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Abstract: Directional statistics deals with angular data that come from non-linear objects such as circle circumferences or 
toroidal surfaces. A fundamental problem in directional statistics is that arithmetic cannot be meaningfully done on an-
gles. Naive changes of location and scale like λ' = (λ – µ)/σ for a spherical longitude λ are inappropriate and often mis-
leading since they are not interpretable as one-one mappings from a sphere onto itself. Finding ways to obtain angular 
scale changes and to construct families of spherical probability distributions that are closed under such scale changes have 
been unsuccessful. But, such families are successfully constructed herein by indirect but historically powerful methods. 
Thus, a unit sphere with a uniform probability distribution on its surface is centrally rotated to a suitable position, and then 
stereographically projected onto an extended complex plane, a linear surface especially amenable to directional and statis-
tical computations. A central dilation is performed on the plane, the dilated plane is projected back in effect as a rescaled 
sphere, and the rescaled sphere is again rotated. This process induces a family of spherical Cauchy-type probability distri-
butions on the sphere that is closed under composition of such processes (rotate sphere, project sphere to plane, dilate 
plane, project dilated plane back as a rescaled sphere, and rotate again). The distributions so induced can be generalized to 
higher dimensional spheres that are also closed under location and scale transformations. These distributions enjoy nu-
merous interrelationships with one another and with linear and circular Cauchy distributions.  

Keywords: Angular rescaling, Circular, Spherical and hyperspherical Cauchy distributions, Gauss' rotation image theorem, 
Möbius mapping, Polar, Mimetic, Extended and pseudo-polar decompositions, Spherical Möbius mapping, Spherical von-
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1. INTRODUCTION 

Ordinary linear methods for statistically transforming and 
analyzing data are often useless and even misleading when 
applied to directional data. Alternative methods must be de-
vised. The purpose of this paper is to investigate and develop 
methods for changing the scale or the amount of scatter in 
directional data. This should ideally be done with minimal 
distortion and loss of information in the data. These criteria 
seem to lead inexorably to Möbius functions as the vehicle 
for transforming the data, and these lead in turn to Cauchy-
type directional distributions.  

Complex numbers are inherently directional by design 
and mathematically more tractable than the real numbers for 
dealing with directional data. Their analytical power far out-
weighs the relatively small investment required to get suffi-
ciently familiar with a few complex techniques that are per-
tinent to directional statistics. These techniques are described 
and explained in section 2. Coordinate systems for spheres 
and planes are described in section 2.1. Transforming data 
back and forth between a complex plane and a sphere by 
stereographic projection is covered in section 2.2. Special 
Möbius mappings from the complex plane to itself or to an-
other complex plane are described in section 2.3, and their 
spherical counterparts are de- scribed in section 2.4. Two  
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special mappings are defined in section 2.5. Polar decom-
positions of 2×2 matrices whose entries are complex are de-
fined in section 2.6 and 2.7. A summary of existing Cauchy 
distributional forms and the new circle form introduced 
herein are given in section 2.8. 

Section 3 defines and constructs the probability distribu-
tion of the new "rescaled" circular Cauchy distribution, and 
compares it to the current "classical" circular Cauchy distri-
bution. Section 4 defines and derives the new "rescaled" and 
"classical" spherical Cauchy distributions, as well as trans-
formations and selected properties of these distributions. 
Section 5 provides discussions on selected related issues. 
Algorithms for the analysis and interpretation of spherical 
data appear in Appendices I and II. These pertain primarily 
to Möbius mappings, their associated decompositions and 
their relationships to the parameters of directional Cauchy 
distributions.  

2. METHODS AND MATERIALS 
(1) Coordinate Systems 

Random spatial directions are taken to be points z, zTz = 
1, on a unit z-sphere S centered at the origin 0 = (0,0,0)T of 
an xyt rectangular coordinate system, and supplemented with 
spherical coordinates zS = (θ,φ) = (colatitude, longitude), 
with θ ∈ [0, π] and φ ∈ (–π,π]. The linear z and spherical zS 
coordinates are related by  
z = (x,y,t)T = (sin θ cos φ, sin θ sin φ, cos θ)T,                        
zS = (θ,φ) = (acos t, atan y/x),                                       
where cos φ = x/r, sin φ = y/r, and r = sin θ = (x2+y2)½.  
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Random planar directions are taken to be points zC, zC = 
exp(iγ), on unit circles of S formed by the intersection of S 
with complex planes passing through 0. Mostly, though, 
spherical points z which are constrained to great circles of S 
are used to represent planar and spherical directions, facili-
tating shifting domains between circles and spheres. 

Geographic terminology is used for S: the north and 
south poles n = (0,0,1)T and s = – n; the parallel circles of 
latitude; the great semi-circular meridians of longitude φ 
joining n and s, with origin the prime meridian; the great 
circles of longitude through ±s; latitude north or south of the 
equator; and colatitude θ, 0 ≤ θ ≤ π, with the central angle θ 
measured as deviation from n or some specified point of S 
such as a spherical mean direction µ, µTµ = 1; the west hemi-
sphere composed of φ-meridians with negative longitudes φ 
∈ (–π,0), and the east hemisphere with φ-meridians of non-
negative longitudes φ ∈ (0,π). The two hemispheres are bor-
dered by the great circle of longitude that is composed of the 
0-meridian (prime meridian) and the π-meridian.  

The horizontal xy-plane, denoted by E, is considered as 
an extended complex plane with ∞ the sole improper point. 
Complex numbers zE in any extended complex plane may be 
expressed as zE = r exp(iφ) or zE = xE + iyE, where r2 = xE

2 + 
yE

2 and i2 = –1. The origin in E is also denoted by 0. The 
equator of S coincides with the unit circle U of E. All straight 
lines in any extended complex plane are extended lines and 
have in common the single improper point ∞. Horizontal 
directions from points on the polar axis of S are identified 
and located by points z = exp(iφ) on U, or by their longitudes 
φ.   

Any great circle of longitude C is located and oriented by 
the longitude φ of its east meridian. Each such circle C has a 
unique vertical extended complex plane F whose unit circle 
is C and whose location and orientation are the same as those 
of C. Each vertical plane F intersects E in a center line L (a 
straight line that passes through 0 in an extended complex 
plane). Each vertical plane F contains the polar axis ±s along 
the t-axis. The origins of E, F and the xyt coordinate space 
are identical to one another and also to the common centers 
of U, each unit circle C, and S.  

Every unit circle C in any distribution in this paper is 
taken, for theoretical purposes, to be a unit circle on S, but 
this does not preclude such distributions on stand-alone cir-
cles or circles in other settings. Points on the unit circle of 
any extended complex plane may be expressed globally as 
spherical points z or zS constrained to lie on C, or locally as 
complex circular points zC = exp(iγ), or as angles, γ, γ ∈   
(–π,π], with a convenient origin on C. In the latter case each 
point of C is identified with its unique local angular designa-
tion γ. Similarly, local linear coordinates xL for points on a 
center line L are identified with the points on L, and we 
write: 

C = {z; z ∈ C ⊂ S} = {zC; zC = exp(iγ)} = {γ; γ ∈(-π,π]},   
L = {xL;  xL ∈ (– ∞,∞]},  

where C and L lie in extended complex planes. The location 
of a center line L in the horizontal plane E is fixed by the 
longitude φ, φ ∈ [0,π), of its non-negative east ray with 
points xL > 0 (and with xL < 0 on the west ray).  

A central rotation of S is expressed as AS, where A is a 
3×3 orthogonal matrix with determinant |A| = ±1. The rota-
tion is proper, or improper according as |A| = +1, or –1. Ob-
jects on S such as a point z or a great circle C may be consid-
ered as rotated along with S, and their new positions are de-
noted by Az or AC. Other objects intersecting S but not on S, 
such as the horizontal plane E, any vertical plane F, or coor-
dinate axes may also be considered as being centrally rotated 
along with S when convenient. 

The spherical point µ, µTµ = 1, represents the mean direc-
tion for a spherical probability distribution on S, and also 
represents the common mean direction for all the great cir-
cles on S with circular probability distributions that pass 
through ±µ. There is at most one mean direction point µ on 
the sphere S at any given time. 

Different domains must simultaneously be dealt with 
from time to time. Instead of creating a hodgepodge of nota-
tion for each such situation or combination of situations, we 
will create adaptive notations applicable to most situations. 
In particular, the point symbols µ and z will have different 
meanings according to the context in which they appear, and 
it will be clear from that context which of the following in-
terpretations of µ and of z are appropriate:  
µ = µC = exp(iu) = u for a mean direction on a unit circle C,  

   = (µxµyµt)T for a mean direction point on S. 
 
z = zC = exp(iγ) = γ for a point on a unit circle C, 
   = (xyt)T for a point on S. 
A useful notational convention makes it easier to assign 

coordinate values to points on unit spheres or circles.  
If a mean direction µ exists on S, then, unless stated oth-

erwise, ±µ take precedence globally over ±n for spherical 
coordinates: colatitude θ is measured as the angular devia-
tion from µ, not from n; the great circles of longitude and the 
vertical extended complex planes containing them are con-
sidered as the great circles and extended complex planes 
that pass through ±µ, not ±n; and the parallel circles of lati-
tude including the equator are now orthogonal to the mean 
axis through ±µ, not to the polar axis through ±n. Corre-
sponding adjustments to point coordinates are made as 
needed.  

(2) Stereographic Projection  

Theory and computations for S are simplified by using 
stereographic projections. These projections map images of 
mathematical objects to and fro between S and E. The pro-
jected objects and their images are called stereographic pro-
jection images of one another, or simply images. Typically S 
or an object on S is projected to E, where Möbius mappings 
are employed to transform the planar image of the object, 
and this transformed image is then projected back to S. 

The spherical point z = (x,y,t)T and the planar point zE are 
images when z and zE are collinear with the fixed north pole 
n of the sphere, and we write: z ↔ zE or equivalently zE ↔ z. 
The improper point ∞ in E and the north pole n on S are des-
ignated images (n ↔ ∞ or ∞ ↔ n), thus making stereo-
graphic projection a one-one and onto mapping between S 
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and E. It is useful to keep in mind the simple maxim that 
equal objects have equal images. 

Let P be the projection operator from E to S. The image 
points of the image pair (z ↔ zE) are expressed in terms of 
one another by 

{z = PzE = (2xE/r1
2,2yE/r1

2,(r1
2 –2) / r1

2)T} ↔   
{zE = P-1z = x/(1–t) + i y/(1–t)}, or by 
{zS = (θ,φ)} ↔ {zE = cot θ/2 exp(iφ)},  

where θ = 2 acot r, cos φ = xE/r, sin φ = yE/r, r1
2 = r2 +1 and 

r2 = xE
2 + yE

2.   
Now extend the scope of the image terminology and 

stereographic projection notation beyond points to other 
mathematical objects like functions, equations, regions and 
curves. Distortions inevitably occur in projected images, 
being small for objects near s but violent for objects near n. 
However, the projection operators P and P-1 do have four 
important and undistorted features, here called the 

Stereographic Projective Properties: one-one, onto, cir-
cle-preserving and improper.  

Circle-preserving here means that (circles on S) ↔ (cir-
cles or straight lines in E). Improper (or anti-conformal) 
means isogonal or angle-preserving, in that two curves in E 
intersect at the same angle as their images on S, but with 
opposite sense – one traversed CCW (counter-clockwise), 
and the other CW (clock-wise). And proper (or conformal) 
means isogonal but with the same sense. Proofs and numer-
ous graphics pertaining to these four stereographic Projective 
Properties are provided by [1, pp. 140-148].  

The Projective Properties are valid, where applicable, for 
the objects listed above: functions, regions, equations and 
curves. Circle-preserving is illustrated by: (center lines L in 
E) ↔ (great circles of longitude C on S) and by (concentric 
circles about the origin of E) ↔ (parallel circles of latitude 
on S).  One-one and onto are then illustrated by E = (union of 
the center lines of E) = (union of the concentric circles about 
the origin of E), and S = (union of the great circles of longi-
tude) = (union of the parallel circles of latitude). Isogonality 
is evident in the orthogonal intersections of the center lines 
with the concentric circles about the origin in E, and the 
same orthogonal intersections in their respective images: the 
great circles of longitude orthogonal to the parallel circles of 
latitude on the sphere S. These examples show that (the fa-
miliar spherical coordinates (θ,φ) on S) ↔ (the familiar polar 
coordinates (r,φ) in E).  

