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Abstract: Let X(t) (t  Z) be a discrete stable random field. The problem of estimating the spectral density field based on 

X(t) is considered. Moments and the asymptotic moments of the spectral sample, the periodogram, based on X(t) are 

calculated. 
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1. INTRODUCTION 

 Paul Levy in the 1920s began the study of general stable 
distributions. He was interested in stable distributions 
because they are precisely the limit distributions that can 
occur in the Generalized Central Limit Theorem. A lot of 
works on stable distributions and related topics have been 
done for last two decades, see [1] and the references therein. 
Besides to the uses of stable distributions in probability and 
statistics, they have a wide applications in many fields 
Zolotarev [2], Ghazal [3-5], Combanis [6] and Hosoya [7]. 

 Spectral analysis is an important technique in the 
statistical analysis. So, spectral representation of symmetric 
stable processes have been considered by Hardine [8]. 
Moreover, Masry [9] is concerned with the estimation of the 
spectral density for stationary stable processes. Therefore, 
we consider an estimation for the spectral density field of 
homogeneous symmetric complex (n; 1, ) - stable field. 

 The paper is organized as follows: Section 2 is devoted to 
introduce some basic definitions and Lemmas which will be 
used later. In section 3, we are going to investigate the first 
and second moments of a periodogram for stable random 
fields. In section 4,the asymptotic moments of a periodogram 
for stable random fields will be given.  

2. PRELIMINARIES  

Definition (2.1): A complex random variable Z = Z1 + iZ2 
where Z1, Z2 R, has a symmetric stable distribution with , 
0 <  < 2, if Z1 and Z2 have the same distribution and 
symmetric stable with . 

Definition (2.2): A random field ( ),   R
n
, is called (n; 1, 

) continuous stable random field if the linear combination 

  

Z
k

( (k ) )
k=1

m

has a symmetric complex stable random field 

with where 
 
Z

k
(the set of complex numbers); 

(k)
 R

n
 and 

0 <  < 2. 
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Definition (2.3): An (n; 1, ) - stable random field X(t) will 
be called discrete if t  Zn.  

Definition (2.4): A random (n; 1, ) - stable random field, 
( ),   Rn, will be called homogeneous if all limiting 

distribution, ( ) =
d
 (  + ),   Z

n
 where =

d
 (homogeneity 

of random field is defined by the translation-invariance of 
the finite-dimensional distribution. 

Definition (2.5): Let ( ),   
n

 be a continuous 
homogeneous symmetric complex (n; 1, ) - stable random 
field with independent (n; 1, ) - stable increment. A 
complex (n; 1, ) – stable randon field (v),v R

n
, called 

harmonic homogeneous stable field if it has the spectral 
representation 

  

(v) = exp(i v, d ( ).

R
n

 

 The spectral representation for discrete harmonic (n; 1, 
) - stable random field X(t) can be written in the form 

  

X (t) = exp(i v, d ( )
n

 (2.1) 

where, ( ),   
n

, is an (n; 1, ) - stable random field 
with independent increments satisfy 

  
[E | d ( ) |P ]P = C(P, ) ( ) d  

where C (P, ) depends on P and  and ( ) is a 
nonnegative integrable function called the spectral density 
field of X(t), t  Z

n
.  

 We will construct an estimation for the nonnegative 

integrable function ( ),   
n

, on observations X(t), t  

Z
n
. For construction, we will use the periodogram as in 

Masry [9] which estimated the spectral density function for 

stable random process. Let h(t) = h(t1, t2,… tn) be a bounded 

even function. Let T = (T1, T2,… Tn) where Tj = 2 j + 1; j = 

  1,n  and 

   

t = (
t
1

1

,
t
2

2

, ,
t

n

n

).  We define a finite Fourier 

transform of the function h(t) by 
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H
(T ) ( ) = h(t )exp( i t, ), where .

n

t T
n

 (2.2) 

The function H
(T)

( ) satisfy 

  

B
(T )

= | H
(T ) ( ) | d < with 0 < < 2.

n

 

Let 

  
H

T
( ) = A

T
H

(T ) ( )  (2.3) 

where 

  

A
T
= [

1

B
(T )

]

1

, and
n

| H
T

( ) | d = 1.
n

 

 We consider the statistic 

  

d
T

( ) = A
T

Re exp( i t, )h(t )X (t)
t T

 (2.4) 

to estimate the spectral density ( ).  

