
 The Open Statistics & Probability Journal, 2009, 1, 3-6 3 

 
 1876-5270/09 2009 Bentham Open 

Open Access 

On Moments of the Power Series Distributions 

Slavko Simic* 

Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia 

Abstract: For the Power Series Distributions generated by an arbitrary entire function of finite order, applying methods of 

Karamata’s Theory of Regular Variation, we obtain asymptotic behavior of its moments. As an illustration, we calculate 

the moments of distributions generated by the class of Mittag-Leffler functions of which the well-known Poisson Law is 

just a special case.  
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1. INTRODUCTION  

 1.1. The classical discrete Poisson Law with parameter  
> 0 is given by  

P (X = n) =
ne

n!
, n = 0, 1, 2,… 

Asymptotic behavior of its moments is well-known  

 

E Xk = nk

n

P (X = n) k
= (E X)k ( ).  

 In this article we shall give a generalization of the above 
assertion and prove that the same asymptotic relation is valid 
for any discrete distribution generated by an entire function 
of finite order.  

 Namely, denote by A  the class of transcendental entire 
functions with positive Taylor coefficients and of finite order 
, 0   < .  

 (Note that an entire function is transcendental if it is not a 
polynomial i. e. if it has infinitely many non-zero Taylor 
coefficients).  

Definition 1.1. For arbitrary f (z) = anz
n , f  A , define 

the law Ff with parameter  > 0 by  

P  (X = n) = an
n
 /f ( ), n = 0, 1, 2,.... 

 Then the law Ff is a Power Series Distribution generated 
by f  A  (cf [1]).  

 Our aim here is to obtain asymptotic behavior of its k-th 
moment E X

k
 (   ), where  

E Xk = nkP (X = n) = nkan
n / f ( ),  k = 1, 2,... 

 Evidently,  

E X = nan
n / f ( ) = f ( ) / f ( ) . (0.1)  

 In general, consider the sequence of functions fk ( ) 
defined recursively by  
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fk ( ) = fk 1( ),  k = 1, 2,... ; f0 ( ) = f( ). 

 Then fk ( ) = nkan
n  and  

E X
k
 = fk ( )/f( ), k = 1, 2, · · · (0.2) 

 1.2. We shall use in the sequel the concept of Karamata’s 
regularly varying functions.  

Definition 1.2. A positive measurable function  (·) is slowly 
varying if the asymptotic equivalence  

 (tx) ~  (x) (x  ), 

holds for each t > 0.  

 Some examples of slowly varying functions are log
a
 x; 

log
b
 (log x); exp(log

c
 x); exp(log x/log log x), a, b  R, 0 < c 

< 1.  

 Functions g(·) of the form g(x) = x
μ
 (x) are regularly 

varying (g  Rμ) with index μ  R (cf [2], p. 18).  

 From those definitions follows  

Proposition 1.1. A positive measurable function g(·) belongs 
to the class Rμ if the asymptotic relation  

g(tx)
g(x)

tμ  (x ), (1.1) 

holds for each t > 0.  

 Moreover, the relation (1.1) holds uniformly on each 
compact t-set in (0, ) (cf [2], p. 6).  

 Theory of Regular Variation is very well-developed and 
has many applications in Analysis, Probability Theory, 
Number Theory etc (cf [2, 3]).  

 The so-called Theorem on approximation by a regularly 
varying function will play an important role in the sequel (cf 
[2], p. 81; [4]).  

Proposition 1.2. Let h be a positive function with the 
property  

lim sup
x

log h(x)

log x
= , 0   < ; 

then there exists g  R  such that g(x)  h(x) and  
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lim sup
x

 g(x)/h(x) = 1. 

 1.3. Now we give some remarks from the Theory of 
Entire Functions. As is well-known (cf [2, 4, 5]), the order  
of an entire function f is defined by  

= lim sup
log logM f ( )

log
,  

where Mf ( ) = max|z|=  |f(z)| is the maximum moduli of f on 
the circle |z| = .  

 But, if f  A , we have  

f (z) z = = f ( ei ) = an
nein an

nein = f ( ) . 

 Therefore, in this case Mf( ) = f( ) and we get  

Definition 1.3. If f  A , then  

= lim sup
log log f ( )

log
 (3.1). 

 This definition coincides with another one given in 
Lemma 3.2. below, as is shown in ([6, 7], p. 17).  

2. RESULTS  

 We shall prove the following assertions on asymptotic 
behavior of the moments of the law Ff.  

Theorem 2.1. For each n  N,  

E X
n+1

/E X
n
  E X (   ). 

Theorem 2.2. For each  > 0 we have  

E X   (E X)  = ( f  ( )/f( ))  (   ). 

It is said that an entire function g of finite order  is of 
complete regular growth if log g  R  i. e. log g(r)  r  (r) 
(r  ) for some slowly varying function  .  