(3) Planar Möbius Mappings 

Let zE be a complex variable and a' and b' complex con-
stants. If the three transformations zE → zE + a' (shift in loca-
tion), zE → b'zE (change in scale/direction), and zE → 1/zE 
(reciprocation) are compounded arbitrarily often and in arbi-
trary order, all the while allowing the constants a' and b' to 
vary from one transformation to the next, then the resulting 
function wE of zE is known as a homography or proper 
Möbius function (or proper function, for short), with the 
form   

wE = (azE+b)/(czE+d), and we write: wE = MEzE,  

where ME stands for the function. The coefficients a,b,c,d are 
functions of the several values of a' and b'. The function wE 
= MEzE is also called a Möbius transformation or Möbius 
mapping. It maps an extended complex plane to itself or to 
another extended complex plane in a one-one and onto man-
ner. The special notation z'E = MEzE means that the zE-plane 
is mapped to itself. If zE is replaced by its complex conjugate 
zE* in the function wE = MEzE, the resulting mapping is an 
anti-homography or improper Möbius function (improper, 
for short). A Möbius function with unspecified propriety is 
by default considered proper. The set of proper and improper 
Möbius mappings are surprisingly rich and versatile. They 
were used by [2] to model mean directions for circle-circle 
regression, and by [3] to model mean directions for spheri-
cal-spherical regression, while [4] used them to transform 
back and forth between circular Cauchy and linear Cauchy 
distributions, and to create compound transforms of circular 
and of linear Cauchy distributions. In this paper Möbius 
mappings are used for constructing the same kinds of opera-
tions on circular and spherical Cauchy distributions.  

Every Möbius function ME has associated with it the 2×2 
matrix Mm of the complex coefficients a,b,c,d, with first row 
(a,b) and second row (c,d). For brevity this 2×2 matrix is 
written as  
Mm = (a,b; c,d),  
where the m subscript of M stands for a matrix, in contrast to 
the E subscript used for planar points and mappings in E or 
other extended complex planes. A Möbius matrix is always 
assumed to be of full rank two, otherwise the corresponding 
Möbius function degenerates to a constant. 

The matrix Mm of a Möbius function ME is not unique 
because any non-zero complex multiple kMm of Mm is 
equivalent to Mm in that it yields the same value for wE as 
does Mm; these and related phenomena are collectively re-
ferred to as the k-effect. [1, pp. 148-158] gives an accounting 
of Möbius mappings using a geometric approach that is ac-
companied with illuminating graphics; see [5] for a more 
analytic but also insightful approach. 

The set of all proper and improper Möbius mappings is a 
group under the operation of composition of mappings, and 
the compound mapping ME2ME1 is a Möbius mapping with 
matrix the product Mm2Mm1 of the corresponding Möbius 
matrices. This implies that the group of all proper Möbius 
mappings is homomorphic to the group of all nonsingular 
2×2 complex matrices. See [1, pp. 148-158] for proofs. The 
subset of proper Möbius mappings is a subgroup, but the 
subset of improper mappings is not, because the composition 
of two improper mappings is a proper mapping. 

Theorem 1 as stated below is a slightly modified adapta-
tion of the fundamental theorem of Möbius mappings. A 
proof is given by [6, p. 46, pp. 106-109]. The Möbius Prop-
erties in this theorem deal with plane-to-plane mappings, and 
are similar to the Projective Properties above which pertain 
to sphere-plane mappings.  

Theorem 1: (Fundamental theorem of Möbius mappings) 
A mapping wE = MEzE from one extended complex zE-plane 
(zE*-plane) to another or to itself is a proper (improper) 
Möbius mapping ⇔ the mapping has the Möbius Properties: 
one-one, onto, circle-preserving and proper (improper).  
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In plane-plane Möbius mappings circle-preserving means 
that circles or straight lines are mapped to circles or straight 
lines. Synonyms for proper mappings include homography, 
positive, conformal and rotational; synonyms for improper 
mappings include anti-homography, negative, anti-conformal 
and reflexive. 

(4) Spherical Images of Planar Möbius Mappings  

Spherical mappings are functions from the surface of one 
unit sphere to another or to itself. The spherical mapping M, 
w = Mz, and a planar Möbius mapping ME, wE = MEzE, are 
called images of one another, and we write M ↔ ME, when 
(z ↔ zE) ⇒ (w ↔ wE) for all z in S and all zE in E. In such 
case Mz = P(MEzE) = PMEP-1z for all z, whence the equation 

M = PMEP-1 and its inverse ME = P-1MP                       (1)  
formally express the stereographic projection mappings be-
tween the spherical M and planar Möbius ME image func-
tions. The one-one and onto Projection Properties of the pro-
jection operators P and P–1 ensure that the images M and ME 
are unique. A spherical mapping M that is the image of some 
Möbius function ME will be called a spherical Möbius map-
ping. A spherical Möbius mapping M is proper or improper 
according as the argument of its image mapping is zE or zE*. 
Equations (1) can be used to show the well-known morphic 
result that the spherical image of the composition ME2ME1 of 
two planar Möbius mappings is the composition of their cor-
responding spherical images, M2M1. This implies that the set 
of spherical Möbius mappings is isomorphic to the group of 
planar Möbius mappings, a conclusion which profoundly 
simplifies many statistical analyses and interpretations of 
spherical data. There is a spherical counterpart to the funda-
mental theorem of Möbius mappings:  

Proposition 1: (Fundamental theorem of spherical 
Möbius mappings) A mapping w = Mz from one unit sphere 
to itself or to another unit sphere is a proper (improper) 
spherical Möbius mapping) ⇔ M has the Möbius properties: 
one-one, onto, circle-preserving and proper (improper). 

Proof: (proper, ⇒) Assume that M is a proper spherical 
Möbius mapping. Then M is the image of a Möbius function 
ME, and M inherits unscathed from ME the three Projective 
Properties: one-one, onto, and circle preserving, so M has all 
four proper Möbius Properties.  

Proof: (improper, ⇒) Same as above, with proper re-
placed therein by improper.  

Proof: (proper, ⇐) Assume M has the proper Möbius 
Properties. Then the planar image of M, say M'E, automati-
cally retains the three common Möbius and Projective Prop-
erties: one-one, onto and circle-preserving, and is proper 
because of the even number of improper projections in (1). 
Then M'E is a proper Möbius function by the fundamental 
theorem of Möbius functions, M is its image by (1), and M is 
thus a spherical Möbius mapping by definition.               

Proof: (improper, ⇐) Assume that Mz has the improper 
Möbius Properties.  We must show that its planar image, 
temporarily denoted by MEwE, say, is improper: MEwE auto-
matically inherits the one-one, onto and circle preserving 
projective properties, so we must show that MEwE is im-
proper. It has been shown by [3] that an improper spherical 

mapping Mz can be expressed as M'Jz where M' is proper 
and J = Diag (1,–1,1). Then Mz = (M'J)z = M'(Jz). From the 
formulas in section 2.2 it is readily shown that Jz = z* and 
PzE* = z*, where z* = (x,–y,z)T when z = (x,y,t)T. Hence 
M'z*=Mz ↔ MEzE*, which implies MEwE = MEzE* since the 
planar image is unique. This planar image of Mz is improper, 
and M is therefore improper by definition.  

(5) Rescaling and Unitary Möbius Mappings 

The special planar Möbius rescaling mapping from E to 
itself or to another extended complex plane is denoted by ΔE, 
and defined by 
wE = ΔEzE = δzE,                                                                   (2) 
with Möbius matrix Δm = (δ,0: 0,1) where δ > 0. This proper 
mapping is the first of two special proper Möbius mappings 
used in this paper, and both mappings play key roles in all 
that follows. 

Imagine the entire zE-plane rescaled as z'E = δzE, δ > 0. 
The fixed points of this central planar dilation are 0 and ∞. 
Each center line L of E is mapped onto itself, and uniformly 
rescaled by x'L = δxL for each point xL of each center line L. 
The concentric circles about the origin of E are mapped into 
themselves as a whole. Each of the concentric circles inter-
sects each center line orthogonally both before and after the 
rescaling, by the isogonality of Möbius mappings. Every 
concentric circle is altered unless the rescaler δ = 1, in which 
case none are altered. Rescaling uniformly moves the lines 
and circles of the planar polar coordinates toward the origin 
0, leaves them unchanged, or uniformly moves them away 
from 0, according as the indicator function τ, τ = sgn(1 – δ), 
is 1, 0, or –1.  

The spherical image of the planar rescaling, (z'E = δzE), is 
the one-one mapping, Δ, (z' = Δz or S' = ΔS), of S onto itself, 
where z' and z on S are the images of z'E and zE in E. This 
spherical Möbius mapping Δ operates as a nonlinear rescal-
ing of the sphere by δ. Its fixed points are s and n, the images 
of the fixed points 0 and ∞ of its planar image ΔE. The 
spherical image (z = Δz) of the planar rescaling (2) is ob-
tained in closed form via section 2.2 by substituting δzE for 
zE therein to get:  

z' = Δz = (2δxE/r2
δ1, 2δyE/r2

δ1, (r2
δ1 – 2)/r2

δ1)T                      (3) 

for all z' on S', where the original r1
2 of section 2.2 is re-

placed by r2
δ1= (δxE)2 + (δyE)2 + 1 to account for the switch 

to δz.    

When the planar rescaling uniformly moves the lines and 
circles of the polar coordinates toward 0, leaves them un-
changed, or uniformly moves them away from 0 a mean di-
rection µ is induced on S which is µ = s, the south pole, or 0 
(no mean direction), or n, the north pole, according as τ = 1, 
or 0, or –1. To capture quantitatively this directional phe-
nomenon when Δ operates on s we revise the definition of Δs 
to  

µ = Δs = τs = (s,0,n) according as τ = (1,0,–1).                   (4) 

Equation (4) defines a new entity created by the rescal-
ing: the creation of the mean spherical direction µ if τ ≠ 0, 
and the declaration of its non-existence: µ = 0, if τ = 0.   
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Change of location mappings are the second of the two 
special Möbius mappings herein. A change of location map-
ping AE has the form 
wE =  AEzE = (αzE + β)/(–β*zE + α*),                                    (5) 
whose matrix Am = (α,β; –β*,α*) is restricted by fixing its 
real-valued determinant, |Am| = αα* + ββ*, to be unity. The 
matrix Am is called a unitary matrix and its planar Möbius 
mapping AE a unitary mapping. The set of all unitary map-
pings is, like the set of all change-of-scale mappings, a sub-
group of the group of Möbius mappings, and thus is closed 
under composition of such mappings. Because of the restric-
tion |Am| = 1 on Am the parametric degrees of freedom (pdf, 
for short) for AE and Am is 3, not 4. The inverse of Am is Am* 
= (α*,–β; β*,α), its conjugate transpose, which suggests (cor-
rectly) that a unitary matrix is the 2-dimensional complex 
counterpart of a real 2×2 proper rotation matrix.  

The connection between the spherical image (w = Az) of 
the planar Möbius unitary mapping (wE = AEzE) in (5) was 
discovered by [7]. His remarkable result is summarized as 
follows:  

Theorem 2: (Gauss' rotation image theorem): The spheri-
cal image of the proper unitary planar Möbius mapping (wE 
= AEzE) is the proper spatial rotation (w = Az), where (w,A,z) 
are the respective spherical images of (wE,AE,zE) and A is a 
real 3x3 proper rotation matrix. The spherical image of the 
improper unitary mapping (wE = AEzE*) is the improper spa-
tial rotation (w = (AJ)z), where (w,A,(Jz)) are the respective 
images of (wE,AE,zE*), and J = Diag(1,–1,1). 

Any real 3×3 rotation matrix A is proper, or improper, 
according as |A| is +1, or – 1. The use of zE* as the argument 
for Möbius functions is infrequent herein, but is included for 
completeness due to its potential importance. Details of 
Gauss' rotation image theorem for converting between com-
plex unitary matrices and various forms of their real 3×3 
rotation matrix images are in Appendix II.  

