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Abstract: In this paper, a size-biased logarithmic series distribution (SBLSD), a particular case of the weighted logarith-
mic series distribution, taking the weights as the variate values is defined. The moments and recurrence relation of 
(SBLSD) are obtained. Negative moments and inverse ascending factorial moments of the size-biased logarithmic series 
distribution have been derived in terms of hyper-geometric function. Recurrence relations for these moments have also 
been derived using properties of hyper-geometric functions. Different estimation methods for the parameter of the model 
are discussed. R- Software has been used for making a comparison among the three different estimation methods and with 
the logarithmic series distribution.  
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1.    INTRODUCTION 

 The logarithmic series distribution (LSD) characterized 
by a parameter  is given by  

( )P X x= = 1       
log(1 )  

x

x
 ; x= 1, 2…..                     (1) 

 The model (1) is a limiting form of zero-truncated nega-
tive binomial distribution. Negative moments of discrete 
distributions, mainly the binomial, Poisson and negative bi-
nomial have been investigated by various authors [Stephan 
[1], Grab and Savage [2], Mendenhall and Lehman [3], Go-
vindarajulu [4,5], Tiku [6], Stancu [7], Chao and Strawder-
man [8], Gupta [9,10], Cressie et al. [11], Cressie and Bork-
ent [12] and Roohi[13]. Inverse ascending factorial moments 
have only been dealt with by Lepage [14] and Jones [15]. 
Best et al. [16] discussed the test of fit for the model (1). 
Sadinle [17] linked the negative binomial distribution with 
the logarithmic series and Shanumugam [18] studied the 
characterization of model (1). A brief list of authors and their 
works can be seen in Johnson, Kotz and Kemp [19]. 
 The first four moments of LSD are given as 

. 
 μ1 = (1 ) 1 , where                               (2) 

3
2 (1 ) (1 )μ =                                                 (3) 

5 2
3 (1 ) (1 )(1 )μ =                 (4) 

( )7 4 3 2
4 (1 ) (1 ) 2 6 2 1μ = + + +        (5) 
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 The variance of LSD is given as 

( )
3 2

2 1 [1 2 ]μ = +                                             (6) 

 In this paper, we have made an attempt to study proposed 
size-biased LSD, its moments and recurrence relations. 
Negative moments and inverse ascending factorial moments 
of the size-biased logarithmic series distribution have been 
derived in terms of hyper-geometric function. Recurrence 
relations for these moments have also been derived using 
properties of hyper-geometric functions. In order to make a 
comparative analysis among the three estimation methods for 
the parameter of the size-biased logarithmic series distribu-
tion (SBLSD), one of the standard software packages R- 
Software is used which is meant for data analysis and graph-
ics.  

2. SIZE-BIASED LOGARITHMIC SERIES DISTRI-

BUTION (SBLSD) 

 A size-biased logarithmic distribution (SBLSD) is ob-
tained by taking the weight of the LSD (1) as x. 
 We have from (1) and (2) 

 
1

( )
1x

x P X x

=

= = , 1       
log(1 )

=   

1
 

1
x

x=

=  

 This gives the size-biased logarithmic series distribution 
(SBLSD) as  

2 1 1
1 1[ ]  { [1, ; ; ]} x

P X x F A A= = ; x=1, 2…                    (7) 

 Where 0 1< < and 2 1
1{ [1, ; ; ]} (1 )F A A =  
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2.1. Moments 

The rth moment ( )r
sμ  of SBLSD (7) about origin is ob-

tained as  

( ) 1
1

( ) [ ]r r

r

x

s E X x P X xμ
=

= = = ; r=1,2… 

 ( )srμ
1

1
(1 )r x

x

x

=

=                                                    (8) 

obviously ( )0 sμ = 1 and for r  1 

( )
1

1
r x

r

x

s xμ
=

=  

           
1

1  r x

x

x

=

=  

            1

1

1 [ ]r

x

x P X x
+

=

= =  

( ) 1
1

r r
sμ μ +=                                                    (9) 

where 1r
μ +

 is the (r + 1)th moments about origin of LSD (1).  
The moments of SBLSD can be obtained by using relations 
(2) to (4) in (9) 