Definition (2.6): Let 0 < P <  < 2,   
n

. The statistic 
IT( ) will be called a periodogram (n; 1, ) - stable random 
field X(t), t  T

n
, where  

  
I

T
( ) = K(P, ) | d

T
( ) |P ,  (2.5) 

  

K(P, ) =
D(P)

F(P, ) C
P/

,  (2.6) 

with 

  

F(P, ) =
1 e

|u|

| u |1+P
du.  (2.7) 

The following Lemma can be proved as in [9] and will be 
used in Section 3.  

Lemma (2.1): Let L  (0 <  < 2) be the set of all measurable 

function on 
n

 for which 

  

| g( ) |
n

dG( ) < , where 

G( ) is non-negative bounded on 
n

 with G( , ,…, ) > 0. 

Then for homogeneous symmetric complex (n; 1, ) - stable 
field ( ),   

n

, we have 

  

E exp{i Re g( ) d ( )]}=
n

| g( ) | ( ) d ]
n

 (2.8) 

where 

  

C =
1

| cos | d

0

.  

 The following Lemmas which was proved by Masry [9] 
will be used in the sequel.  

Lemma (2.2): IF D(P) = 

  

1 cosu

| u |1+P
,  then 

  

| x |P= D
1(P)

1 cos(xu)

| u |1+P
du = D

1(P) Re
1 e

ixu

| u |1+P
du . (2.9) 

Lemma (2.3): If x, y  R with 0 <  < 2, then 

  
|| X + y | | X | | y | | 2 | xy |2 .  

3. MEAN, DESPERSION AND COVARIANCE 
FOR THE PERIODOGRAM 

 In this section we will investigate the essential 
feature of the spectral representation of symmetric 
stable random field. This can be done by considering 
the first and second-order moments of the 
periodogram IT( ). 

 The following lemma rewrite dT( ), in a useful form.  

Lemma (3.1): For   
n

, the statistic dT( ) satisfies  

  

d
T

( ) = H
T

( μ) d (μ),
n

 

where 1(μ) = Re  (μ) and  (μ) uniform symmetric complex 
discrete (n; 1, ) - stable field.  

Proof. The proof can be accomplished from (2.4) and using 
(2.1), (2.2) and (2.3). 

Lemma (3.2): For a  R, b  R, , v  
n

, then 

  

E exp[i(ad
T

( )+ bd
T

(v)]

= exp[ C | aH
T

( μ)+ H
T

(v μ) | (μ) dμ]
n

 (3.1) 

Proof: The proof can bededuced from Lemma (3.1) and 
Lemma (2.1).  

The characteristic function of dT( ) may be stated as follows:  

Corollary (3.1): Let   
n

 and 0 <  < 2. Then  

  
E exp[i(ad

T
( )] = exp[ C

a
| a |a

T

( ) ( )  (3.2) 

where 

  

T

( ) ( ) = | H
T

n

( μ) | (μ)du]  (3.3) 

Theorem (3.1): Let   
n

. Then 

(i) 
  
EI

T
( ) = [

T

( ) ( )]

P

, P (0, )  (3.4) 

(ii) 

  

DI
T

( ) = [
K

2 (P, )

K(2P, )
1] [

T

( ) ( )]

2 P

, P (0,
2

).  (3.5) 

Proof: From (2.9), we have  

  

| d
T

( ) | = D
1(P) Re[

1 exp(iud
T

( ))

| u |1+P
du]  

From (2.5), (3.2) and (2.6) we can obtain 

  

EI
T

( ) =
1

F(P, )C p/

1 exp(C | a |
T

( ) ( ))

| u |1+P
du]    (3.6) 

By putting 

  

u =
x

[C
T

( ) ( )]1/
,  and using (2.7) we have 

  

EI
T

( ) =
1

F(P, )

1 exp( | x | )

| x |1+P
du[

T

( ) ( )]

P

.  
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Part (ii) can be proved by a similar way. 

Theorem (3.2):  

Cov{IT(
(1)

), IT(
(2)

))} = 

  

= [
1

F(P, )C P/
]

2
[exp{C

T

(1)
(u

1
,u

2
)}

exp{C
T

(2) (u
1
,u

2
)}]

du
1
du

2

| u
1
u

2
|
1+P

 

 

 (3.7) 

where 

  

C
T

(1) (u
1
,u

2
) = C |

n

u
1
H

T
( (1) μ)

+u
2
H

T
( (2) μ) | (μ)dμ

 (3.8) 

  

C
T

(1) (u
1
,u

2
) = C |

n

u
1
H

T
( (1) μ)

+ | u
2
H

T
( (2) μ) | ) (μ)dμ

 

Proof: From (2.5),(2.6) and (2.9) we have  

  

I
T

( ) =
1

F(P, )C P/

1 cos(ud
T

( ))

| u |1+P
du  

From (3.6) we obtain  

  