(6) Polar Decompositions 

For any Möbius matrix Mm the identity  
Mm ≡ {Mm(Mm*Mm)– ½}×{(Mm*Mm)½} ≡ Am × Gm,  

uniquely defines the 2×2 unitary matrix Am and the 2×2 posi-
tive hermitian matrix Gm. Their matrix product AmGm is 
called the polar decomposition (polar form, for short) of Mm, 
and we write:  

Mm = AmGm (polar form).  
If Mm is complex then Mm*Mm is positive hermitian and 

can be decomposed into a principal form, and we write:  
G2

m = Mm*Mm = Rm*Δ2
mRm (principal form) 

where the matrix Rm is unitary and the columns of Rm* are 
the eigenvectors of G2

m, and where Δ2
m is real and positive 

diagonal with its diagonal elements as the corresponding 
eigenvalues. The positive square root Gm = (Mm*Mm)½ of 
G2

m is  
Gm = R*mΔmRm (principal form) 

where  
Δm = Diag(δ1,δ2), Δ2

m = Diag(δ1
2,δ2

2), 

and both δ1 and δ2 are positive. The ratios δ = δ1/δ2 and δ–1 
are called rescalers for the Möbius matrix Mm. The matrix 
Δm is called the rescaling matrix. The unitary matrices R*m 
and Rm are called rotors. If δ = 1 then Δm is equivalent to the 
identity matrix I2 because of the k-effect. This implies that 
Gm is also equivalent to I2 and that Mm = Am × I2 (polar 
form).   

Polar forms can be used to decompose any planar Möbius 
matrix into three unitary mappings and one rescaling map-
ping by combining the principal form of Gm and the polar 
form of Mm to get the extended polar form matrix expres-
sion:  

Mm = AmR*mΔmRm (extended polar form). 
Complex Möbius matrices only have pdf = 6 instead of 8 

because of the k-effect. The k-effect must be accounted for 
when calculating the polar forms for Möbius matrices, oth-
erwise 8 pdf will be foisted on a matrix which is only permit-
ted 6, and numerical errors will result. The k-effect can be 
accounted for by norming Mm (dividing each element of Mm 
by the square root of the determinant of Mm). The resulting 
normed matrix is equivalent to Mm and has just 6 pdf. The 
extended polar form of a normed Möbius matrix will have 
the unitary matrices Am, Rm and R*m of its polar form auto-
matically normed by definition. The normed rescaling matrix 
must consequently have the form 

Δm = Diag(δ½,δ–½) or Δm = Diag(δ–½,δ½)       

where δ = δ1/δ2 or δ2/δ1. This normed version is diagonal,  is 
equivalent to the original Δm, has determinant equal to unity, 
and is unique for these three properties apart from the order-
ing of the eigenvalues (see section 3.2). Appendix I gives 
examples of matrix norming and polar form calculations.  

The Möbius mapping ME has an extended form similar to 
that of its Möbius matrix Mm, and we write: 

ME = AERE
-1ΔERE (extended pseudo-polar form).  

Spherical and planar Möbius mappings are functions, not 
matrices, and the spherical image Δ is non-linear. So, they do 
not have polar forms per se, hence the term pseudo-polar 
form above. For all practical purposes though, these pseudo-
polar forms are virtually identical to polar forms. See [3] for 
a proof and further details of: 

Theorem 3: Any proper or improper spherical Möbius 
mapping M can be expressed uniquely as (M = AG = 
ARβSΔRSβ) (extended pseudo-polar form) with respective 
planar images (ME = AEGE = AER-1

E0βΔERE0β) (extended 
pseudo-polar form), where A and RSβ are real 3×3 rotation 
matrices, and RSβ rotates a unit vector β called the base, with 
spherical coordinates βS = (θβ,φβ), through an amount η = π 
– θβ, to the south pole s along the meridian of the base β and 
about a positive rotation axis p with spherical coordinates pS 
= (π/2,φβ + π/2). The mapping M is proper, or improper, 
according as the determinant of the aligner A is +1, or –1.  

Theorem 3 describes the spherical rotor, RSβ, as that 
proper rotation which rotates the base point β to the south 
pole s of S along the φβ-meridian of βS (the shortest route), so 
that (s = RSββ) ↔ (0 = RE0ββE): the planar image of RSβ sends 
βE to 0. The base β is important to the implementation of (4) 
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in the sequel, and constitutes the source for defining the 
mean direction µ on a sphere. It will be described in more 
detail later.  

Unitary mappings and their spherical images have pdf = 3 
as a rule, but the definition of a rotor in Theorem 3 makes it 
possible to get the rotors RSβ or RE0β as functions of either β, 
as given in theorem 3, or of βE = P-1β. Therefore any rotor 
has pdf = 2, not 3. Thus, if the base β = (x,y,t)T is known then 
βE = x/(1– t) + iy/(1– t) from section 2.2. Since RE0ββE = 0 
then the first row of its matrix Rm0β must be proportional to 
(1,–βE). By definition of a unitary matrix the second row of 
Rm0β is then proportional to (β*E,1), with the same constant 
of proportionality. Hence the matrix Qm0β = (1,–βE; β*E,1) is 
equivalent to Rm0β. We can get Rm0β by norming Qm0β: |Qm0β| 
= 1+|βE|2 = D, say, so that Rm0β = D–½ × Qm0β. Then we can 
get RSβ from Rm0β by using Gauss’ theorem and the tech-
niques in Appendix II. 

The objects Am, AE, and A are called aligners; Gm, GE, 
and G are called hermitian rescalers; Rm, RE0β and Rsβ are 
called rotors, and Δm, ΔE, Δ and δ are called rescalers. In 
theorem 3, s = RSββ and the transpose of RSβ, denoted by RβS, 
satisfies β = RβSs. Then (β = RβSs) ↔ (βE = REβ00), and the 
Möbius matrix for the mapping REβ0 is Rmβ0, the conjugate 
transpose of Rm0β. In summary, we have 

Mm = AmRmβ0ΔmRm0β (extended polar form), for Möbius 
matrix domains, 

ME = AEREβ0ΔERE0β (extended pseudo-polar form), for 
planar Möbius mapping domains,                 

M = ARβSΔRSβ (extended pseudo-polar form), for spheri-
cal Möbius mapping domains 

as extensions of the polar form Mm = AmGm and pseudo-polar 
forms ME = AEGE and M = AG. Theorem 3 and the extended 
forms above stem from the homomorphism between the 
Möbius mappings ME and their Möbius matrices Mm, and the 
isomorphism between the Möbius mappings ME and their 
spherical Möbius mapping images M. The extended pseudo-
polar form for M shows that any spherical Möbius mapping 
can be decomposed into three real 3×3 rotation matrices, 
namely: A, RβS and RSβ corresponding to spherical changes in 
location, and a nonlinear rescaler Δ which operates accord-
ing to (3) as a nonlinear spherical change in scale. These 
extended polar and extended pseudo-polar forms provide 
frameworks for defining, constructing and performing trans-
formations on the spherical Cauchy distributions in section 4.   

(7) Basic Structures 

The mappings ME and M and the matrix Mm each have to-
tal pdf = 6, not 8, because of the k-effect. These are allocated 
as follows: pdf = 3 for each corresponding aligner, pdf = 2 
for each base, and pdf = 1 for their common rescaler δ. Basic 
structures for the 3 domains of ME, M and Mm, are composed 
of the corresponding aligners, bases, and the rescaler. They 
determine each of Mm, ME and M uniquely, and we write: 

Mm = [Am,βE,δ],     
ME = [AE,βE,δ],     (basic structures) 
M   = [A,β,δ]     

to conveniently group the 3 basic structural parameters for 
each of the 3 object domains, and to emphasize the total de-
pendency of the objects Mm, ME and M on them. Any basic 
structure above is computable from Mm. Indeed, each of the 
forms in this section can be computed from any of the three 
basic structures above using the methods and formulas in the 
two Appendices.  

The spherical Möbius mapping M is proper or improper 
according as the mapping MJ is improper or proper. Also,  

MJ = ARβSΔRSβJ = (AJ)(JRβSJ)(JΔJ)(JRSβJ) (extended                                                              
pseudo-polar form) 

The two Js surrounding the rescaler Δ disappear because 
the two operators J and Δ commute and J is equal to its own 
inverse, or involutory. The eigenvector rotor JRβSJ sends s to 
the base by definition, so the base is JRβSJs = JRβSs = Jβ. 
Therefore we have 

MJ = [AJ,Jβ,δ] (basic structure). 
The basic structures above for MJ and for M permit us to 

switch spherical Möbius mappings back and forth between 
proper and improper Möbius functions at will, and get the 
entire basic structure for either of them from that of the 
other. 

(8) Cauchy Distributions 

Many of the methods and results of this paper are natural 
extensions of a well-known and simple stereographic projec-
tion relating the standard linear Cauchy distribution on a line 
to the uniform distribution on a circle. Basic notation, defini-
tions and selected results for linear and circular Cauchy dis-
tributions are set forth in this subsection for comparison and 
reference.  

A Linear Cauchy distribution (LCD) with median m and 
rescaler δ on a center line L has the probability density func-
tion 

f(xL; m,δ,L) = (δπ)-1[1+{(xL–m)/δ}2]-1                        (6.1) 
where xL, m ∈ L, – ∞ < xL, m < ∞ and δ > 0. We say xL is 
linear Cauchy m, δ on L, or L is Cauchy m, δ, and write: xL ~ 
LC(m,δ,L), or L ~ LC(m,δ). The expected value of xL does 
not exist. If the rescaler δ = 0 then xL = m with probability 1; 
if δ = ∞ then probability is uniformly distributed over L. The 
standard LCD is LC(0,1) and is the same as the t-distribution 
with one degree of freedom. Every LCD can be generated 
from the standard LCD by the linear transformation 

xL ~ LC(0,1,L) ⇔ δxL + m ~ LC(m,δ,L), δ > 0.  
Circular Cauchy distributions (CCDs) are dichotomized 

by their parametric form as being either classical (the current 
form) or rescaled (the new form introduced here). All the 
angular scale changes in this paper are results of projections: 
in classical forms the projection point is along the ±µ axis 
and is either inside or outside S, while in rescaled forms the 
projection point is always the north pole n on S, which is 
conventionally µ or –µ when µ exists.  

Classical and wrapped CCDs have the same probability 
density functions. Their common density, taken from [8, p. 
51], was modified by using |1 – ρ2|, in place of (1 – ρ2) in [8, 
p. 51], in the expressions for A' and B' just below the prob-
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ability density of the classical CCD in (6.2). The classical 
CCD is defined , for the moment, on the equator U of E, and 
its density is:   
f(z; ζ,U) = (2π)-1(A' – B'zTµ)-1                                            (6.2) 
where z, µ ∈ S but both are restricted to lie on U, and A' = 
(1+ρ2)/|1–ρ2| > B' = 2ρ/|1–ρ2| ≥ 0. We say that z is classical 
Cauchy ζ on U, or U is classical Cauchy ζ, and write: z ~ 
CC(ζ,U), or U ~ CC(ζ). The parameter ζ = rµ is taken as 
complex when used in circle mappings, in which case µ is 
thought of as µC = exp(iν) in local coordinates, as per section 
2.1. The classical CCD has 2 pdf, one for the length, r, of ζ, 
and the other for its direction µ which is constrained to lie on 
U and thus has pdf = 1 only. The precision ρ for z is 
ρ = min(r,r–1), ρ ∈ [0,1), 

and the center of gravity is E(z; ζ,U) = ρµ. If ρ = 1 then z = µ 
with probability 1; if ρ = 0 the distribution is uniform and 
written as CC(0,U) or CC(0). CCDs with the form (6.2) can 
be defined on any unit circle C of S containing ±µ after ap-
propriate interpretations of z and µ as per section 2.1.  

Circle mappings are defined, according to [6, p. 120-
122], as Möbius mappings which map one unit circle to itself 
or to another unit circle. Circle mappings were used by [2] to 
model the mean direction for circle-circle regression. [9] 
used the circle mapping model of [2] for the link function for 
a circular regression model, but replaced the von Mises dis-
tribution for regression deviations used by [2] with a classi-
cal CCD.  