( )1 sμ  
( )

1
1

=                                                                 (10) 

Using relation (4) in (9), we get 

( )
( ) ( )

( )

2

2 4

1  1

1
sμ =                                                  (11) 

Which gives the variance of SBLSD (7) as 

 ( )
( )

2 2

1
1

sμ =                                                               (12) 

The higher moments of SBLSD (7) about origin can also 
be obtained by using (9) if so desired.  

3. RECURRENCE RELATION OF MOMENTS 

ABOUT ORIGIN OF SIZE-BIASED LSD 

The recurrence relation can be obtained by differentiating (8) 
as 

( ) { }1

1

 
(1 )r r x

x

s
x

μ

=

=  

         ( ) ( ) ( )1
1 1 1

(1 )r r r
s s sμ μ μ+=  

( )
( )

( )1
1

(1 )
r

r r

s
s s

μ
μ μ+ = +                               (13) 

For r = 0, we get 

( ) ( )1 0
1 ,   1

(1 )
s where sμ μ= =  

 The second moment of (7) about origin can also be ob-
tained by using the relation (13) 

4. NEGATIVE MOMENTS AND INVERSE ASCEND-
ING FACTORIAL MOMENTS 

 Theorem I: Suppose the random variable X has a size-
biased logarithmic series distribution with parameter , 
then the relation 

1 2 -1 2
1 1( ) {( 1) [1, ; ; ] }  [1, 1; 2; ]E X A A F A A F A A+ = + + +  

holds. 

Proof: Since X has a size-biased logarithmic series distribu-
tion, then 

1
1 2 1

1
1

( )  { [1, ; ; ]}  
( )

x

x

E X A F A A
x A=

+ =
+

 

        2 1 2
1 1{( 1) [1, ; ; ]}  [1, 1; 2; ]A F A A F A A= + + +       (14) 

This completes the proof. 
 Theorem II: Suppose the random variable X has a size-
biased logarithmic series distribution with parameter , then 
the kth inverse ascending factorial moment is given as 

2 1 2
[ ] 1 1{( 1) [1, ; ; ]}  [1,1; 2; ], 1, 2...  0< <1.
k

k F A A F k k andμ = + + =

Proof: Here [ ]
1

1[
k

k

i

E
X i

μ
=

=
+

 

1
2 1

1
1

 { [1, ; ; ]}  
( 1)( 2).......( )

x

x

F A A
x x x k=

=
+ + +

 

2
2 1

1
1 .2 { [1, ; ; ]}  [ ....]

(k+1)! ( 2)! ( 3)!
F A A

k k
= + + +

+ +
 

On simplification, we get 
2 1 2

[ ] 1 1{( 1) [1, ; ; ]}  [1,1; 2; ]
k

k F A A F kμ = + +               (15) 

5. RECURRENCE RELATION FOR NEGATIVE AS-

CENDING FACTORIAL MOMENTS 

 Theorem III: Suppose the random variable X has a size-
biased logarithmic series distribution with parameter and 

[ ]k
μ  is the kth inverse ascending factorial moment of X, 
then the relation  

  

(k +1)2 μ [k+1] = [ k +1( ) 1( ) + k ]μ [k ] +

1( )μ [k 1] , k = 2,3...and  0< <1
 

holds. 