 Since standard examples of f  A  are of complete 
regular growth, we shall give a more precise statement of 
Theorem 2.2 in this case. The link is given by the next  

Theorem 2.3. For f  A ,  > 0, the following are equivalent  

(i) log f( )   ( ); (ii) E X   ( ) (   ).  

 Combining the last two assertions we obtain  

Theorem 2.4. If f  A  is of complete regular growth, then 
for  > 0,  

E X    (log f( ))   ( ( ))  (   ). 

3. PROOFS  

 The crucial part in the proof of Theorem 2.1. is the case n 
= 1.  

Lemma 3.1. E X and E X
2
/E X are monotone increasing in 

 and unbounded.  

 Proof. Since  

d

d
(E X) = E X2 (E X)2 > 0 , 

we conclude that E X is monotone increasing and 
unbounded; otherwise, there exists a > 0 such that E X < a 
for  > 0. By (0.1), we get f ( )/f( ) < a/  and integrating, we 
find f( ) = O(

a
). Hence in this case f is a polynomial, not a 

transcendental function.  

 The proof of the second assertion goes analogously.  

 Since E X
2
 > (E X)

2
, it follows that  

lim inf
x

E X2

(E X)2
1 .  (1) 

 To prove that lim sup  E X
2
/(E X)

2
  1, denote  

E X = f1( )/f0( ) = h0( ); E X
2
/E X = f2( )/f1( ) = h1( ).  (2) 

 Then  

E X
2
/(E X)

2
 = h1( )/h0( ) and hi , i = 0, 1.  (3) 

 We also need the following classical statement (cf [6], 
Vol. 2, p. 17).  

Lemma 3.2. If f  A , then  

lim sup
x

log h0 ( )

log
=  

 Combining this and Proposition 1.2, we find out that 
there exists a regularly varying function g  R  such that  

h0( )  g( ); lim sup
x

g( )

h0 ( )
= 1 . 

 Therefore, for arbitrary C > 1 we get  

g( )/C < h0( )  g( ) (  > 0(C)), 

and consequently, for each t > 1,  

g( t)/C < h0( t)  g( t) (  > 0(C)). 

 Hence  

h0 ( t)

h0 ( )
< C

g( t)
g( )

 (  > 0 (C)), 

i. e., by Proposition 1.1, we finally obtain that  

h0 ( t)

h0 ( )
< C2t  (  > 1(C)),  (4) 

holds for each t > 1.  

 Another assertion is of importance.  

Lemma 3.3. For each t > 1,  > 0, we have  

hi( ) log t < log
fi ( t)

fi ( )
 < hi( t) log t, i = 0, 1. 

 Proof. By Lemma 3.1, hi is monotone increasing; thus  

log
fi ( t)

fi ( )
= hi (u)du/u  > hi ( ) 

t
 du/u  = hi ( ) log t,

t
 

and analogously,  

log
fi ( t)

fi ( )
< hi( t) log t, i = 0, 1. 
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 Now, since h0 = f1/f0, combining Lemma 3.3 and (4), for 
each t > 1 we obtain  

h1( ) log t < log
f1( t)

f1( )
 < log(C

2
t ) + log

f0 ( t)

f0 ( )
 < log(C 

2
t ) 

+ h0( t) log t 

< log(C
2
t ) + (C

2
t  log t)h0( ),  > 1 (C).  (5) 

 Since h0( )   as   , choosing in (5) t = C if  = 0 
and t = C

1/
 for  > 0, we get  

h1( )/h0( ) < C
3
 + o(1) (   ). 

 Because C > 1 is arbitrary, by (3) we conclude that  

lim sup
E X2

(E X)2
1,  

and the proof of Theorem 2.1 in the case n = 1 is done.  

 To prove this theorem in general, note that f  A  implies 
f 

(n)
  A , n = 1, 2,....  

 Indeed, that all derivatives of an entire function of order 
 are also of order  is a classical result and can be found in 

[5], p. 265. Secondly, since all Taylor coefficients of f are 
positive then, evidently, all Taylor coefficients of f  

(n)
 are also 

positive. Therefore we conclude that f  A  implies f  

(n)
  A .  

 Also  

f ( ) f ( )

( f ( ))2
=

E X2

(E X)2
1

E X
1  (   ),  (6) 

because E X   as   . 

Since (6) holds for each f  A , replacing f by f  

(n 1)
, we get  

 

f (n+1)( )

f (n)( )

f (n)( )

f (n 1)( )
 (   ).  (7). 

 But fn( )  
n
 f

(n)
( ) (   ) (cf [3], Vol. I, p. 36). Hence 

by (0.2) and (7) as   ,  

 

E Xn+1

E Xn
=
fn+1( )

fn ( )

n+1 f (n+1)( )
n f (n)( )

n f (n)( )
n 1 f (n 1)( )

fn ( )

fn 1( )
=

E Xn

E Xn 1

. 

