsampled
grayscale  images, so that  demosaicing could be  interpreted as
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interpolating grayscale images from sparse data. In most cam-
eras, demosaicing is a part of the processing required to obtain
a visible images. The camera’s built-in-firmware is substant-
ially based on fast local interpolation algorithms.

The heuristic approaches, which do not try to solve an opt-
imization problem defined in mathematical terms, are widely
used in the literature. These methods, in general, are very fast.
Our  proposed  technique  is  of  heuristic  kind.  In  general,  the
heuristic techniques consist of filtering operations, which are
formulated by means of suitable observations on color images.
The nonadaptive algorithms, among which bilinear and bicubic
interpolation, yield satisfactory results in smooth regions of an
image,  but  they  can  fail  in  textured  or  edge  areas.  Edge-
directed interpolation is an adaptive approach, where, by ana-
lyzing  the  area  around  each  pixel,  we  choose  the  possible
interpolation direction. In practice, the interpolation direction is
chosen to avoid interpolating across the edges. In [5], for each
pixel the horizontal and vertical gradients are compared with a
constant  threshold.  If  the  gradient  in  one  direction  is  greater
than the  threshold,  then interpolation  is  not  performed along
this  direction.  Some  other  direct  interpolation  methods  use
larger neighborhoods by examining different color channels. In
[6], to determine the edges of the green channels, the red and
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blue channels are employed. On the other hand, to determine
the  edges  of  the  red  and  blue  channels,  some  discrete  der-
ivation operators of the second order are used, while in [7], to
determine the edges in the various channels, a suitable Jacobian
operator  is  applied.  In  [8],  local  homogeneity  is  used  as  an
indicator  to  choose  horizontally  or  vertically  interpolated
intensities. Thanks to homogeneity-directed interpolation, the
luminance  and  chrominance  values  have  to  be  similar  in  a
suitable neighborhood. In demosaicing it is often assumed that
the differences or the ratios of the intensity values in different
channels  are  locally  constant  [5,  6,  9  -  14].  In  [11]  the
probability  of  having  an  edge  in  a  certain  direction  is
determined  and  used  to  find  the  weights  relative  to  the
weighted average employed as an interpolation operator. In this
algorithm, the color channels are updated iteratively according
to the constant color ratio condition. In [15] a similar algorithm
is proposed, where -size neighborhoods are employed to find
the  edges  of  the  green  channel,  and  -size  neighborhoods  are
used to determine the edges of the red and blue channels. An
analogous algorithm is defined in [16], where the interpolation
can be  done  also  in  the  diagonal  direction,  while  in  [17]  the
weighted directional interpolation is used by means of a fuzzy
membership assignment. A second order operator is employed
as a correction term. [18]

To have more accurate results, several techniques, which
use  iterative  methods,  are  proposed.  However,  they  have  a
higher computational cost with respect to the heuristic techn-
iques. One of well-known techniques is the algorithm of Alter-
nate Projections (AP) [19], which uses the strong correlation
between the high frequences of the three colored components,
by projecting alternately the estimated image in a constraint of
observation  and  in  a  constraint  which  imposes  similarity
between  the  red  and  green  edges  and  between  the  blue  and
green edges, until a fixed point is found. Another widely used
technique is regularization [20, 21]. The algorithm is based on
interpolation in a residual domain [22]. The residuals are the
differences  between the  observed and estimated  pixel  values
which minimize a Laplacian energy.

The algorithm here presented consists of three steps. The
first two ones are initialization steps, while the third one is an
iterative steps. In the first one, the missing valued in the green
component are determined, in particular a weighted average-
type technique is used. The weights are determined in an edge-
directed approach, in which we consider also the possible edg-
es  in  the  red  and  blue  components.  In  the  second  step,  we
determine the missing values in the red and blue components.
In this case we use two alternative techniques, according to the
position of the involved pixel in the Bayer pattern. In the first
technique, the missing value is determined by imposing that the
second derivative of the intensity value of the red/blue channel
is equal to the second derivative of the intensity values of the
green channel. This is done according to the proposed approa-
ches  in  the  AP  algorithm  and  the  regularization  algorithm
given in [20]. In particular, a constraint is imposed, to make the
derivatives of all channels similar as soon as possible [20]. At
the third step, all values of the three channels are recursively
updated, by means of a constant-hue-based technique. In parti-
cular, we assume the constant color difference. The technique
we propose at this step is similar to that used by W. T. Freeman

[10]. Indeed, even here a median filter is employed, in order to
correct small spurious imperfections. We repeat iteratively the
third  step.  However,  to  avoid  increasing  excessively  the
computational cost, we experimentally estimate that only four
iterations are necessary to obtain an accurate demosaicing. We
call our technique as Local Edge Preserving (LEP) algorithm.