Proof: we know that  
1 2 1 2

[ ] 1 1{( 1) [1, ; ; ]}  [1,1; 2; ]
k

k F A A F kμ = + +  

1 2 1 2
[ 1] 1 1{( 2) [1, ; ; ]}  [1,1; 3; ]
k

k F A A F kμ + = + +  

Using the identity (see Rainville [20], page 71) 
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Now again using the identity given by (Rainville [20], page 
71) 

Substituting (18) in (17) we get  

Again using (5.1), for a=1, b=1, c=k+2 and z= , we have 

This gives 

( )

( )

( )
[ 1] [ ] [ 1]2 2

12 1[ ]
1 1

k k k

k k

k k

μ μ μ+

+
= +

+ +
 

  
(k +1)2 μ [k+1] = [ k +1( ) 1( ) + k ]μ [k ] + 1( )μ [k 1] , k = 2,3...  (19) 

Where ( )2 2
1 1 [ ][1,1; 2; ] 1 ! [1, ; ; ]

k
F k k F A A μ+ = +  and  

( )2 2
1 1 [ 1][1,1; 1; ] ! [1, ; ; ]

k
F k k F A A μ+ =  

6.  ESTIMATION METHODS 

 In this section, we discuss the various estimation methods 
for size-biased logarithmic series distribution and verify their 
efficiencies. 

6.1. Method of Moments 

 In the method of moments replacing the population mean 

( )1
1

1
μ =  by the corresponding sample mean 

1

1 n

i

i

x x
n

=

= , we get 

1ˆ 1
x

=                                                                           (20) 

6.2. Method of Maximum Likelihood 

 Let 1 2, ,.....
n

X X X  be a random sample from size-biased 
logarithmic series distribution, then corresponding likelihood 
function is given as 

( )1 i
n x n

L = ; x=1, 2…                                           (21) 

( )1 n y n
L =  ,  iwhere y x=                                    (22) 

The log likelihood function can be written as 
log log(1 ) ( ) logL n y n= +  and the likelihood equa-
tion as 

( )

( )log 0
1

y nL n
= + =  

On solving, we get the maximum likelihood estimate as 

1ˆ 1
x

= , which coincides with the moment estimate. 

  

a c+1( )  2 F1[a,b;c; z] = a 2 F1[a +1,b;c; z] (c 1) 2 F1[a,b;c 1; z],

for  a=1,b=1,c=k+3,z= , we get
                        (16) 

  
2
F1[1,1; k + 3; ] = k + 2

k +1
 2

F1[1,1; k + 2; ] 1
k +1

 2
F1[2,1; k + 3; ]                              (17) 

  
z 1( )  2 F1[a,b;c; z] = a 2 F1[a 1,b;c; z] (c b

c
)z  2 F1[a,b;c+1; z], fora=2,b=1,c=k+2,z= , we get  

( )

( )( )

( )
2 2 2

1 1 1

2 12[1,2; 3; ]  [1,1; 2; ]  [2,1; 2; ]
1 1

kk
F k F k F k

k k

++
+ = + +

+ +
                    (18) 

 

 

  

2
F1[2,1; k + 2; ] = k + 2

k +1
1- 1

k+1( )
k 1( )

k +1( )
 2

F1[1,1; k + 2; ]+
k + 2( ) 1( )

k +1( )
 2

F1[1,1; k +1; ]

( )
( )
( )

( )( )
( )

1 2 1 2 2
[ 1] 1 1 1

1 2 12 1{( 2) [1, ; ; ]}  [ 1-  [1,1; 2; ]  [1,1; 1; ]]
1 k+1 1 1k

k kk
k F A A F k F k

k k k
μ +

++
= + + + +

+ + +
 

  

2
F1[1,1; k + 3; ] = k + 2

k +1
1- 1

k+1( )
 2

F1[1,1; k + 2; ]+
k + 2( ) 1( )

k +1( )
2

 2
F1[2,1; k + 2; ]
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6.3. Bayesian Method of Estimation 

 Since 0 1< < , therefore we assume that prior informa-
tion about  is from beta distribution. 

