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Abstract: In this paper, a size-biased generalized logarithmic series distribution (SBGLSD) is introduced and its moments 

are obtained. The estimates of the parameters of SBGLSD are obtained by employing the method of moments and a pro-

posed new method of estimation. The new proposed method of estimation uses the non-zero frequency of a variable only 

up to a finite value. In this method, the estimation of only one parameter is needed and of the other is obtained by the rela-

tionship among the parameters by counting the number of non-zero frequency classes. The method is found very simple 

and quick to apply in practice. Extensive simulations are performed to compare the performances of the proposed and the 

moment method of estimation mainly with respect to their biases and mean squared errors (MSE’s), for different sample 

sizes and of different parametric values. Comparison has been made among different estimation methods by means of 

Pearson’s Chi-square, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) techniques.  
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1. INTRODUCTION  

 The generalized logarithmic series distribution (GLSD) 

characterized by two parameters  and  was defined by 

Jain and Gupta [1]. The probability function of the GLSD 

model is given by 

 P[ X x ]= =

  

   ( x ) x  (1 )  x x   

x!  ( x x +1)
; 

  x = 1,2,...,    1 and   0 -1.       (1) 

Where 1
     

1
.

log( )
=  

 The model (1) reduces to the simple logarithmic series 

distribution when 1= . The GLSD model is a member of 

Gupta’s [2] modified power series distribution and of Consul 

and Shenton’s [3] Lagrangian probability distributions. The 

model (1) is also a limiting form of zero-truncated form of 

Jain and Consul’s [4] generalized negative binomial distribu-

tion. Patel [5] defined GLSD and obtained the estimates of 

the parameters by the method of moments. Famoye [6] 

showed that the GLSD is unimodal and the mode is at the 

point x = 1. Some methods of sampling from the model (1) 

are provided by Famoye [7]. Famoye [8] obtained the mo-

ment estimators, Jani and Shah [9] discussed the maximum 

likelihood and moment method of estimation for two pa-

rameter GLSD model. Mishra and Tiwary [10] suggested an  
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alternative method of estimation based on the first three 

moments and showed that the GLSD provides a very close 

fits to the observed data from various fields such as asento-

molgy, medicine, engineering etc. Famoye [11] discussed the 

fitting of GLSD. Tripathi and Gupta [12] studied another 

generalization of GLSD.A brief list of authors and their 

works can be seen in Johnson, Kotz and Kemp [13] and 

Consul and Famoye [14]. 

 The first four moments about origin of GLSD are given 

as 

1
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3
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 The recurrence relation among the central moments is 

given as 

1 2 1

1

1

r
r r

d( )
r .

d

μ
μ μ μ+ = +            (6) 

Which gives the first four central moments as 
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 In this paper, a size-biased generalized logarithmic series 

distribution (SBGLSD) taking the weights of the probabili-

ties as the variate values, is defined. The moments of the 

proposed model are obtained. The estimates of the parame-

ters of SBGLSD are obtained by employing the method of 

moments and a proposed new method of estimation. It is 

very difficult to compare the theoretical performances of 

different estimators proposed in this paper. Therefore, we 

perform extensive simulations to compare the performances 

of the different methods of estimation mainly with respect to 

their biases and mean squared errors (MSE’s), for different 

sample sizes and of different parametric values. Goodness of 

fit test is done in order to see that proposed new method of 

estimation gives better result in comparison to the method of 

moments.  

2. SIZE-BIASED GENERALIZED LOGARITHMIC 

SERIES DISTRIBUTION (SBGLSD) 

 Size-biased distributions are a special case of the more 

general form known as weighted distributions. Fisher [15] 

introduced these distributions to model ascertainment bias 

and were later formalized in a unifying theory by Rao [16]. 

These distributions arise in practice when observations from 

a sample are recorded with unequal probability and provide a 

unifying approach for the problems where the observations 

fall in the non-experimental, non- replicated, and non-

random categories. 

 If the random variable X has distribution ( );f x , with 

unknown parameter , then the corresponding size-biased 

distribution is of the form 

  ( )
( ) 

*
x f x;

f x; .
E( x )

=          (10)  

where E( x )= ( ) x f x; dx  for continuous case and 

 p(X=x)E( x ) x= for discrete case. 