The paper is structured as follows. In Section 2 we give a
mathematical formulation of the demosaicing problem. In Sec-
tion 3 we describe the initialization of the proposed algorithm,
which consists of the two first steps aforementioned. In Section
4 we give the third iterative step of our algorithm, highlighting
the differences with the Freeman filter. In Section 5 our exper-
imental results are presented. This section consists of two parts.
In the first one, we determine the best detection function which
can be used in order to evaluate the edges. In the second one,
we compare our algorithm with some other techniques recently
proposed in the literature and we show how the LEP method
gives  in  mean  more  accurate  reconstructions  than  the  other
considered algorithms.

2. THE DEMOSAICING PROBLEM

An RGB (Red-Green-Blue) color image with height n and
width m is a vector of the type

where  are  the  red,  green  and  blue
channels according to the lexicographic order, respectively. We
consider  the  problem  of  acquisition  of  data  from  a  digital
camera, and call it "mosaicing problem". Given an ideal image

, the acquired or "mosaiced image" is defined by

where  and  is a linear
operator defined by setting

 is the null matrix, and 
are  diagonal  matrices  whose  principal  entries,  if  we  use  the
Bayer pattern Fig. 1, are given by

where  the  symbol   indicates  that  i-j  is  even.  The
corresponding demosaicing problem is the associated inverse
problem, that is to determine the ideal color image x, knowing
the mosaiced image  and the linear operator M. An inverse
problem is said to be well-posed (in the sense of Hadamard) if
and only if the solution exists, is unique and stable with respect
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to  data variation.  A not  well-posed problem is  said to be ill-
posed  [23].  Note  that  the  demosaicing  problem  is  ill-posed,
since the matrix M in (2) is singular, as it is readily seen, and so
there are infinitely many solutions.

Fig. (1). Bayer pattern.

3.  THE  INITIALIZATION  OF  THE  PROPOSED
ALGORITHM

In the initialization phase we proceed as follows: first we
initialize the green channel, since in this channel we have more
data  than  in  the  other  ones,  and  successively  we  update  the
other two.

3.1. The Initialization of the Green Channel

We  refer  to  a  clique  as  a  pair  of  adjacent  pixels.  Every
missing value of the green channel is initialized by a weighted
mean  of  the  known  green  values  in  its  neighborhood.  The
weights  of  the  considered  mean  take  into  account  possible
discontinuities in a set of adjacent cliques. We consider cliques
both in the blue and in the red channel, since it is well-known
that  there  is  a  correlation  between  the  discontinuities  in  the
various channels related to edges, such as object borders and
textures [11]. Here we distinguish three cases: the first one is
when we have the value of the green light intensity on a pixel;
the second one is when we the blue value of the involved pixel
is  known,  that  is  when i  and  j  are  both  odd;  the  third  one  is
when the red value on the considered pixel is known, namely
when i and j are both even.

The first  approximation g(0)  of the green ideal image g  is
given by

Note that, in the first case, we keep the value we already
have.  In  the  second  case,  we  do  a  weighted  mean  of  the
intensity values taken on the adjacent pixels where the green
value  is  known.  The  weights  t1,  t2,  t3,  t4  of  the  mean  are
computed by using the green and the blue channels. We define

(1)