=
1

F(P, )C P/
[cos(ud

T
( )) + exp( C | u |

T

( ) ( ))]
du

| u |1+P
 

By the definition of the covariance function, we can obtain 

  

Cov{I
T

( (1) ), I
T

( (2) )}= [
1

F(P, _ C P/
]2 E{ [ cos(u

j
d

T
( (1) ))

j=1

2

 
 

 

  

+exp( C | u
j
|

T

( ) ( (1) ))}
du

1
du

2

| u
1
u

2
|1+P

 (3.9) 

Since, 

  

E{ [ cos(u
j
d

T
( (1) )+ exp( C | u

j
|

T

( ) ( ( j ) ))]}
j=1

2

= E{cos(u
1
d

T
( (1) ))cos(u

2
d

T
( (2) ))}

exp( C | u
2

|
T

( ) ( (2) ))E{cos(u
1
d

T
( (1) ))}

exp( C | u
1

|
T

( ) ( (1) ))E{cos(u
2
d

T
( (2) ))}

+ exp[ C | u
1

|
T

( ) ( (1) )+ | u
2

|
T

( ) ( (2) ))]

 (3.10)  

From Lemma (3.2), we get  

E{cos(u1dT(
 (1)

) cos(u2dT(
 (2)

)} 

  

=
1

2
exp[ C | u

1
H

T
( (1) μ)+ u

2
H

T

n

( (2) μ) | (μ)dμ]

+
1

2
exp[ C | u

1
H

T
( (1) μ) u

2
H

T

n

( (2) μ) | (μ)dμ]

(3.11) 

Furthermore, by using (3.2) we get  

  
E{cos(u

j
d

T
( (1) ))}= exp( C | u

j
|

T

( ) ( ( j ) ))  (3.12) 

By subsituting from (3.11) and (3.12) in (3.10), then we have  

Cov{IT(
(1)

), IT(
 (2)

)} 

 

 

 

  

= [
1

F(P, )C P/
]2[ exp[ C (| u

1
|

T

( ) ( (1) )+ | u
2

|
T

( ) ( (2) )]
du

1
du

2

| u
1
u

2
|1+P

+
1

2
exp[ C | u

1
n

H
T

(
(1)

μ) + u
2
H

T
(

(2)
μ) | (μ)dμ](

du
1
du

2

| u
1
u

2
|
1+P

+
1

2
exp[ C | u

1
n

H
T

(
(1)

μ) u
2
H

T
(

(2)
μ) | (μ)dμ](

du
1
du

2

| u
1
u

2
|1+P

 (3.13) 

Finally, if we replace u2 by ( u2) and using (3.3), (3.8),then the 
proof can be completed.  

4. ASYMPTOTIC BEHAVIOUR OF THE MEAN, 

DESPESION AND COVARIANCE FOR THE PERIO-

DOGRAM 

 In this section we obtain the asymptotic properties of the 
periodogram IT( ).  

Definition (4.1): A postive kernal FT( ),   
n

, is said to 
be n  measure sequence function if for all   

n

  and  > 
0, the following conditions are satisfied: 

(i)  FT( ) > 0; 

(ii) 

  

F
T

( ) d = 1;
n

 

(iii) 

  

lim
T

F
T

( ) d = 0;

/ S
0n

 

where 
  
S

0
={  = ( 1, 2,……, n), || || < ,  > 0} 

The following lemma will be used later in the proof of 
Theorem (4.1). 

Lemma (4.1): Let FT( ),   
n

, be a positive kernal. If 
g( ) is bounded on 

n

 and continuous at a point 
*
, 

*
  

n

, 
then 

  

lim
T

F
T

( + *) d = g( *).
n

 

Proof: Since 

  

F
T

( +) d = 1,
n

 then 

  

F
T

( )g( +
* ) d g( * )

n

 

 

 Since g( ) continuous at 
*
 then for every  > 0 there 

exists  > 0 such that |g(  +
*
)–g(

*
)| <  for all    

  
S

0
. So, 

  

F
T

( )g( +
* ) d g( * )

n

 

  

F
T

( ) d

S0

+ F
T

( ) | g( +
* ) g( * ) | d

/ S0n

 

  

+ F
T

( ) | g( +
* ) g( * ) | d

/ S0n
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 Since g( ) is bounded on 
n

, then there is a real number 

L <  such that 

  

n

sup

. 

Therefore, 

  

F
T

( ) | g( +
* ) g( * ) | d

/ S0n

2L F
T

( ) d

/ S0n

 

 According to definition (4.1) and |g(  + *) g(
*
)| may 

be made arbitrarily small by choice of  as g( ) continuous at 
a point, we can conclude that  

  

lim
Tx 0

[ F
T

( )g( +
* ) d

n

g( * )] = 0.  