 Using the criteria defined in equation (10) and by using 

the equations (1) and (2), the probability function of size-

biased generalized logarithmic distribution (SBGLSD) is 

obtained as 

1 1x

x P[ X x ]
=

= = , where 
1

  
1log( )
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 On simplification, the above equation is reduced to  

1

1

  1
1 1 1

 x-1

x x x

x

x
( ) ( ) .

=

=        (13) 

 Since the above sum equals to 1, therefore, it represents a 

probability distribution and we name it as size-biased gener-

alized logarithmic series distribution (SBGLSD) and is rep-

resented as  

1

1

  1
1 1

  1

x x x
x

P [ X x ] ( ) ( )
x

= =  ; x=1,2…  

     0  for x  t if  t-t-1 0=        (14) 

1  and 
10 <<   

 When  = 1, the SBGLSD reduces to size- biased loga-

rithmic series distribution (SBLSD) with probability function 

as  

1

2 1 xP [ X x ] ( )= = ; x=1, 2…         (15)  

2.1. Moments 

 The rth moment ( )srμ  of SBGLSD about origin is ob-

tained as  
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r
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Obviously ( )s0μ = 1 and for r  1 
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        ( )=srμ 1

1
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where 1+rμ
 
is the (r + 1)

th
 moments about origin of GLSD 

(1).  

 The moments of SBGLSD can be obtained by using 

equations (3) and (4) in (17) as 

 ( )s1μ =Mean 
( )

( )
2
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1
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1
s Variance .μ = =        (20) 

 The higher moments of SBGLSD about origin can be 

obtained similarly using equation (17) if so desired.  

3. ESTIMATION OF SIZE-BIASED GENERALIZED 

LOGARITHMIC SERIES DISTRIBUTION 

 In this section, we study the estimation of the parameters 

of SBGLSD by the method of moments and a new proposed 

method. Also comparison is made between these two estima-

tors. 

3.1. Method of Moments 

 Replacing sample moments with population moments, 

we get 

 
( )

( )
2

1

1
x .=            (21) 

( )( )
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2

2

4

1 2

1
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From above two equations, we get 

( ) ( )

( )

2

2

1 1 2

1

/ xS
.

x
=             (23) 

 Solving above equation for , we get the estimate for  

and substituting that value in equation (21), we get the esti-

mate of . 

3.2. Proposed New Estimator for SBGLSD 

 In this method, only one parameter  is estimated with 

the help of the first moment of the SBGLSD and the other 

parameter  is estimated based on non-zero frequency 

classes. Thus, this method may be much easy and quick in 

practice. 

 The condition in the SBGLSD that 

0 for x  t if  t-t-1 0P[ X x ]= =        (24) 

gives a relationship between the parameter  and the num-

ber of the classes of non-zero frequencies of the GLSD. 

Hence in those cases when the number of the classes of non-

zero frequency is finite,  may be readily estimated using 

the equation (24) 

 Let us suppose that in a sample of size n, the first (t-1) 

classes have non-zero frequencies and the rest of the classes 

have zero frequencies, then 

0  P[ X x ] if x t= <   =0 if x  t        (25) 

From the equation (24), we have estimate of , say 0 , as 

 0

1
.

t

t

+
=            (26) 

 Thus the value of 0 , is obtained directly from the non-

zero frequency classes and may be treated as predetermined 

as n in the case of binomial distribution. 

 Now substituting the estimate of  in the expression 

(21) for the mean of the SBGLSD and replacing 1μ  by the 

sample mean x , we get 

 
( )

( )
2

0

1

1
x .=          (27) 

 Solving this for  we get the estimate of . 