In particular, we get

(2)

where  k  =  1,  2,  3,  4,  ϕ  is  a  suitable  positive  decreasing
detection function and τk is defined by

and  the  pixels  ek,  fk,  pkand  qk  are  as  in  (1).  When  the
differences between the green values on the pixels ek and fk (see
the yellow arc in Fig. (2) for k = 1), and pk (see the cyan arc in
Fig. (2) for k = 1), and between the blue values on the pixels (i,
j)and  qk  (see  the  brown  arc  in  Fig.  (2)  for  k  =  1)  are  small
enough, then we can assume that there are no discontinuities
between the pixels ek and (i, j) (see the red line in Fig. (2) for k
= 1). So, in the calculus of the green value on the pixel (i, j),
we give a large weight t1 to the green value in the position ek.
Thus,  when the value τk  is  small,  the  probability  of  having a
discontinuity  between  the  pixels  (i,  j)  and  ek  in  the  green
channel  is  large,  and  vice  versa.  The  computation  of  τk  is
illustrated in Fig. (2). For k = 1, 2, 3 the computation of τk can
be described by an appropriately rotated similar figure.

Fig. (2). Computation of for τk for k = 1.

Even in the third case, we compute the weighted mean of
the  intensity  values  taken  on  the  adjacent  pixels  where  the
green  value  is  known.  The  weights  t4+k,  k  =  1,  2,  3,  4  of  the
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and ek, fk, pk and qk are as in (1). We argue analogously as in the
computation of the weight tk, k = 1, 2, 3, 4, where the role of
the blue channel is played by the red component.

3.2. The Initialization of the Red Values

Here we distinguish four  cases:  the  first  one is  when we
already know the red value of a pixel; the second one is when
we know the red values in the two adjacent pixels in the same
column, that is i is odd and j is even (Fig. 3a); the third one is
when we know the red values in the two adjacent pixels in the
same row, namely i is even and j is odd (Fig. 3b); the fourth
one is when we know the red values of the pixels adjacent in
the corners of the involved pixel,  that is i  and j  are both odd
(Fig. 3c). In the second and in the third case we equalize the
second derivatives of the red and the green channels previously
computed. In the last case we use the computed values of the
red channel to determine the weights of a suitable mean.

So, we define the initial estimate r(0) of the red ideal image r by

Note  that,  in  the  first  case,  we  keep  the  value  which  we
already  have.  In  the  second  case,  we  pose  that  the  finite
difference of the second order in the vertical direction of the
red channel coincides with that of the green channel, which we
have already initialized, namely

(3)

Since  we  know ,  we  can deduce the value

of  from (3).

Fig. (3). Different cases in the initialization of the red channel.
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(a) Second case.   (b) Third case. 

 (c) Fourth case. 
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In the third case, we impose that the finite difference of the
second order in the horizontal direction of the red channel coi-
ncides with that of the green channel, just already initialized,
that is

(4)

By proceeding analogously as above, we obtain the value

of  from (4).

In the fourth case, we do a weighted mean of the intensity
values taken on the adjacent pixels where the red value has just
been computed. The weights t8+k, k = 1, 2, 3, 4, of the mean are
calculated  by  using  the  just  initialized  red  channel  and  the
observed blue channel. In particular, t8+k is given by ϕ(τ8+k), k =
1, 2, 3, 4, where ϕ is the detection function used in initializing
the green channel, and

where  ek,  fk,  pkand qk  are  as  in  (1).  When the  differences

between the red values on the pixels  ek  and fk,  ek  and pk,  and
between  the  blue  values  on  the  pixels  (i,  j)  and  qk,  are  suff-
iciently  small,  then  we  can  suppose  that  there  are  no  edges
between the pixels (i,  j) and ek.  So, in the calculus of the red
value on the pixel (i, j), we have a large weight t8+k, k = 1, 2, 3,
4, in correspondence with the red value in the position ek.

3.3. The Initialization of the Blue Values

Also in this setting, we distinguish four cases: the first one
is given when we know the blue value of a pixel; the second
one is when we know the blue values in the two adjacent pixels
in the same column, that is i is even and j is odd (Fig. 4a); the
third one is when we know the blue values in the two adjacent
pixels in the same row, namely i is odd and j is even (Fig. 4b);
the fourth one is when we know the blue values of the pixels
adjacent in the corners of the involved pixel, that is i and j are
both even (Fig. 4c). In the second and third cases we equalize
the  second  derivatives  of  the  blue  and  the  green  channels
previously  calculated.  In  the  last  case  we  use  the  computed
values  of  the  blue  channel  to  determine  the  weights  of  a
suitable  mean.