 Therefore we get  

 

E Xn+1

E Xn
E Xn

E Xn 1
E X2

E X
E X . 

Proof of Theorem 2.2. A simple consequence of the 
previous theorem is  

Lemma 3.4. For each n  N, we have  

E X
n
  (E X)

n
 (   ). 

 Proof. Indeed,  

E X
n
/E X =

k=1

n 1

(E X
k+1

/E X
k
)  (E X)

n 1
, 

i. e. E X
n
  (E X)

n
 (   ).  

 For the rest of the proof we shall apply well-known 
Lyapunov moments inequality.  

Lemma 3.5. For r > s > t > 0, we have  

(EX
s
)

r t
  (EX

t
)

r s
 (EX

r
)

s t
. 

 Let n >  > n  1, n  N. Then the Lyapunov’s inequality 
and Lemma 3.4 give  

E X   (E X
n 1

)
n

 (E Xn)
n+1

  (E X)
(n 1)(n )

 (E X)
n( n+1)

 = 
(E X) . 

 Hence  

lim sup
E X

(E X)
1.  

 Now, let r = n + 1, s = n, t = . We get  

(E X
n
)

n+1
  (E X )(E X

n+1
)

n
, 

i. e.,  

E X   (E X
n
)

n+1
 (E X

n+1
)

n
  (E X)

n(n+1 )
 (E X)

(n+1)( n)
 = 

(E X) . 

 Therefore  

lim inf
E X

(E X)
1 , 

and the proof of Theorem 2.2 is done.  

Proof of Theorem 2.3  

(i)  (ii): By Lemma 1.1 and (0.1), for x >  > y > 0, we get  

log f (x) log f (y) = (E
y

x
X)d / EyX log(x /y).

Ex X log(x /y);{   (8) 

Putting in (8) x = ty, t > 1 and y = tx, 0 < t < 1, we obtain  

ExX log f (x) log f (tx)

log(1/t )
,,0<t<1.

log f (tx) log f (x)

log t
,,t>1;

 

 Therefore, by Definition 1.2,  

 

limsup
x

ExX

x (x)

1

log t
lim
x

log f (tx)

x (x)
lim
x

log f (x)

x (x)
=

t 1

log t
a

 (9) 

and analogously,  

 

lim inf
x

ExX

x (x)

1 t

log(1 / t)
,  0 < t < 1.  (10) 

 Now, putting t  1 in (9) and t  1 in (10), the proof of the 
above assertion follows.  

(ii)  (i): Since EsX = s  (s) (s), where (s)  1 as  
s  , we conclude that m(s) :=  (s) (s) is slowly varying. 
As EsX is monotone increasing on s  1, we have EsX  ETX 
on [1, T]. So,  
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m(s) =
EsX

s
<
ET X ,  s  [1, T], 

i.e. m(s) is locally bounded on [1, ).  

 Hence by Karamata’s Theorem (Prop.1.5.8 on p.26 of 
[2]),  

logf( )=
1

(EsX)ds/s+O(1)=
1

s
1
m(s)ds+O(1) m( ), 

i.e.  

log f( )   ( ) (   ), 

as required.  

 Finally, the assertion from Theorem 2.4 is a consequence 
of Theorems 2.2 and 2.3. 

 As an illustration, we evaluate the asymptotic moments 
behavior of the Power Series Distributions generated by 
Mittag-Leffler functions Mt(z),  

Mt(z) := zn / (1 + nt), t  > 0.  

Theorem 3.1. For a class of Power Series Distributions 
generated by Mittag-Leffler functions Mt(z), we have that  

 

E X :=
1

Mt ( )

n

(1+ nt)
n

t

t
;  , t > 0 (   ). 

Proof. It is well-known (cf [2], p. 329) that  

Mt( )  exp(
1/t

)/t (   ). 

 By (3.1) we find out that Mt( ) is of order  = 1/t and, 
since all Taylors coefficients are positive, we conclude that 
Mt( )  A1/t.  

 Also, since log Mt( )  
1/t

 (   ), applying the 
assertion of Theorem 2.4 with  (t) = 1, the above result 
follows. 

CONCLUSION  

 Question of moments convergence is a difficult one and 

entirely depends on characteristics of the concrete 

probability law. But if EXn   (n  ) then, due to 

Jensen’s inequality, all other moments are also unbounded 

and there arise the problem of their asymptotic evaluation. In 

this article we establish asymptotic behavior of the moments 

of probability laws generated by an entire function of finite 

order. Namely, we proved that for each ,   R
+
, the 

asymptotic relation EX  (EX )  holds as   . This 

formula should be of valuable interest for researchers in the 

field particularly because, up to our knowledge, there are no 

similar results in literature. Further investigation of the 

quantity w  ( ) := 
EX

(EX )
  1 seems to be interesting. For 

instance, by a result from [8] it follows that 
w ( )

( 1)
 is 

logarithmically convex in .  
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