3.3. Efficiency of Proposed Estimator 

 In order to check the usefulness of new proposed method, 

the efficiency of the parameter  is studied. For this pur-

pose, an extensive computer simulation is done by taking 

n=15, 20, 30, 50,100, =0.2, 0.5, 1.0, 2.0 and =1.10, 

1.12, 1.16, 1.25, 1.5. For each combination of n and  we 

generate a sample of size n from SBGLSD and estimate  

by different methods. We report the average values of ˆ  

and the corresponding average MSE’s. All the reported re-

sults are based on 10,000 replications. The results are pre-

sented in Table 1.1. Here we report the average values of 
ˆ  for each method and the corresponding MSE’s are 

reported within brackets. From the table it is immediate that 

the average biases and the average MSE’s decrease as sam-

ple size increases. It indicates that all the methods provide 

asymptotically unbiased and the consistent estimators. It is 

also observed that the average biases and the average MSE’s 

of 
ˆ

 depend on . On comparing the performances of 

all the methods it is clear that as far as the minimum bias is 

concerned, the proposed estimator works the best in almost 

all the cases. 

3.4. Goodness of Fit 

 An attempt is made to fit the SBGLSD to observed data 

estimating the parameters  and  by suggested alternative 

method. To know how much good or bad the fits are due to 

this method in comparison to those due to method of mo-

ments, we have used the data sets of Guire et al. [17] and 

Student [18]. The expected frequencies according to both the 

methods along with the estimates of both the parameters and 

the values of chi-square, AIC and BIC are given in Tables 

1.2 and 1.3. 

CONCLUSIONS 

 It is encouraging to observe from the above tables that 

the proposed estimator is giving best results in comparison to 

moment estimators. Furthermore, the suggested method has 
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Table-1.1. Average Relative Estimates and Average Relative Mean Squared Errors of  

n b Method  =0.2  =0.5  =1.0 =2.0 

15 1.10 Proposed Estimator 

Moment Estimator 

1.046(0.216) 

1.432(0.758) 

1.244(0.113) 

1.412(0.517) 

1.115(0.305) 

1.351(0.501) 

1.211(0.718)  

1.366(1.201)  

20  1.12 Proposed Estimator 

Moment Estimator 

1.041(0.201) 

1.416(0.630) 

1.204(0.109) 

1.401(0.499) 

1.104(0.218) 

1.301(0.411) 

1.201(0.554)  

1.297(0.254)  

30  1.16 Proposed Estimator 

Moment Estimator 

1.011(0.145) 

1.368(0.514) 

1.125(0.102) 

1.356(0.325) 

1.109(0.251) 

1.201(0.226) 

1.187(0.441)  

1.202(0.154)  

50 1.25 Proposed Estimator 

Moment Estimator 

1.024(0.036) 

1.221(0.299) 

1.101(0.023) 

1.255(0.217) 

1.015(0.125) 

1.154(0.119) 

1.101(0.0254)  

1.165(0.125)  

100 1.5 Proposed Estimator 

Moment Estimator 

1.07(0.017) 

1.135(0.054) 

1.021(0.020) 

1.132(0.012) 

1.001(0.012) 

1.012(0.031) 

1.021(0.021)  

1.125(0.031)  

 

Table 1.2.  Zero-Truncated Data on P. nubilalis (European Corn Borer) of Guire et al. [17] 

Expected Frequency 

No. of Bores Per Plant Observed Frequency 

Method of Moments Proposed Method 

1 

2 

3 

4 

5 

83 

36 

14 

2 

1 

81.56 

34.54 

15.01 

2.04 

2.85 

82.4 

34.96 

14.34 

2.01 

2.29 

Total 136 136 136 

2    1.362 0.77 

AIC   201 185 

 BIC   225 203 

Estimates 

ˆ  

ˆ  

 

 

 

 0.567 

2.451 

 

0.754 

 1.2 

 

Table 1.3. Zero-Truncated Data of Haemocytometer Yeast Cell Counts Per Square Observed by STUDENT [18] 

Expected Frequency 

No. of Cells Per Square Observed Frequency 

Method of Moments Proposed Method 

1 

2 

3 

4 

5 

128 

37 

18 

3 

1 

126.43 

34.45 

20.56 

4.34 

1.22 

127.41 

35.4 

19.41 

3.56 

1.22 

Total 187 187 187 

2   0.99 0.21 

AIC  198 176 

BIC  223 211 

Estimates 

ˆ  

ˆ  

 

 

 

0.451 

2.367 

 

0.652 

1.2 
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an advantage over the method of moments in certain situa-

tions. It can be applied whenever, it is relatively very quick 

to be obtained and so it may be preferred to others when very 

quick results are required. 
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