Fig. (4). Different cases in the initialization of the blue channel.
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(a) Second case.                                       (b) Third case. 
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Thus, we define the estimate b(0) of the blue ideal image b
by

Note  that,  in  the  first  case,  we  keep  the  value  which  we
already have.

In the second case, analogously as before, we impose

(5)

As we know ,  we derive the value of 
from (5).

In the third case, similarly as above, we get

(6)

By arguing as in the previous section, we deduce the value
of  from (6).

In the fourth case, we do a weighted mean of the intensity
values of the adjacent pixels where the blue value has just been
computed.  The  weights  t12+k,  k  =  1,  2,  3,  4,  of  the  mean  are
calculated  by  using  the  observed  red  channel  and  the  just
initialized  blue  channel.

Analogously as before, we obtain t12+k = ϕ (τ12+k), where

where ek, fk, pkand qk are as in (1).

4.  THE  ITERATIVE  PHASE  OF  THE  PROPOSED
ALGORITHM

A classical filter, often used to solve the demosaicing prob-
lem, is the Freeman filter also [10]. The phase described in this
section is a suitable modification of this filter. The Fre-eman
filter performes the initialization phase by means of the bilinear
filter,  which  works  as  follows.  When  the  value  of  a  certain
color of a pixel is not available, such a value is comp-uted by
the  arithmetic  mean  of  the  values  of  that  color,  which  are
assumed in the neighborhood of this pixel, that is the bili-near
estimation  is given as

Moreover, the following values are defined, by means of
the median of the color differences of the channels red-green
and blue-green [10]:

where

(7)

with  .  The  median  turns
out to be very useful to correctly preserve the edges which are
in the images. Indeed, the median filter is often used to restore
images corrupted by salt-and-pepper noise, namely by the noi-
se present only in a few pixels not adjacent each other.

In the Freeman filter it  is  assumed that the color differe-
nces are constant in a suitable subarea. Thus, the Freeman est-
imation  is defined as follows:

In this paper we modify the Freeman filter as follows.

From the initial estimation 
we define the following variables:
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where  .  So,  we  define  the  estimates

 for s = 1, 2,... as follows:

We pose our final estimate as

We saw experimentally that a good approximation is given
by . We call the technique associated to this estimate
as Local Edge Preserving (LEP) algorithm.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we present the experimental results obtained
from the implementation of the proposed algorithm, which was
tested for the Bayer CFA on the set of Kodak sample images
[24],  of  size,  shown  in  Fig.  (5).  This  dataset  represents  the
typical benchmark images used in the literature to compare the
various  demosaicing  algorithms.  These  high  quality  images

have  been  acquired  as  raw images,  in  order  to  minimize  the
compression. We have implemented our algorithm in the C lan-
guage on an Ubuntu operating system by means of a computer
having a processor of speed of 3.40 GHz.

To define a specific LEP method, we assume that the radi-
us t of the neighborhood of the median filter in the equation (7)
is  equal  to,  and  we  experimentally  choose  the  detection
function  in  (2).  In  particular,  the  tested funct-
ions are

Observe  that  the  detection  functions  ϕj,  j  =  1,...,6  are
decreasing  and  continuous.  Moreover,  we  get  ϕj(0)  =  2  and

.

In  Table  1  there  are  the  errors  of  the  LEP  algorithm  in
terms of Mean Square Error MSE, also [20] in recon-structing
the images of the Kodak set as the detection function varies.
The values in bold are related to the best  reconstruction of a
specific image. In the last line there are the means of the MSE
obtained in the reconstruction of the Kodak sample images, as
the detection function varies. Note that the best result can be
obtained by different detection functions, but, if one takes the
means,  then  the  minimal  error  corresponds  to  the  detection
function ϕ4. To evaluate whether the function ϕ4 is actually the
best  detection  function,  we  proceed  as  follows.  For  each
sample  image  we  give  five  points  to  the  detection  function
which allows to obtain an estimate with the minimal error; four
points to the detection function which obtain the second best
minimal  error;  three  points  in  correspondence  with  the  third
minimal error, and so on.

Table 1. MSE of the LEP algorithm on the Kodak set as the detection function varies.