The most general circle mapping MC has a matrix of the 
form Mm = (a,b; b*,a*) where |a| = 1 and |b| ≠ 1, and so has 
pdf = 3. See [6, p. 120-122] for a proof. A variety of forms 
for circle mappings can be created as reparameterizations or 
special cases of Mm (see e.g. [2] and [10]). Circle mappings 
with |b| > 1 are improper. When |b| < 1 they are proper. Cir-
cle mappings are closed under composition.  

The special circle mapping TC on a unit circle C, with pdf 
= 2, is expressed as   
z' = TCz = {(z –ζ)/(ζ*z –1)},                                             (6.3) 
where TC has matrix Tm = (1,–ζ;ζ*,–1), r = |ζ| ≠ 1, and the 
point z is constrained to lie on C. The group property of cir-
cle mappings makes them useful for modifying CCDs, and 
[4]s circle mapping TC is used extensively for that purpose in 
this paper. Using (6.3), [4] derives: 

Theorem 4: C ~ CC(ζ1) ⇔ TCC ~ CC(TCζ1), 
where TCζ1 (ζ1–ζ)/(ζ*ζ1 –1), an expression that is akin to 
relativistic addition of velocities. The demonstration that the 
complex parameter for TCC is TCζ1 depends on a harmonic 
property of CCDs (see [4] or [8, p. 52]).  

If ζ1 = 0 then TCζ1 = ζ. If ζ = ζ1 then TCζ1 = 0, implying a 
uniform distribution, which in turn implies that TC is involu-
tory (equivalent to its own inverse). It is readily shown that a 
Möbius matrix is involutory if and only if its trace is zero. 
An equivalent inverse to any Möbius matrix (a,b; c,d) is (d,–
b; –c,a), obtained by swapping a and d and changing the 
signs of b and c.  

Rescaled CCDs are defined, like classical CCDs, on any 
great circle C of S that contains µ. The rescaled CCD and 

classical CCD have the same circular Cauchy distribution, 
being merely different parameterizations of that same distri-
bution. The classical CCD has two parameters: (µ,r) or (µ,ρ), 
with ζ = rµ complex, and the rescaled CCD has two parame-
ters: (µ,δ). The two CCD forms are easily differentiated by 
their notations, r or ρ vs. δ, and consequently the form need 
not be explicitly stated when describing a particular CCD. 
The rescaled CCD has probability density function 

f(z; µ,δ,C) = (2π)-1(A – τBzTµ)-1                                        (6.4) 

where z ∈ S but is restricted to C, ±µ ∈ C when δ ≠ 1, δ > 0, 
A = (1+δ2)/(2δ) > τB = {τ(1–δ2)}/(2δ) ≥ 0, and the indicator 
function τ is defined, as before, by  
τ = sgn(1 – δ) = (1,0,–1) according as δ is ( < 1, = 1, > 1).  

The requirements that A > τB ≥ 0 in (6.4) and A' > B' ≥ 0 
in (6.2) serve to avoid singularities and force the densities to 
be maximized at z = µ. We say that z is rescaled circular 
Cauchy µ, δ on C, or C is rescaled Cauchy µ, δ, and write: z 
~ CC(µ,δ,C), or C ~ CC(µ,δ). If δ = 0 or ∞ then z = µ with 
probability 1. The closer δ is to unity the greater is the scatter 
of the observations about µ. The rescaled CCD is uniform ⇔ 
δ = 1 or equivalently ⇔ τ = 0, in which case the mean direc-
tion does not exist and we write C ~ CC(0,1). The inference 
that µ = 0 (which is an impossible value) in this CC(0,1) no-
tation is intended to indicate that µ does not exist, and we use 
CC(0,1) or CC(0,1,C) to indicate that the CCD is uniform, 
for notational simplicity and conformity with (4) and the 
indicator function τ. The density (6.4) for the rescaled CCD 
is derived in section 3. 

Spherical Cauchy distributions (SCDs) are derived in 
section 4. They are labeled, like CCDs, as either classical or 
rescaled. The classical SCD is constructed from the classical 
CCD of (6.2), and it is convenient to assign the same pa-
rameters (µ,r) or (µ,ρ) or ζ = rµ or ζ = ρµ for the classical 
SCD as for the classical CCD from which it was derived. 
Likewise, the rescaled SCD is constructed from the rescaled 
CCD of (6.4), and it has the same parameters (µ,δ) as the 
rescaled CCD from which it was derived. Further details 
regarding spherical Cauchy distributions are in section 4. 

3. CIRCULAR CAUCHY DISTRIBUTIONS  

(1) Get Rescaled CCD From Uniform CCD 

Proposition 2 below quantifies the manner in which the 
mean direction and scatter on any rescaled Cauchy great cir-
cle C of longitude through ±s on S are influenced by the 
rescaler δ. This result is central to all that follows.  

Proposition 2: (a) For any great circle C of longitude on S 
and any center line L in E, C ↔ L ⇒ C ~ CC(τs, δ) ⇔ L ~ 
LC(0, δ)}.   

(b) If S is uniform then the rescaling ΔS of S by δ induces 
identical rescaled CC(τs,δ) distributions on each great circle 
of longitude C on S. 

(c) For given τs, rotating ΔS of (b) by the Rotor RµτS (µ = 
RµτSτs) sends the mean τs to the new mean µ, and sends the 
great circles C through ±τs, with identical rescaled CC(τs, δ) 
distributions, to the great circles RµτSC through ±µ, with 
identical rescaled CC(µ,δ) distributions.  
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The proof of Proposition 2 is carried out in steps, the first 
of which is the proof of the well-known result alluded to at 
the beginning of section 2.8 which relates the standard LCD 
on a center line L in E to the uniform distribution on a great 
circle of longitude C on S. This well-known result is a spe-
cial case of (a) in Proposition 2 and may be expressed sym-
bolically as  

C ↔ L ⇒ {C ~ CC(0,1) ⇔ L ~ LC(0,1)}.                    (7) 
If C ↔ L then C and L are coplanar with common east 

longitude φ, say, which locates C and L. All subsequent ac-
tivity pertaining to (7) is limited to points either on C or on 
L, so the local variables γ ∈ C and xL ∈ L identified with 
such points suffice for the proof of (7), and their common 
longitude φ can be ignored. It follows that the proof of (7) 
given below applies to every C ↔ L image pair of S and E. 

Proof of (7): (⇒) Assume C ~ CC(0,1). The uniform 
density for γ is f(γ; C) = (2π)-1. Fig. (1) is a planar cross-
section of S and E showing the plane of the great circle of 
longitude C and its center line image L. The dashed lines in 
the Figure are used later. From Fig. (1) the point γ (with ori-
gin s) on C represents the central angle γ = ∠(γ,0,s), since γ 
is measured CCW from s. 

The central angles γ and ∠(n,0,γ) are supplementary, and 
triangle (n,0,γ) is isosceles, so γ = 2β where β = ∠(n,γ,0) 
=∠0,n,γ). The points n and γ on C and xL on L are collinear, 
so γ ↔ xL. Triangle (n,0,xL) is right, so xL = oppo-
site/adjacent = tan β = tan γ/2, a one-one mapping from C 
onto L which shows the functional relationship characteriz-
ing the C ↔ L image pair. The density this induces on L is 
LC(0,1), the standard LCD of (6.1), since  

f(xL;L) = f(γ; C)|dγ/dxL| =(2π)-1|(2cos2γ/2)|  
       = (π)-1|1 + tan2γ/2|-1 = (π)-1(1 + xL

2)-1.   
(⇐) The converse is shown by repeating the (⇒) argu-

ment above with the roles of γ and xL reversed. This com-
pletes the proof of (7).  

 

 

   

 

 

 

 

 

Fig. (1). Geometry of Rescaled Directional Cauchy Distributions. 

Proof of Proposition 2(a): Assume C ↔ L for some east 
longitude φ. As in the proof of (7), the local variables γ and 
xL suffice for the analysis, and they are independent of φ. 
The mapping xL = tan γ/2 is one-one and onto the center line 
L. If δ = 1 there is no rescaling and the proposition reduces 

to (7), consistent with the notation µ = 0 for the uniform 
case, and C is uniform. Assume that δ ≠ 1.  

(⇐) Instead of assuming directly that the center line L ~ 
LC(0,δ), it is convenient to start with the weaker assumption 
that xL ~ LC(0,1,L), as in (7). This implies that γ ~ CC(0,1,C) 
by (7) and further implies, via section 2.8, that x'L = δxL ~ 
LC(0,δ,L). We will show that the circular image γ' on C of 
the rescaled point x'L on L is CC(τs,δ,C), (Fig. 1), by show-
ing that the density of γ', given by  

f(γ'; τs,δ,C) = f(γ; 0,1,C)|dγ/dγ'| 
has the form (6.4). The angular point γ' (the rescaled γ on C 
in Fig. 1) represents the central angle γ' = ∠(γ',0,s). Both γ' 
and γ must be measured as angular deviations from µ = τs 
when τ ≠ 0, as per the convention at the end of section 2.1. 
The circle C, indeed, the entire sphere S, has been rescaled 
using δ ≈ 2/5 in Fig. (1), so τ = 1 and µ = s: the points γ' on C 
and x'L on L and angles (n,0,γ') and (0,n,γ'), after the rescal-
ing has been done, correspond to the configuration of the 
original points γ on C, xL on L and angles (n,0,γ) and (0,n,γ) 
before the rescaling. Get x'L = δxL and plot it on L. Draw the 
line through n and x'L, extended to meet C at γ', so that γ' ↔ 
x'L. Triangle (n,0,γ') is isosceles and triangle (n,0,x'L) is right, 
so that, as in the proof of (7), x'L = opp/adj = tan γ'/2, a one-
one mapping from C onto L.  

Then tan γ'/2 = x'L = δ tan γ/2. Differentiate x'L as follows 
to get the Jacobian |dγ/dγ'|, and thereby the density for γ' on 
C:  

dx'L  = dtan γ '/2   = sec2 γ'/2  dγ'/2 = (1 + tan2 γ'/2)dγ'/2,  
and also 

dx'L = δ dtan γ/2  = δsec2 γ/2 dγ/2 = δ(1 + tan2 γ/2)dγ/2.  
Next, equate the two expressions for dx'L, solve for 

dγ/dγ', then use successively the substitutions:  
tan2 γ/2→δ-2 tan2 γ'/2,  tan2 γ'/2 → sin2γ'/2/cos2γ'/2  

followed by multiplication of numerator and denominator by 
cos2γ'/2,  then use the substitutions  

cos2γ'/2 + sin2γ'/2 → 1, cos2 γ'/2→ ½(1+cos γ'), and sin2 

γ'/2→ ½(1-cos γ') to simplify dγ/dγ', getting, in turn, 
dγ/dγ'  = (1+tan2 γ'/2)/{δ(1+tan2 γ/2) 
= (1+tan2 γ'/2)/{δ(1+δ-2tan2 γ'/2)}  
= 1/(δcos2 γ'/2+δ-1sin2 γ'/2)  
= 1/{δ2(1+cos γ')/(2δ) + ((1-cos γ')/(2δ)} 
= 1/[{(δ2+1)/(2δ)} – {(1-δ2)/(2δ)}cos γ']  
= [A – B cos γ']-1 

say, where z, µ ∈ C, cos γ' = zTµ, and A = (δ2+1)/(2δ) > B = 
(1-δ2)/(2δ) > 0.  For Fig. (1), δ ≈ 2/5 < 1, so τ = 1 and µ = s. 
If δ had been greater than 1 we would have gotten the same 
symbolic result: [A – B cosγ']-1, but with B < 0 and µ = τs = 
n, not s. Further, the deviation from µ would be the supple-
ment π – γ' of γ', not γ', because µ would be n, not s. How-
ever, since cos (π – γ') = – cos γ' all these potential discrep-
ancies disappear on replacing Bcos γ' with the equivalent but 
adaptive expression (τB)zT(τs) where τ = sgn(1–δ). Then, on 
putting µ = τs we get 
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f(γ'; τs,δ,C) = (2π)-1{A – τBzTµ}-1.                                       (8)  
which is the same as (6.4). This adroitly morphs to the 
proper density for γ' when C is any great circle of longitude 
on S, z ∈ C, and δ > 0. Moreover, zT(τs) = cos γ' and A = 
(1+δ2)/(2δ) > τB = {τ(1–δ2)}/(2δ) ≥ 0, preserving all the re-
quirements: A > B ≥ 0, with γ and γ' measured as angular 
deviations from µ = τs.   