Theorem (4.1): Let   
n

. Then  

(i) 
  
lim
T

EI
T

( ) = [ ( )]

P

, P (o, )  (4.1) 

(ii) 

  

lim
T

DI
T

( ) = [
K

2 (P, )

K(2P, )
1][ ( )]

2 P

, P (0,
2

).  (4.2) 

Proof: The proof comes directly by substituting  + μ = v 

in (3.3) and using Theorem (3.1) with Lemma (4.1). 

Theorem (4.2): Suppose 0 P < 
 2

, 0 <  < 2 with 
(1)

  
n

, 

(2)
  

n

 and 
  j

(1)

j

(2) , j = 1,n.  Let ( ),   
n

, be 

continuous at 
(1)

, 
(2)

 and (
(1)

)  0, (
(2)

)  0. If 

  

lim
T

B
(T ) ( (1) , (2)

B
(T )

= 0  (4.3) 

where  

  

B
(T ) ( (1) , (2) ) = | H

(T ) ( (1) )
n

H
(T ) ( (2) ) | /2

d  

Then 

  
lim
T

Cov{I
T

( (1) ), I
T

( (2) )}= 0  

Proof: From Theorem (3.2), we get 

  
| Cov{I

T
( (1) ), I

T
( (2) )}|  

  

[
1

F(P, )C

P
] | C

T

(1) (u
1
,u

2
) C

T

(2) (u
1
,u

2
) |  

 

 

  

exp(| C
T

(1) (u
1
,u

2
) C

T

(1) (u
1
,u

2
) |

C
T

(1) (u
1
,u

2
))

du
1
du

2

| u
1
u

2
|1+P

 

From (3.8) and Lemma (2.3) we have 

  

| C
T

(1) (u
1
,u

2
) C

T

(2) (u
1
,u

2
) | 2C | u

1
,u

2
| /2 μ n

sup

(μ)
B

(T ) ( (1) , (2) )

B
(T )

  (4.4) 

Hence,  

  
| Cov{I

T
( (1) ), I

T
( (2) )}|  

  

[
1

F(P, )C

P
]

2

μ

n
(μ)

B
(T ) ( (1) , (2) )

B
(T )

2 u
1
u

2
2

(1+P)
sup

 

  
exp( C

T

(1) (u
1
,u

2
) C

T

(2) (u
1
,u

2
) C

T

(2) (u
1
,u

2
))du

1
du

2
 (4.5) 

From Lemma (4.1), we obtain 

  

lim
T

C
T

(1) (u
1
,u

2
) = lim

T
( C | u

j
|

j=1

2

T

( ) ( ( j ) )) = C | u
j
|

j=1

2

( ( j ) )  

Also, by using (4.3) we have  

  
lim
T

| C
T

(1) (u
1
,u

2
) C

T

(2) (u
1
,u

2
) |= 0  

Hence, 

  

lim
T

| C
T

(1) (u
1
,u

2
) C

T

(2) (u
1
,u

2
) | C

T

(2) (u
1
,u

2
) = C | u

j
|

j=1

2

( ( j ) )  

Therefore, 

  

lim
T

|u
1
,u

2
|2

(1+P)

exp(| C
T

(1)
(u

1
,u

2
) C

T

(2)
(u

1
,u

2
) |

C
T

(2) (u
1
,u

2
))du

1
du

2  

  

= [ exp( C | u
j
|

j=1

2

( ( j ) )) | u
j
|2

(1+P)

du
j
]  

  

exp( C | u
j
| ( ( j ) )) | u

j
|2

(1+P)

du
j
 

  

= 2[ exp( C | u
j
|

0

1

( ( j ) )) | u
j
|2

(1+P)

du
j
 

  

+ exp( C | u
j
|

1

( ( j ) )) | u
j
|2

(1+P)

du
j
]  

For P  (0, 2) 

  

exp( C | u
j
|

0

1

( ( j ) )) | u
j
|2

(1+P)

du
j

| u
j
|2

(1+P)

0

1

du
j
=

1

2
P

 

Also, 

  

exp( C | u
j
|

1

( ( j ) )) | u
j
|2

(1+P)

du
j
 

  

exp( C | u
j
|

1

( ( j ) ))du
j

1

C ( ( j ) )
 

Therefore, 

Finally, we can conclude that 

  

lim
T

| u
1
,u

2
|2

(1+P)

exp(| C
T

(1)
(u

1
,u

2
) C

T

(2)
(u

1
,u

2
) |

C
T

(2) (u
1
,u

2
))du

1
du

2
<

 

 
and this completes our proof.  
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