Image ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

01       10.02 16.86 13.68 9.77 9.75 9.75
02         6.96 8.66 7.63   6.91    6.91 6.92
03         4.22 6.01 4.95   4.14    4.13 4.12
04         6.16 9.15 6.66   6.17    6.18 6.21
05       13.41 22.46 15.05 13.36 13.39 13.44
06       9.29 13.12 11.76   9.10    9.09 9.08
07         5.05 8.10 5.77   5.04    5.05 5.07
08       20.63 26.39 27.39 19.99 19.87 19.83
09         4.60 7.28 5.68   4.63    4.66 4.69
10         4.82 6.94 5.82   4.79    4.80 4.81
11       7.79 11.17 8.99   7.70    7.70 7.71
12         3.88 5.81 5.41   3.83    3.84 3.85
13       19.05 29.38 20.47 19.11 19.19 19.27
14       15.96 22.12 17.59 15.79 15.77 15.77
15       8.77 11.77 10.29   8.68    8.69 8.71

𝑟 𝑏(𝑖,𝑗)
(𝑠)

= median{𝑟(𝑘,𝑙)
(𝑠)
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𝑇
)𝑇 
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(𝑠−1)
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)

2
otherwise
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Image ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

16         4.26 5.36 5.32   4.11    4.08 4.06
17         5.50 7.83 6.00   5.52      5.54 5.57
18       14.88 21.30 15.36 15.00 15.04 15.09
19         8.68 11.36 11.24   8.48      8.47 8.46
20         6.71 8.24 8.75   6.43    6.39 6.36
21       8.14 12.32 9.41 8.06 8.07 8.08
22       12.12 16.09 12.93 12.09    12.11 12.13
23         3.82 6.17   4.02 3.85   3.87 3.89

Mean       8.9002 12.7781 10.4428 8.8074    8.8080 8.8202

(Table 1) contd.....

  
(a)Image 01.                (b)Image 02.                  (c)Image 03. 

                      

(d)Image 04.                  (e)Image 05.                  (f)Image 06. 

            

(g)Image 07.                 (h)Image 08.                  (i)Image 09.  

                  

(j)Image 10.               (k)Image 11.                  (l)Image 12. 
�����5���	
d�����



Fast Algorithm for the Demosaicing Problem The Open Signal Processing Journal, 2019, Volume 6     9

Fig. (5). Kodak image set.

In Table 2 there are the results obtained by the all detection
functions on the single images, and in the last line there is the
global score. Observe that, even in this case, the highest score
is obtained by the detection function ϕ4.

From now on, we use the detection function ϕ4 in the LEP
algorithm.  In  Fig.  (6a)  the  reconstruction  of  Image  02  is
shown. If we evaluate the results visually, it is very difficult to
perceive the errors present during the reconstruction. Thus, in
Fig. (6b) we present the image of errors, which is given by

  

        

 (m)Image 13.               (n)Image 14.                 (o)Image 15.  

                          

(p)Image 16.                (q)Image 17.                  (r)Image 18. 

                   

                                     

(s)Image 19.                (t)Image 20.                   (u)Image 21. 

                          

                      (v)Image 22.                   (w)Image 23. 
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Table 2. Points of the LEP algorithm on the Kodak set as the detection function varies.

Image ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

01 2 0 1 3 4 5
02 2 0 1 4 5 3
03 2 0 1 3 4 5
04 5 0 1 4 3 2
05 3 0 1 5 4 2
06 2 0 1 3 4 5
07 4 0 1 5 3 2
08 2 1 0 4 3 5
09 5 0 1 4 3 2
10 2 0 1 5 4 3
11 2 0 1 4 5 3
12 2 0 1 5 4 3
13 5 0 1 4 3 2
14 2 0 1 3 5 4
15 2 0 1 5 4 3
16 2 0 1 3 4 5
17 5 0 1 4 3 2
18 5 0 1 4 3 2
19 2 0 1 3 4 5
20 2 1 0 3 4 5
21 2 0 1 5 4 3
22 3 0 1 5 4 2
23 5 0 1 4 3 2

total 68 2 21 92 87 75

Fig. (6). LEP reconstruction of Figure 02.

                   

(a)LEP result.                                           (b)LEP error image. 