Thus ( )
( )
( )

11 1
;  0 1

,

ba

f
B a b

= < <  ,a>0, b>0.          (23) 

The posterior distribution from (22) and (23) can be 
written as 

( )/  y = ( )

( )

1 1

1
1 1

0

1

1

n b y a n

n b y a n d

+ +

+ +

                            (24) 

The Bayes’ estimator of  is given as 

  ( )
1

0

ˆ  /y  d=  

      ˆ
( )

( )

1
1

0
1

1 1

0

1  

1

n b y a n

n b y a n

d

d

+ +

+ +

=       

          y a n

y a b

+
=

+ +
                 (25) 

For a=b=0, we get moment and mle estimate. Thus Bayes’ 
estimator works as a general estimate in comparison to mo-
ment and mle estimator. 

7. COMPUTER SIMULATION AND CONCLUSIONS 

 It is very difficult to compare the theoretical perform-
ances of different estimators proposed in the previous sec-
tion. Therefore, we perform extensive simulations to com-
pare the performances of different methods of estimation 
mainly with respect to their biases and the mean squared 
errors (MSE's), for different sample sizes and different pa-
rametric values. Regarding the choice of values of (a, b) in 
Bayes’ estimator ˆ , there was no information about their 
values except that they are real and positive numbers. There-
fore, 25 combinations of values of (a, b) were considered for 
a, b=1, 2,3,4,5 and those values of a, b were selected for 
which the Bayes’ estimator has minimum variance. It was 
found that for a=b=5, the Bayes’ estimator has minimum 
variance and 2  values between the simulated sample fre-
quencies and the estimated Bayes’ frequencies were least. In 
Table 1.1, we have fitted the LSD (1), SBLSD (7) to some 
zero-truncated distribution of 1534 biologists according to 
the number of research papers to their credit in the review of 
Applied Entomology, vol 24, 1936 (see Williams [21]). Data 
given in Table 1.2 is on species frequency distribution of 
insect catches from Kempton [22]. As evident from the data, 
the number of moths per species is 128+, hence the data has 
a very long tail. Consequently, the fit by simple logarithmic 
series distribution is poor as is evident from the value of the 
Pearson's chi-square. However, the fit given by size-biased 
logarithmic series distribution reflects that the size-biased 
phenomenon is working in the sense that if species with 
more and more moths are included in the study, then those 
species will have a higher probability of being represented in 
the sample.  

Table 1.1. Distribution of 1534 Biologists According to the Number of Research Papers to their Credit in The Review of Applied 

Entomology, Vol. 24, 1936 
 

Expected Frequency 

SBLSD 

No. of Papers Per Author No. of Authors 

LSD 

MLE Bayes’ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1062 

263 

120 

50 

22 

7 

6 

2 

0 

1 

1 

1058.69 

262.36 

118.25 

51.36 

21.54 

8.54 

7.36 

3.25 

1.25 

1.65 

0.44 

1061.26 

262.54 

119.25 

49.21 

21.75 

7.54 

6.21 

2.68 

0.24 

1.65 

1.67 

1061.95 

262.91 

120.00 

49.89 

22.00 

6.98 

6.51 

1.98 

0.21 

0.97 

0.60 

Total 1534 1534 1534 1534 

2   1.48 0.542 0.0074 

ˆ   0.35525 0.35525 0.36 
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Table 1.2. Species Frequency Distribution of Insect Catches from the Trap at Rathamsted 

Expected Frequency 

SBLSD Moths per Species Observed Frequency LSD 

 MLE Bayes’ 

1 

2+ 

4+ 

8+ 

16+ 

32+ 

64+ 

128+ 

33 

24 

22 

9 

5 

4 

0 

5 

36.25 

23.01 

16.98 

8.26 

8.25 

4.58 

3.59 

1.08 

32.4 

23.3 

21.7 

8.34 

      4.97 

4.28 

2.62 

4.39 

     32.78 

     23.58 

     21.95 

      8.93 

      4.23 

      3.98 

      0.23 

      6.32 

Total 102       102        102       102 

2          21.05      2.812        0.656 

ˆ   0. 458 0.589 0.621   