(⇒) Before rescaling, xL = tan γ/2 ~ LC(0,1,C), and f(xL; 
0,1,C) = (π)–1 (1+x2

L)–1. After rescaling C, x'L = δxL, and 
f(x'L; 0,δ,C) = f(xL; 0,1,C)/δ = (πδ)–1(1+x2

L)–1 =  
(πδ)-1{1+(x'L/δ)2}–1, so that x'L ~ LC(0,δ,C) by (6.1). 

Proof (b) and (c): The density (8) is independent of the 
common longitude φ for C and L which, together with re-
marks made in and after the proof of (7), prove part (b). Part 
(c) follows because the rotor RµτS rotates the mean direction 
τs to µ and a circle C to RµτC, but does not affect the scatter 
and thus does not affect δ. 

(2) Dualities in CCDS  

There is a duality in the rescaled CC(µ,δ,C) density (6.4): 
it is equivalent to a CC(–µ,δ-1,C) density. To show this, as-
suming δ < 1, emphasize that A and B are functions of δ by 
putting A(δ) = (1+δ2)/(2δ) and τB(δ) = (1– δ2)/(2δ), and put-
ting A(δ–1) and B(δ–1) as the corresponding functions of δ–1. 
Then, substituting in (8), 

f(γ'; µ,δ,C) ∝ [A(δ) – τB(δ)zTµ]–1, with A(δ) > B(δ) ≥ 0,  
while, with the same proportionality constant,  
f(γ'; –µ,δ–1,C) ∝ [A(δ–1) – B(δ–1)zT(– µ)]–1  

= [A(δ) – B(δ)zTµ]–1 ∝ f(γ'; µ,δ,C). 
An analogous argument is used when δ > 1. This duality 

results from unavoidable ambiguities in the definition of the 
rescaler δ in section 2.6. To explain this, let ME be any 
Möbius mapping whose rescaler δ ≠ 1, and let its matrix Mm 
have polar form AmGm, where G2

m = Mm*Mm = Rmβ0Δ
2

mRm0β 
(principal form). Let Rmβ0 be partitioned as Rmβ0 = (C1,C2), 
where C1 and C2 are the eigenvectors of Gm, and Δm = 
Diag(δ1,δ2) the corresponding eigenvalues. Then the conju-
gate transpose Rm0β = (C1,C2)* and  

Gm = (C1,C2)Diag(δ1,δ2)(C1,C2)* = δ1C1C1*+ δ2C2C2*, 
which can also be written as 

Gm = δ2C2C2* + δ1C1C1* = (C2,C1)Diag(δ2,δ1)(C2,C1)*, 
in effect swapping the positions of C1 and C2 and also those 
of δ1 and δ2. This ambiguity brings about the duality. 

In the δ1, δ2 swap the rescaler for Gm changes from δ = 
δ1/δ2 to δ-1 = δ2/δ1, and either of these is just as legitimate as 
the other.  

Before the C1, C2 column swap we had RmoββE = 0 and 
Rmoβ(–1/βE*) = ∞, with corresponding spherical images R0ββ 
= s and R0β(–β) = n. After the C1--C2 swap, Rm0β and R0β be-
come, say, R'm0β and R'0β. Then R'm0ββE = ∞ and Rm0β(–1/βE) 
= 0, with corresponding spherical images R'0ββ = –s and 
R'0β(–β) = –n, and this eigenvector swap causes a change in 
sign of µ, which is just as legitimate a mean direction as the 
original µ. Therefore the pairs (µ,δ) and (–µ,δ–1) are dual sets 
of parameters. 

To illustrate these results we will find the rescalers for 
the general circle mapping MC with the patterned matrix Mm 
= (a,b; b*,a*) where |a| = 1 and |b| = r ≠ 1. Then      

G2
m

 = Mm*Mm
 = Rm*Δ2

mRm
 = (1+r2,2a*b; 2ab*,1+r2) . 

The eigenvalues δ1
2, δ2

2 say, of the positive hermitian 
matrix G2

m are the solutions of the equations 
tr G2

m = tr Δ2
m = δ1

2+δ2
2 = 2(1+ r2) and     

|G2
m| = |Δ2

m| = δ1
2δ2

2 = (1+ r2)2 – 4r2 = (1 – r2)2. 
Eliminating δ1

2, the solutions are found to be the roots of 
a quadratic equation in λ2, say; that is, the roots in λ2 of 
λ4 – 2(1+ r2)λ2 + (1 – r2)2 = 0,   

namely: λ2 = (1 ± r)2 for the eigenvalues of G2
m,. The eigen-

values δ1 and δ2 of Gm must both be positive since Gm is 
positive hermitian, so that δ1 = 1+r and δ2 = |1– r|, say. The 
rescalers of Gm are therefore the ratios  
δ = δ1/δ2 = (1+r)/|1 – r| and δ-1 = δ2/δ1 = |1 – r|/ (1+r).  
The classical CC(ρ,µ,C) density (6.2) has a duality also, 

namely f(γ'; ρµ,C) = f(γ'; ρ–1µ,C). This was used by [4] to 
elegantly describe CCDs induced by applying Möbius map-
pings to LCDs or CCDs. This technique would not have 
worked if the customary formulation by [8, p. 51] of the cir-
cular Cauchy density had not been revised to give (6.2).  

(3) Equivalence of Classical and Rescaled CCDs 

The disparate classical and rescaled forms (6.2) and (6.4) 
can be reconciled by equating their coefficients as follows: 

When δ > 1, A = (1+δ2)/(2δ) = (1+ρ2)/|1-ρ2|, and B = (δ2 – 

1)/(2δ) = 2ρ/|1– ρ2|. Adding, A+B, and equating coefficients 
gives the same result as subtracting, A–B, namely:  
δ = (1+ρ)/|1 – ρ| and ρ = (δ – 1)/(δ + 1) when δ >1;  

When δ < 1, A = (1+δ2)/(2δ) = (1+ρ2)/|1-ρ2|, and B = (1– 
δ2)/(2δ) = 2ρ/|1-ρ2|. Adding, A+B, and equating coefficients 
gives the same result as subtracting, A–B, namely:  

δ = |1 – ρ|/(1+ρ) and ρ = (1 – δ)/(1 + δ) when δ < 1. 
To emphasize that δ and ρ are functions of one another 

we write δ(ρ) and ρ(δ), and similarly write δ(1/ρ) and ρ(1/δ) 
to indicate the same functions evaluated at the reciprocals of 
their initial arguments. We find, for all δ ≥ 0 and all ρ ≥ 0, 
that 

for δ < 1, δ(ρ) =  |1 – ρ|/(1+ρ) = δ(1/ρ), and   

for δ  > 1, δ(ρ) = (1+ρ)/|1 – ρ|  = δ(1/ρ ) so that 

for any δ ≥ 0, δ(ρ) = {|1 – ρ|/(1+ρ)}τ = δ(1/ρ), and  

for any δ ≥ 0, ρ(δ) = |1 – δ|/(1 + δ) = ρ(1/δ).    

The unique solutions for δ and ρ in terms of each other 
show that the classical and rescaled Cauchy distributions can 
comport with one another. These expressions are put in Ta-
ble 1 for reference. To avoid singularities, we impose in Ta-
ble 1 the restrictions 
δ > 0 but δ ≠ 1, and 0 < ρ < 1. 

Comparing the functional expressions for the rescalers in 
Table 1 to the rescalers in section 3.2 shows that ρ = r or ρ = 
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r–1, whichever is smaller. If a calculated value for ρ exceeds 
unity then it should be replaced with its reciprocal, as justi-
fied by f(z; ρ,µ,C) = f(z; ρ–1,µ,C), the duality shown in sec-
tion 3.2. 
 
Table 1. Parameter Conversions for Comporting Classical (µ, 

ρC) and Rescaled (µ, δ) CCDs    

 δ range          0 < δ ≠ 1      0 < ρ < 1 

   δ < 1    δ = |1- ρ|/(1+ ρ)    ρ = (1-δ)/(1+δ) 

   δ > 1    δ = (1+ρ)/|1- ρ|      ρ = (δ-1)/(δ+1)    

(4) Some Transforms of Classical and Rescaled CCDs 

(A). To transform z ~ CC(µ,δ,C) to z' ~ CC(0,1,C) ~ 
CC(0,C), convert δ to the comporting precision ρ using Ta-
ble 1, then put µ = exp(iu) ∈ C as the local complex repre-
sentation of µ on C, and put ζ = ρµ, so that z ~ CC(ζ,C). 
Then by Theorem 4 z' = TCz ~ CC(TCζ,C) = CC(0,C) ~ 
CC(0,1,C), because Tm = (1,–ζ; ζ*, –1) is involutory. 

(B). To transform z ~ CC(ζ,C) to z1 ~ CC(ζ1,C), first 
transform z to the uniformly distributed z' as in (A) above, 
then put z1 = TC1z' with matrix Mm1 = (1,–ζ1; ζ1*, –1). Then 
z1 ~ CC(ζ1,C) by theorem 4. 

 (C). To transform z ~ CC(µ1,δ1,C) to w ~ CC(µ2,δ2,C), 
find ζ1 = ρ1µ1 conforming to (µ1,δ1), and find ζ2 = ρ2µ2 con-
forming to (µ2,δ2), as in (A). Transform z to w as in (B).Then 
w ~ CC(µ2,δ2,C). 

 (D) CCDs are closed under rotations AS of S: If ATA = I3 
then z ~ CC(µ,δ,C) ⇒ Az ~ CC(Aµ,δ,AC), and z ~ CC(ρµ,C) 
⇒ Az ~ CC(ρAµ,AC) since zTµ = (Az)T(Aµ) with Jacobian 
unity. The precision ρ, like the rescaler δ, is not affected by 
rotations.  

4. SCD CONSTRUCTIONS 

(1) Get Rescaled SCD from Rescaled CCD 

Definition 1: The family of rescaled SCDs is the set of 
probability distributions on the unit sphere S that result from 
mappings of the form S' = MS, where S ~ SC(0,1), the uni-
form spherical distribution, and M is any spherical Möbius 
mapping, proper or improper. We write: S ~ SC(µ,δ), where 
µ and δ are functions of M.  

The set of rescaled SCDs is closed under the operation of 
compounding spherical Möbius functions: A SCD on a unit 
sphere S1 = M1S, can be transformed on the left by an arbi-
trary spherical Möbius function M2 to yield a SCD on the 
unit sphere S2, S2 = M2S1, by the group property of the 
spherical Möbius functions. We say that z or zS is spherical 
Cauchy µ, δ on S2, or S2 is spherical Cauchy µ, δ, and write: z 
or zS ~ SC(µ,δ,S2), or S2 = MS ~ SC(µ,δ), where M = M2M1 = 
[A,β,δ] (basic structure), zS = (θ,φ), z and zS ∈ S2, µ ∈ S2, µ is 
a function of the basic parameters of M when δ ≠ 1, and µ = 
0 (undefined) when δ = 1. Recall that if µ is defined the co-
latitude θ is by convention measured as the angular deviation 
of z from µ, forcing cos θ to be zTµ. The distribution on the 

sphere MS depends, by Proposition 3 below, only on µ and δ, 
with combined pdf = 3, and not on the entire basic structure 
for M, whose pdf is 6.  

Proposition 3: If M is a spherical Möbius function then 
MS ~ SC(µ,δ) and is isotropically distributed about the mean 
axis, ±µ, where M = [A,β,δ] (basic structure), µ = Mβ = τAβ, 
τ = sgn(1– δ) and S ~ SC(0,1). 

Proof: The proof is conducted in the spherical domain. If 
δ = 1 then τ = µ = 0, G = RβSΔRSβ = I3, M = A and S' = AS, a 
rotation of S which is itself uniformly distributed, in which 
case the proposition is trivially true. So, assume δ ≠ 1. 

The mapping S' = MS has four stages corresponding to 
the four components of the extended pseudo-polar form M = 
ARβSΔRSβ: namely S1 = RSβS, S2 = ΔS1, S3 = RβSS2, and S' = S4 
= AS3 = MS. In stage 1 Rotor RSβ rotates S into S1, position-
ing it for rescaling in stage 2, and rotates the base point β on 
S to the south pole s by definition, and –β to –s by implica-
tion. Circle-preserving properties of Proposition 1 require 
that RSβ also rotate the family of great circles through ±β to 
the family of great circles of longitude through ±s. Since 
rotations have no effect on uniform distributions then, like S, 
S1 ~ SC(0,1). 