(c)Enlarged LEP error image.
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where  is the estimate obtained by the LEP algorithm, x
is the ideal image and e is the column vector belonging to 
,  whose entries are equal to one. Again, it  is difficult to note
visually the errors of the algorithm. So, in Fig. (6c) we show
the image of the enlarged errors, that is

where it is possible to see in detail the errors of the algor-
ithm.

Since most algorithms existing in the literature do not al-
low to see easily the errors related to the reconstructions, beca-
use  they  seem to  be  perfect,  then,  to  compare  our  algorithm
with some of those proposed in the literature, we use the table
of  the  errors  in  the  reconstruction  of  the  Kodak  dataset.  In
Tables 3 and 4, we compare the LEP method with the original
Freeman  filter  [10]  and  with  some  other  recently  published
algorithms  [8,  12,  19,  22,  26  -  33].  Although  the  proposed
algorithm gives the best reconstruction of two images, the total
mean  of  the  errors  obtained  with  the  LEP  algorithm  is  the
smallest of the selected methods.

Table 3. MSE of the reconstructions of the Kodak set by the algorithms in [12, 27, 29, 30 - 33].

Image [31] [29] [32] [27] [12] [33] [30]
01 22.24 9.57 155.63 28.45 27.04 14.90 16.64
02 7.78 6.58 32.00 8.19 8.42 7.02 6.97
03 4.96 4.96 23.34 5.80 5.32 4.33 5.17
04 9.06 7.21 29.31 9.19 7.41 7.25 7.06
05 19.41 14.62 145.24 21.58 19.23 12.48 15.78
06 10.62 8.04 111.45 21.58 20.80 8.45 13.15
07 4.72 4.60 29.86 5.36 5.74 4.62 5.13
08 51.18 16.83 297.91 40.65 57.69 23.18 30.14
09 4.85 4.16 39.54 6.28 7.21 4.11 5.50
10 5.94 4.30 37.59 6.75 6.07 4.35 5.01
11 11.78 8.34 82.62 16.45 15.46 9.04 10.09
12 3.83 3.77 30.63 5.76 6.47 3.57 5.01
13 50.71 20.99 271.69 70.48 47.87 33.74 28.12
14 17.99 22.97 80.92 18.62 18.62 18.58 18.24
15 10.87 8.24 32.29 11.27 8.30 8.32 8.02
16 4.28 4.50 50.13 9.55 10.52 3.47 6.30
17 8.07 5.20 42.96 9.66 7.71 5.81 5.88
18 19.28 12.19 96.18 23.72 17.14 15.07 12.94
19 10.16 6.56 106.93 12.19 19.23 7.23 11.86
20 8.09 5.79 45.93 9.23 8.77 6.43 6.37
21 15.53 8.32 94.42 19.96 17.42 11.94 11.25
22 14.59 11.12 62.96 15.74 14.73 12.80 12.74
23 4.78 4.31 21.38 4.40 4.42 3.96 4.48

mean 13.9441 8.8330 83.5177 16.5586 15.7222 10.0269 10.9497

Table 4. MSE of the reconstructions of the Kodak set by the algorithms in [8, 10, 19, 22, 26, 28, 34] and by the LEP method.

Image [34] [28] [8]    [10]      [26] [22]    [19] LEP
01 10.77 19.77 35.65 53.34 17.74 15.31 11.04 9.77
02 8.96 7.57 36.48 11.69 14.69 6.14 7.81 6.91
03 12.16 4.58 37.25 8.57 12.25 3.52 4.64 4.13
04 5.11 8.43 36.74 10.04 13.78 4.93 6.59 6.17
05 10.52 17.50 35.49 39.02 18.54 11.94 11.49 13.56
06 8.77 11.43 36.40 37.33 14.93 8.77 10.69 9.10
07 4.51 5.32 37.08 10.05 12.77 3.61 4.54 5.04
08 22.81 27.11 34.60 96.56 22.60 22.80 19.99 19.99
09 7.74 5.05 37.42 13.06 11.67 4.05 4.30 4.63
10 3.86 5.45 37.25 12.29 12.22 4.05 4.34 4.79
11 7.78 11.62 36.40 24.57 14.86 8.26 7.59 7.70
12 2.91 4.29 37.59 12.90 11.41 3.36 4.80 3.83