Stage 2 is the centered rescaling about s: S2 = ΔS1, or z' = 
Δz, say, where z' ∈ S2 and z ∈ S1. This rescaling disrupts the 
uniformity of the probability distributed on S, and in the 
process creates a mean axis, ±s, and a mean direction µ on 
S2: µ = Δs = τs = s if τ =1 and n if τ = – 1, according to (4) 
and the explanation of Δs in section 2.5. In the planar image 
ΔE of Δ the center lines through the origin of E intersect or-
thogonally the concentric circles about the origin; since 
stereographic projection is isogonal their spherical images, 
the great circles of longitude and the parallel circles of lati-
tude, must also intersect at right angles on the sphere, form-
ing a rigid grid of mutually orthogonal sets of circles as ex-
plained in section 2.2. This is true both before and after the 
rescaling because the rescaler Δ is a spherical Möbius map-
ping and therefore is itself isogonal. This process guarantees 
the isotropy of the distribution about the mean axis ±s. Then 
S2 ~ SC(τs,δ), by (4) and by definition of the rescaled SCD.  

The third stage, S3 = RβSS2, rotates the entire rescaled 
sphere S2 back to its original position, now relabeled as S3. In 
the process it rotates the mean axis ±s of S2 and its rigid grid 
of orthogonal sets of circles to the new mean axis ±β and a 
corresponding rigid grid of orthogonal sets of circles for S3. 
The rescaling is unaffected by this rotation. Since RβSτs = β 
when τ = 1, and –β when τ = –1, then RβSτs = τRβSs = τβ, and 
S3 ~ SC(RβSτs,δ) = SC(τβ,δ).  

The final stage is the rotation from S3 to S4: S4 = AS3 = 
MS = S' ~ SC(τAβ,δ). The successive stages show that µ = 
Mβ = τAβ, with rescaler δ and isotropy about the final mean 
axis ±µ. This completes the proof of Proposition 3.  

(2) Probability Density Function of the Rescaled SCD 

Proposition 4: The probability density function of z ~ 
SC(µ,δ,S') on S' = MS, where S ~ SC(0,1), is 

f(z; µ,δ,S') = sin θ × h(z; µ,δ,S'), where the profile density  
h(z; µ,δ,S') = (4πκ)-1(coth κ – zTµ)-1, and 
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δ = exp(κ), zS = (θ,φ) and cos θ = zTµ. 
Proof: The profile density is derived first for δ > 1. By 

Proposition 2(c), h(z; µ,δ,S’) is proportional to the variable 
part of the circular density (6.4) common to all the great cir-
cles of longitude C on S containing ± µ, and is thus propor-
tional to [(δ2 + 1) – (δ2 –1)zTµ}]-1 = [C + D cos θ]-1, say, 
where C = (δ2 + 1), D = – (δ2 – 1) and δ > 1, so that  
h(z;n,δ,S') = K[C + D cos θ]-1 where 

1/K = ∫∫ [C + D cos θ]-1sin θ dθ dφ, with the integral 
taken over the surface of S’. Simplify by substituting w = C 
+ D cos θ for θ. Then dw = – D sin θ dθ, and w ranges from 
C + D to C – D as θ ranges from 0 to π, and now 

–D/K= ∫∫ w-1dw dφ = 2π {log(C – D) – log(C + D)} = 2π 
log δ2, so K = –D/(2π log δ2), and 
 h(z; n,δ,S’) = {4π log δ(C/(–D) – cos θ)}-1,  
where C = δ2+1, – D = δ2 – 1, and δ = eκ. Then 
 h(z; n,δ,S’) = {4πκ (coth κ – cos θ)}– 1, κ > 0,  
as the profile density for z ~ SC(µ,δ,S') when δ > 1.  
Next take  
C = δ2 + 1 as before, D = – (1 – δ2) and δ < 1.  

Proceeding as with the case δ > 1, K = –D/{2π log (1/δ2)} 
= D/(4πκ) and the profile density is exactly the same as 
above. This completes the proof of Proposition 4.  

There is a duality in the SC(µ,δ,S') probability density 
that is analogous to that shown in section 3 for the circular 
Cauchy probability density: the SC(µ,δ,S') profile density 
function is equivalent to that for a SC(–µ,δ–1,S') profile den-
sity function, since h(z'; µ,δ,S') ∝ [log δ{A(δ)/B(δ) – zTµ}]–1, 
with A(δ) > B(δ) > 0 and maximum density at zTµ = 1, while  
h(z; –µ,δ–1,S') ∝ [log δ-1{A(δ–1)/B(δ–1) – zT(–µ)]-1  
= [ – κ{coth(– κ) – zT(–µ)]–1 

= [ – κ{ – coth κ – zT(–µ)]–1 =[κ{coth κ – zTµ}]–1  
∝ h(z';µ,δ,S), with the same proportionality constant. 
To force κ to be positive when δ < 1 replace (µ,δ) with (–µ, 
δ–1) to get z' ~ SC(–µ,δ–1,S'), or, use – z' ~ SC(µ,δ-1,S'), where 
δ–1 > 1. The parametric pairs (µ,δ), (–µ,δ–1) and (–µ,–κ) all 
give the same rescaled SCD. The underlying reasons for this, 
as explained in section 3.2, are the ambiguities in the defini-
tions of the base and rescaler.    

(3) Transforms of Rescaled SC(µ,δ) Distributions  

Suppose that M1S ~ SC(µ1,δ1) when S ~ SC(0,1). Given 
any spherical Möbius function M2 the transform MS = 
M2M1S of M1S will be SC(µ,δ) for some (µ,δ). We seek to 
determine the parameters (µ,δ) for MS when M2 is given and 
(µ1,δ1) are known or estimable, but the entire basic structure 
of M1 is neither known nor estimable. A stand-in Möbius 
spherical function for M1 will be designed to solve this prob-
lem, It will be denoted by [µ1,δ1] and will be called a mimetic 
mapping for M1 or (µ1,δ1), or simply a mimetic for short. Its 
parameters must be strictly limited to (µ1,δ1) since any addi-
tional parameters would confound the results. Similarly, 
[µ1,δ1]S and M2[µ1,δ1]S are mimetics for M1S and M2M1S. 
The mimetic [µ1,δ1] for M1 must satisfy   

(a) [µ1,δ1]S ~ M1S ~ SC(µ1,δ1), and  
(b) M2[µ1,δ1]S ~ M2M1S ~ SC(µ,δ) for some (µ,δ), and 

for any given M2 and for every M1 for which M1S ~ 
SC(µ1,δ1). Actually, it suffices if just (a) above is shown to 
be satisfied by [µ1.δ1], since then the mimetic [µ1,δ1]S for 
M1S and M1S itself provide identical inputs to M2, so the out-
puts in (b) will be the same. The parameters for the mimetic 
are restricted to µ1 and δ1 to guarantee that (a) ⇒ (b). Indeed, 
(b) ⇒ (a) also since (b) must hold for any M2, and we can 
choose M2 to be the identity mapping.  

The existence of a mimetic [µ1,δ1] satisfying (a) is cru-
cial, otherwise no transformations can be done and the 
rescaling properties for the SCD will be of little use. Fortu-
nately such a mimetic does exist.  

Proposition 5: Let M1 be any spherical Möbius function 
with S1 = M1S ~ SC(µ1,δ1) where (µ1,δ1) are known or esti-
mable. If δ1 = 1 then [0,1] = I3 is a positive hermitian mi-
metic for M1; If δ1 ≠ 1 then [µ1,δ1] = Rµ1SΔ'1RSµ1 and [µ1,δ1]–1 

are positive hermitian mimetics for M1 and M1
–1, where Δ'1s 

≡ s (no τ involved). These positive hermitian mimetics are 
unique. 

Proof: If δ1 = 1 then the "parameters" for [µ1,δ1] can only 
be the constants 0 and 1. Any 3×3 aligner matrix A is a mi-
metic since AS ~ SC(0,1). But the mimetic [0,1] = I3 is the 
only positive hermitian aligner whose parameters are 0 and 
1, and I3S ~ SC(0,1) as required by (a).  

If δ1 ≠ 1 a subtle quirk appears: since µ1 is known its al-
gebraic sign is fixed and must not be changed by τ in the 
definition of µ in (4), thus prohibiting the use of τ in the mi-
metic for M1 but requiring its use in M1. Then Δ1s = τs for 
M1, but, as a definition of Δ'1, we use Δ'1s = s for the mimetic 
[µ1,δ]. Suppose M1 = A1Rβ1SΔ1RSβ1 (extended pseudo-polar 
form), so that M1β1 = µ1 with rescaler δ1. The base β'1, say, 
for the mimetic must be either s or µ1 since β1 is unknown. If 
β'1 = s then the rotor for the mimetic must be the identity 
matrix since it maps s to s, and the extended pseudo-polar 
form for the mimetic [µ1,δ1] is Rµ1SI3Δ'1I3, which is not posi-
tive hermitian. The only alternative is to use β'1 = µ1 for the 
mimetic base. This forces the unique positive hermitian mi-
metic to be [µ1.δ1] = Rµ1SΔ'1RSµ1. Since (b) ⇒ (a) then, on 
setting M2 = [µ1,δ1]–1 in (b) we have S = [µ1,δ1]–1[µ1,δ1]S ~ 
[µ1,δ1]–1M1S. This completes the proof of Proposition 5.  

Some examples, where it is assumed that S ~ SC(0,1): 
(A) To convert M1S ~ SC(µ1,δ1) to SC(0,1), a uniform 

distribution: By Proposition 5, [µ1,δ1]–1M1S ~ S. 
(B) To transform the sphere M1S ~ SC(µ1,δ1) to a 

SC(µ2,δ2) distribution, put [µ1,δ1] = Rµ1SΔ'1RSµ1 as in (A) 
above, and put [µ2,δ2] = [I3,µ2,δ2] (basic structure) = 
Rµ2SΔ'2RSµ2. Then [µ1,δ1]-1M1S ~ S ~ SC(0,1) by (A), and 
[µ2,δ2]{[µ1,δ1]-1M1S ~ SC(µ2,δ2) by Proposition 5. 

(C) To get the parameters (µ,δ) for the distribution of MS 
where MS = M2M1S ~ SC(µ,δ), given M2 and (µ1,δ1). First 
compute M2[µ1,δ1] where [µ1,δ1] = Rµ1SΔ'1RSµ1 as in (A) and 
(B). Then M2[µ1,δ1]S ~ MS ~ SC(µ,δ) by (b) above. To get 
(µ,δ) we must get the basic structure of the Möbius matrix 
Mm for the planar image ME, say, where M2[µ1,δ1] ↔ ME. Put 
Mm = [Am,βE,δ] (basic structure). See the Appendices for how 
to calculate the components of this basic structure. The rotor 
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Rm0β is obtained from βE as per the example following theo-
rem 3 in section 2.6. The spherical rotation images, A and 
RSβ, of Am and Rm0β, are obtained using the formulae of Ap-
pendices II(A) and II(E). The mean direction is µ = τAβ, 
where τ is obtained from δ, and β from βE using the equa-
tions in section 2.2.  

(4) Some Properties of the SC(µ,δ) Distribution 
The orthogonal angles θ and φ are independent, and φ is 

uniformly distributed over a unit circle for all rescaled SCDs. 
The expected value of z when z ~ SC(µ,δ,S) is  
E(z; µ,δ,S) = ρSµ, where δ = eκ and ρS = coth κ –1/κ          (9).  

This unexpected result shows that the precision ρS for the 
SCD has the same form as that for the spherical von-Mises 
Fisher distribution. Equation (9) can be shown directly by 
integration of the probability density for z in Proposition 4, 
using the same substitution, w = C + D cos θ, as before.  

If S ~ SC(µ,δ) then all the great circles on S passing 
through ± µ will be CC(µ,δ). Analogous relationships hold 
for the great circles through ± µ of a sphere with the von 
Mises-Fisher spherical probability distribution (see [11] for 
details), whose profile density is proportional to exp(κzTµ). 
Another similarity between the two families is that, for the 
great circles and spheres through µ of both families, the ratio 
of the maximum profile density at z = µ to the minimum at z 
= –µ is always exp(2κ), or δ2. Despite these similarities the 
spherical and circular Cauchy densities have taller and nar-
rower peaks and contain more tail probability than their cor-
responding von-Mises Fisher distributions. 

The same parametric notation, (µ,δ), is used for both the 
CC(µ,δ) and SC(µ,δ) distributions, even though they have 
the same rescaler but different precisions. Knowledge of any 
one of the three parameters ρ, ρS or δ is sufficient to deter-
mine the other two. This is so because the spherical precision 
ρS and the circular precision ρ can be expressed in terms of 
their common rescaler δ (or concentration parameter κ = log 
δ), which is tantamount to indirectly expressing them in 
terms of each other. Since Table 1 implies that ρ = |δ –1|/(δ 
+1), we can infer that  
ρ = tanh |κ|/2, while ρS = coth κ – 1/κ and δ = eκ.               (10) 

To show the first of equations (10), assume δ > 1, so κ > 
0. Then ρ = (δ – 1)/(δ + 1). Substitute eκ for δ; and then mul-
tiply numerator and denominator by e– κ/2 to get ρ = tanh κ/2 
= tanh |κ|/2. If δ < 1 then ρ = (1–δ)/(1+δ) and κ < 0. Substi-
tute e–|κ| for δ, and multiply thoughout by e|κ|/2 to get the same 
result, ρ = tanh |κ|/2. Equations (10) hold for all δ > 0 except 
δ = 1, for all κ ∈ (–∞, ∞} except κ = 0 and for all ρ ∈ (0,1). 
If κ is given then ρ and ρS can be calculated directly from 
(10). Given ρ, κ can be found via the inverse function  
|κ| = 2 atanh ρ = log{(1 + ρ)/(1– ρ)},  
and ρS then calculated from (10). Given ρS, |κ| can be deter-
mined from (10) by iteration, and ρ then calculated directly 
from (10). The equations in (10) hold even if the mean direc-
tions for the circular and spherical distributions are not the 
same. 
(5) Special Circle and Sphere Projection Mappings 

The classical SCD is defined in section 4.7 below via the 
special Möbius circle mapping TC. The involutory matrix of 

this mapping is Tm = (1,–ζ; ζ*, –1), where ζ = r exp(iu), r ≠ 
1 and u ∈ (–π,π]. This mapping was briefly described in 
theorem 4 of section 2.8, and it will hereafter be called a 
(circle) ζ-projection, with projection point ζ, a name moti-
vated by the well-known defining property of TC manifested 
in  

Theorem 5: The Möbius mapping z' = TCz is a ζ-
projection ⇔ TC maps a unit circle C one-one and onto itself 
(relabeled as C', C' = TCC) by means of the straight line pro-
jection making the three points (z’,z,ζ) collinear in the plane 
F whose unit circle is C, with projection point ζ any complex 
point in F that is not on C. 

Proof: (⇒) Assume TC is a ζ-projection, so its matrix is 
(1,–ζ; ζ*,–1), and |Tm| ≠ 0. For any z on C, 

z' = (z – ζ)/(ζ*z –1) = (z – ζ)/{z(ζ*– z*)} ⇔ 
z'z = – (z – ζ)/(z*– ζ*) = – (z – ζ)2/| z*– ζ*|2 ⇔      
(z’z)1/2 = iZ, say, where Z = (z – ζ)/| z – ζ| and |Z| = 1. 
Then {|z'| = 1 and z' ∈ C'}⇔ {TC is a circle mapping 

from C to itself, C'}. Further, 
[{( z'z)1/2 || iZ ⊥ Z || z – ζ}⇔{( z'z)1/2 ⊥ (z – ζ)} and 
{( z'z)1/2 || z' + z ⊥ z' – z } ⇔ {( z'z)1/2⊥ z' –z}] ⇔ 
z – ζ || z' – z,  

the last line presenting two parallel line segments with a 
common point. This occurs if and only if the three points (z', 
z, ζ) involved are collinear. The one-one, onto and circle 
preserving Möbius Properties apply to all Möbius functions, 
proper or improper, and thus to TC by theorem 1. 

(⇐) The collinearity of (z',z,ζ) emulates the functional TC 
mapping of C to itself because to every point z ∈ C the 
collinearity assigns a unique point z' ∈ C'. And, the relevant 
implication symbols in the proof above are all two-way.   

Now define a spherical ζ-projection mapping T analo-
gous to the defining property of the circular ζ-projection TC 
of theorem 5 by: 

Definition 2: A spherical mapping T is a ζ-projection, z' 
= Tz, if it maps a unit sphere S onto itself (relabeled as S', S' 
= TS) by means of the straight line projection making the 
three points (z',z,ζ) collinear in xyt-space, with projection 
point ζ = rµ any point along the positive µ axis that is not µ.  

The same notation, ζ, for the projection point has been 
deliberately used here to represent both the complex point ζ 
= r exp(iu) for classical CCDs and the real 3-vector ζ = rµ 
for classical SCDs. The vector rµ and the complex point r 
exp(iu) represent the same point expressed in different coor-
dinate systems. When ζ is considered as complex it has 2 
pdf, and when considered as a point in xyt-space it has 3 pdf. 
When both circular and spherical ζ-projection points are 
involved we either distinguish them or we use the interpreta-
tion, complex number or real vector, that is most appropriate 
and convenient.  

(6) Geometry of Circular and Spherical ζ-projections 
Fig. (2) shows the key points on the coincident C and C' 

circles for the special circle mapping C' = TCC. The ±µ axis 
is the perpendicular bisector of the chord of C' joining the 
tangent points zT1 and zT2. The projection point ζ is the center 
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of gravity ρµ inside C, or is ρ–1µ outside C. The points ρµ 
and ρ-1µ are reflections of one another in C' since they both 
lie on the +µ ray, and the product of their labeled lengths, ρ-1

 
and ρ, is indeed equal to unity by the similarity of the right 
triangles whose vertices are (0,ρ-1µ,zT1) and (0,ρµ,zT1). The 
duality of the CC(ζ) distribution means, in the present con-
text, that either ρµ or ρ–1µ can be used as the legitimate pro-
jection point ζ.  

Arc(zT1,µ,zT2) is the cap of circle C', arc(zT1,–µ,zT2) is the 
cup, and C' the union of the cap and cup. Points z on the cap 
are mapped by TC one-one to points z' on the cup, by the 
collinearity of the three points (z',z,ζ), and conversely, re-
gardless of which point, ρµ or ρµ–1, is the projection point ζ.  

Applying TC to C' maps the points back to their original 
positions, illustrating that TC is involutory. As ρ decreases 
the cap gets relatively larger and becomes equal to the cup 
when ρ is zero – a uniform distribution. The probability den-
sity is a minimum at z' = –µ and from there increases mono-
tonically and symmetrically about the ±µ axis to a maximum 
at z' = µ. 

 

Fig. (2). Geormetry of Classical Directional Cauchy Distributions. 

Circular ζ-projection properties change markedly with 
the position of the projection point ζ, which is inside, on or 
outside C. 

If r = 1, ζ is on C, the mapping is degenerative, and z' ≡ 
µ. 

When r < 1 the projection point ζ = ρµ and is inside C'. 
As the input point z moves CCW from µ to –µ to µ on C the 
output z' also moves CCW on C', from –µ to µ to –µ, and ζ is 
always between z and z'. This Möbius mapping is proper. If 

C ~ CC(0) the cap has probability ≈ 1/3, and the cup ≈ 2/3. 
For C' the probabilities are reversed: cap ≈ 2/3 and cup, 1/3.  
 When r > 1 the projection point ζ = ρ–1µ and is outside 
C'. As the input point z on C moves CCW from zT2 to zT1 and 
continues CCW around C and back to zT2, the output point z' 
of C' moves CW from zT2 to zT1 and continues CW back to 
zT2, all the while maintaining collinearity of the three points 
(z',z,ζ). This mapping is therefore improper. Since probabil-
ity is uniformly distributed over C the cap still has a prob-
ability of about 1/3 and the cup, about 2/3. The probabilities 
are still reversed for C', where the cap has a probability of 
about 2/3, and the cup 1/3. This improper mapping has zT1 
and zT2 as its fixed points.  

To conceptualize the spherical ζ-projection in terms of 
circular ζ-projections, let µ be any fixed point on the surface 
of the sphere S, and consider the family of unit circles C on S 
which pass through the antipodal points ±µ. Each such C has 
associated with it an extended complex plane F whose unit 
circle is C. Let ζ = rµ be any point of xyt-space except µ 
along the positive ray of the ±µ axis. The points (–µ,µ,ζ) are 
collinear, and the extended line through them is common to 
every extended complex plane F. The union of the C circles 
is S, and their intersection is ±µ; the union of the complex F 
planes is all of xyt-space, and their intersection is the ex-
tended line through (–µ,µ,ζ). The cap and cup circular arcs 
become a spherical cap and spherical cup, and the sphere 
their union. The endpoints zT1 and zT2 of the chord become a 
parallel circle of latitude, and the union of the tangent lines 
(ρ–1µ to zT1) and (ρ–1µ to zT2) is a circular cone. The circles C 
through the mean axis ±µ now correspond, by convention, to 
the great circles of longitude on S.  

(7) Get Rescaled SCD from Classical SCD 

The infrastructure of the spherical T and circular TC ζ-
projections and the duality of the projection point ζ notation 
become clearer with this 

Lemma: Let ζ = rµ, r ≠ 1. A spherical mapping T, S' = TS, 
S ~ SC(0), is a spherical ζ-projection ⇔ T induces identical 
circular ζ-projections TC on each great circle of longitude C 
(C' = TCC) that passes through ±µ on S.  

Proof (⇒) Assume that T is a ζ-projection. This means 
that for every z ∈ S, z' = Tz ∈ S', and (z',z,ζ) are collinear for 
a projection point vector ζ. We must show this implies that, 
for any zC on any circle C through ±µ there exists a point z'C 
∈ C for which (z'C,zC,ζE) are collinear for a complex projec-
tion point ζE that is the same point as ζ. 

Let C be any circle through ±µ and zC any point on C. If 
zC is µ or –µ then z'C is –µ or µ and (–µ,µ,ζE) are automati-
cally collinear. If zC is a point of tangency for the line joining 
zC to ζE then z'C = zC and again (z'C,zC,ζE) are collinear. As-
sume then that the point zC is neither a tangent point to C nor 
±µ. Then zC ∈ S since C ⊂ S. And {zC,ζE} ∈ F, where F is 
the extended complex plane whose unit circle is C, because 
C ⊂ F, ζE is on the line through ±µ, and this line is common 
to every extended complex plane whose unit circle contains 
±µ. Since {zC,ζE} ∈ F there must, by hypothesis, be a unique 
point z' ∈ S' for which (z',zC,ζE) are collinear. This implies z' 
∈ F. Since z' ∈ S' then |z'| =1, and therefore z' must be on C, 
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and must be z'C, the unique point z'C ∈ C for which (z'C,zC,ζE) 
are collinear for zC on C. 

(⇐): Assume that TC is a ζ-projection. For any great cir-
cle of longitude C through ±µ, and any point z on C, we have 
that z' = TCz and (z',z,ζ) are collinear for complex ζ. We must 
show this collinearity holds also on the sphere S for a vector 
ζ. Since TC is a ζ-projection then both z, z' ∈ C ⊂ S. And ζ is 
in every F. Thus the points (z',z,ζ) are collinear on S for a 
vector ζ. 

Definition 3: The classical spherical Cauchy distribu-
tions (classical SCDs) are defined as the set of probability 
distributions on the unit sphere S' that are induced by 
spherical ζ-projections of the form S' = TS from S to itself 
(relabeled as S'), where S ~ SC(0,1). We say that S', or z' or 
z'S is classical spherical Cauchy ζ, and write: S' ~ SC(ζ), or 
z' or z'S ~ SC(ζ,S'). 

The projection point ζ may be either complex or vector-
valued, whichever is most appropriate and convenient. Both 
classical SCDs and CCDs are degenerate when the projec-
tion point ζ lies on S, are proper when ζ is inside S, and im-
proper when ζ is outside S. The parameters for the classical 
CCDs and SCDs are the same: (µ,ρ) or (µ,r), as are the pa-
rameters for the rescaled CCDs and SCDs: (µ,δ).  