�̆� − 𝒙 + 128 𝒆 

5 (�̆� − 𝒙) + 128 𝒆 

�̆�
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Image [34] [28] [8]    [10]      [26] [22]    [19] LEP
13 24.78 47.00 33.66 77.41 27.87 35.90 24.38 19.11
14 15.35 18.33 35.08 26.53 20.23 11.33 16.42 15.79
15 7.64 10.26 36.23 16.74 15.53 8.38 8.72 8.68
16 3.53 4.74 37.50 16.61 11.48 3.59 4.23 4.11
17 4.99 7.73 41.12 13.28   5.06 5.31 4.90 5.52
18 12.83 19.64 35.98 34.73 16.41 16.79 13.24 15.00
19 6.28 9.31 40.19 34.55   6.21 7.20 6.83 8.48
20 5.51 7.76 32.52 22.11   3.67 6.10 5.80 6.43
21 9.23 14.36 36.48 29.09 14.66 10.74 8.37 8.06
22 9.40 14.69 37.33 21.57 12.05 9.42 10.33 12.09
23 8.67 4.22 39.45   6.97 7.38 3.06 4.07 3 85

mean 9.13 12.4412 36.6901 26.9135 15.2602 9.32 8.9175 8.8074

In  the  literature  there  exist  several  other  algorithms,  for
instance  that  proposed  [20],  which  is  one  of  the  best  per-
formed  algorithms,  obtaining  a  MSE  mean  equal  to  6.11.
Howe-ver,  in  order  to  reach  this  goal,  the  needed  mean
computation time is equal to 27 minutes and 4 seconds, while
the mean computation time for the LEP algorithm is equal to
0.16 seconds. The aim of the LEP algorithm is to obtain good
results in a very short period of time. This method can be used
as an initialization algorithm for the technique proposed [20],
obtaining meaningful reductions of its computational cost.

In  Fig.  (7a)  the  reconstruction  of  Image  08  by  LEP  is

presented.  Its  MSE,  between  the  original  Image  08  is  about
19.99, obtained in a computational time of 0.16 seconds. The
relative enlarged error image is presented in Fig. (7b). In Fig.
(7c) the reconstruction of Image 08 by the algorithm proposed
[20] is  illustrated.  Its  MSE between the original  Image 08 is
about 12.33,  obtained in a computational  time of 27 minutes
and 54.74 seconds. The relative enlarged error image is given
in Fig.  (7d).  From the enlarged error images it  is  possible to
notice  how  the  algorithm  proposed  specially  refines  the
reconstruction  of  the  buildings  on  the  left  part  of  the  image
[20], however it does not allow an immediate processing of the
image.

Fig. (7). Reconstruction of Image 08.

(Table 4) contd.....

         

 (a)LEP result.                                       (b)Enlarged LEP error image. 

         

(c)Result of the algorithm proposed in [11].     (d)Enlarged error image of the algorithm proposed in [11].    



Fast Algorithm for the Demosaicing Problem The Open Signal Processing Journal, 2019, Volume 6     13

CONCLUSION

We investigated the demosaicing problem and proposed a
heuristic technique, in order to obtain a very fast algorithm. In
particular, we proposed an algorithm consisting of three steps.
In the first one, the green channel was updated by means of an
edge-directed and weighted average technique. In the second
one, the red and blue channels were updated, by using also the
constraint of equality of the second derivatives in the various
channels. In the third step, we proposed an iterative algorithm,
assuming the constant color difference. this choice allowed to
obtain accurate reconstructions in very short calculation times.
Moreover, similarly as in the Freeman technique, in this phase
we employed a median filter. We fixed a maximum number of
iterative  steps  as  four,  in  order  to  obtain  low  computational
costs. We called our algorithm Local Edge Preserving (LEP).

The choice to impose an edge-preserving reconstruction, to
impose a correlation between the channels on the derivatives of
the second order, and to impose that the difference between the
channels is constant, was the result of an extensive experime-
ntation. Such an experimentation showed how this choice allo-
wed to obtain accurate reconstructions in very short calculation
times. Thus the proposed technique turns out to be very compe-
titive when compared with some other methods known in the
literature also [8, 12, 19, 22, 26 - 33].
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