Proposition 6: The classical SC(ζ,S') distribution is iden-
tical to the rescaled SC(µ,δ,S') distribution when ζ = rµ and 
the parameters ρ and δ comport as in Table 1, in which case 
ζ = ρµ or ζ = ρ –1µ and ρ = min(r,r–1), r ≠ 1.  

Proof: The profile density induced on S' by T is propor-
tional to a CC(ζ) density (put ζ1 = 0 in theorem 4). This 
CC(ζ) profile density is proportional to the comporting 
CC(µ,δ) density in section 3.3, which in turn is proportional 
to the rotated CC(µ,δ) density of Proposition 2(c). This latter 
density was used to derive the rescaled probability density 
function for a SC(µ,δ, S') distribution in Proposition 4, which 
proves Proposition 6. 

(8) Transformations of Classical SCDs 

The classical and rescaled SCDs have different forms, 
but nevertheless are identical and comport with one another 
by Proposition 6. The dualities of the two forms are also dif-
ferent, but change appropriately when either form is con-
verted to the other. The classical CCDs and SCDs can be 
converted to and fro between proper and improper at the 
discretion of the investigator by swapping the projection 
points ρµ and ρ–1µ. Proper rescaled CCDs and SCDs can be 
made improper by the reflection z' = Jz.  

Mimetics are available for dealing with rescaled SCDs, 
and the mimetics themselves are spherical Möibus mappings. 
It would be difficult to find replacements for these mimetics 
with such desirable properties, so mimetics will be used to 
conduct transformations of classical and rescaled SCDs.  

Some examples of transformations of SCDs: 
(A). Transform a rescaled SCD, z1 ~ SC(µ1,δ1,S), to the 

uniform distribution, z'1~ SC(0,1,S') ~ SC(0,S'). This was 
done with mimetics in section 4.3. This task can be dealt 
with using the involutoric ζ-projection T. Convert δ1 to the 
comporting precision ρ1 using Table 1, and put ζ1 = ρ1µ1. Let 
T1 be the ζ1-projection. Express the distribution of z1 in the 

equivalent classical form: z1 ~ SC(ζ1,S). Then z'1 = T1z1 ~ 
SC(T1ζ1,S') = SC(T1T10,S') = SC(0,S') ~ SC(0,1,S') since 
spherical ζ-projections, like circular ζ-projections, are invo-
lutory.  

(B). Transform a given distribution z1 ~ SC(ζ1,S1) to a 
prescribed distribution z2 ~ SC(ζ2,S2). Put ζ1 = ρ1µ1 where ρ1 
comports with δ1, and put ζ2 = ρ2µ2 where ρ2 comports with 
δ2. Express the conversions of z1 and z2 from classical to 
rescaled as: z1 ~ SC(µ1,δ1,S1) and z2 ~ SC(µ2,δ2,S2). Put Δ'2 = 
Diag(δ2,1) and Δ'1–1 = Diag(δ1

–1,1), where the primes indicate 
that τ is not to be used in the rescalings. Then 

S2 = Rµ2SΔ'2Δ'1–1RSµ1S1 ~ SC(µ2,δ2) ~ SC(ζ2). 
The steps in this succession of spherical operators will be 

examined in detail. First we note by theorem 3 and the defi-
nition of the rescaled SCD that S1 = (Rµ1SΔ'1RSµ1)S ~ 
SC(µ1,δ1), when S ~ SC(0,1), and thus  

S2 = (Rµ2SΔ'2Δ'1–1RSµ1)S1; that is, in succession: 
RSµ1S1 ~ SC(s,δ1),  
Δ'1–1RSµ1S1~SC(0,1),  
Δ'2Δ'1–1RSµ1S1~ SC(s,δ2), 
Rµ2SΔ'2Δ'1–1RSµ1S1= S2 ~SC(µ2,δ2).  
(C). Compound the ζ-projections  
T1, a ζ1-projection of S onto S1, and 
T2, a ζ2-projection of S1 onto S2, into the single projection 
T, a ζ projection of S onto S2.  
Put ζ1 = ρ1µ1 where ρ1 comports with δ1, ζ2 =ρ2µ2 where 

ρ2 comports with δ2 and ζ = ρµ where ρ comports with δ.  
Express the conversions of z1, z2 and z from classical to 
rescaled as:  

z1 ~ SC(µ1,δ1,S1),  z2 ~ SC(µ2,δ2,S2) and z ~ SC(µ,δ,S2)  
with respective rescaled SCD mimetics       
Z1 = Rµ1SΔ'1RSµ1, Z2 = Rµ2SΔ'2RSµ2, and Z = RµSΔ'RSµ. 
The mimetics Z1 and Z2 are numerically calculated from 

(µ1,δ1) and(µ2,δ2).  Their composite Z is then numerically 
calculated as Z = Z1Z2. Let ZE be the planar image of Z, and 
Zm the matrix for ZE. The polar form for Zm must be calcu-
lated as in Appendix I. The spherical mean direction µ and 
rescaler δ are determined from this polar form by the meth-
ods in the Appendices. See also (C) of section 4.3. 

(D). SCDs are closed under rotations. Thus z ~ SC(ζ,S) 
⇔ Rz ~ SC(Rζ, RS) for any 3×3 orthogonal matrix R.  

5. DISCUSSION 

Selected topics outside the scope of this paper are briefly 
discussed in this section. 

(1) Uniqueness of Cauchy Directional Families 

It has been shown (see [4] for references) that the linear 
Cauchy distribution is the only univariate location-scale fam-
ily that is closed under real Möbius transformations. [4] as-
serts that, consequently, any of his results in [4] are not 
likely to extend beyond the two-parameter Cauchy family. 
The CCD family may be the only family of circular probabil-
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ity distributions that is closed under changes in location-
scale, although some circular distributions that are closed 
under these transformations bear little resemblance to the 
CCD. For example, the mapping  
tan ½(v – β) = ω tan ½(u – α), –1 ≤ ω ≤ 1                         (12) 
introduced by [2] as a model for circle-circle regression is 
indeed a one-one mapping from a u-circle onto a v-circle, but 
its arguments are all real and there appear to be no projec-
tions involved. Nevertheless, as shown in [2], (12) can be 
expressed in the general form for a circle mapping as given 
in (6.2).    

The LCD is the only linear distribution that is closed un-
der real Möbius transformations. Is the SCD the only spheri-
cal distribution that is closed under Möbius transformations? 
The answer to this is yes, by definition and by Propositions 
3-6. Are there any other spherical distributions that are 
closed under location and scale changes? The answer to this 
question is unknown. 

(2) Higher Dimensional SCDs 

Perhaps the simplest way to generalize the SCDs to 
spheres Sm in m-space with (m–1)-dimensional surfaces is 
achieved by creating an m-vector ζ analogous to the projec-
tion point ζ in 2- and 3-space. Put ζ = rµ with |ζ| = r ≠ 1 and 
with µ a unit m-vector. Define the mapping T as a ζ-
projection, z' = Tz, from a unit m-sphere Sm onto itself (rela-
beled as S'm, S'm = TmSm) by means of the straight line pro-
jection making the three points (z',z,ζ) collinear in m-space. 
Then one could proceed along the lines developed in section 
4. 

(3) Rescaling Sample Data  
Samples of directional data can be rescaled to any desired 

precision using rescaled or classical projections. Iterative 
techniques will no doubt be required in this process, since 
the data may generally not conform well to the symmetry, 
isotropy, and other features inherent in the models on which 
the transformations herein are based. Nevertheless, any base 
β on S may be chosen to be rotated to the south pole, in 
preparation for rescaling along the ±β axis. Any positive 
value for the rescaler δ may be used. The data can be re-
turned to their original state by undoing the operations per-
formed in reverse order.  

(4) Rescaling Other Directional Distributions 
In the proof of Proposition 2 a uniformly distributed cir-

cular variable γ was rescaled to a CCD γ' with the aid of 
(Fig. 1). The density for γ' was calculated to be of the form 
f(γ'; δ,S') = f(γ; 1,S)|dγ/dγ'|. This procedure can be replicated 
using an arbitrary circular density for γ. The Jacobian |dγ/dγ'| 
is identical to that developed in the proof of Proposition 2. It 
depends only on the geometry of Fig. (1) and is independent 
of the density for γ. Perhaps some useful hybrids of the CCD 
and other distributions could be developed with this ap-
proach. 

APPENDIX I. CALCULATING POLAR FORMS  

The k-effect can be nullified by norming the Möbius ma-
trix, that is, by dividing each element of Mm by the square 

root of the determinant. The normed matrix Nm = |Mm|-½Mm 
is equivalent to the original Mm and will have determinant 
+1. Since |Mm| is generally complex valued, norming forces 
Re(|Nm|) = 1 and Im(|Nm|) = 0, two restrictions which reduce 
the pdf for the normed Nm to the required 6. Equivalent ma-
trices for the planar Möbius function ME are identical after 
they have been normed, except perhaps for algebraic sign 
(since if Nm is normed then –Nm is also normed, but is still 
equivalent to Mm).  

In calculating wE for the Möbius function wE = MEzE any 
convenient matrix equivalent by the k-effect to Mm can be 
used. But Mm must be normed before calculating polar 
forms, or special precautions taken, otherwise numerical 
errors will occur.  

To illustrate the norming computations put Mm as the 
original Möbius matrix and Nm as the normed Mm. If 
Mm = (2-i,1+2i; 3,2+2i), then |Mm| = 3-4i, |Mm|½ = 2-i,  
|Mm|-½ = 0.4+0.2i, and Nm = |Mm|–½Mm= (0.4+0.2i)Mm 
=(1,i;1.2+0.6i,0.4+1.2i), and |Nm| = 1.  

The approach used below to get components of the polar 
form assumes the availability of a mathematical computer 
program that gets eigenvalues and eigenvectors of a 2×2 
positive hermitian matrix G2

m. Using the normed Nm above 
and the formulas in section 2.6:  
G2

m = N*mNm = (2.8, 1.2 + 2.2i; 1.2 –2.2i, 2.6), and Gm = 
(1.397,0.441+0.809i; 0.441 -0.809i, 1.323).  
Rmβ0 = (0.721, -0.332 - 0.608i; 0.332 - 0.608i, 0.721) = (α,β;–
β*,α*), the matrix of eigenvectors of G2

m
 and also of Gm, 

where Rm0β and Rmβ0 are unitary; and the base βE = β/α* = (–
.332 – 0.608i)/0.721 = – 0.46 – 0.844i. 
Δ2

m = Diag(5.208, 0.192) = the eigenvalues for G2
m; Δm = 

Diag(2.282, 0.438) = the eigenvalues for Gm. Note that |Δ2
m| 

= |Δm| = 1, and δ = 2.282/0.438 = (5.208/0.192)½ = 5.208, 
which is coincidentally the first eigenvalue of Δ2

m. 
G–1

m = Rmβ0Δ–1
mRm0β = (1.397, 0.441 + 0.809i; 0.441 -  

0.809i, 1.323).  
Am = NmG–1

m = (0.515 -0.441i, -0.441 + 0.588i; 0.441 +  
0.588i, 0.515 + 0.441i), and Am is unitary.   
The planar image of the spherical mean direction µ is µE 
= AεβE = –1.327+0.111i (not τ-corrected). The spherical 
image µ = τAβ = (0.957, -0.08,-0.279)T (τ-corrected). 

APPENDIX II. GAUSS' ROTATION THEOREM 

To express the relationships between the parameters of 
Am and A, where A ↔ AE, recall that every unitary matrix Am 
has two complex parameters (α,β), and we write: Am = (α,β). 
Also recall that every 3×3 proper rotation matrix A is 
uniquely determined by three angles, (η,θ,φ), and we write: 
A = (η,θ,φ), where    

η = amount of rotation, 0 < η ≤ π  (if η = 0 then A = I3, 
the identity matrix),    

pS = (θ,φ) = spherical coordinates for the positive axis of 
rotation, p, where pTp = 1 and 
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p = (x,y,t)T = (sin θ cos φ, sin θ sin φ, cos θ)T.  

The 3×3 rotation matrices of the extended pseudo-polar 
form of a spherical Möbius function M must all necessarily 
be proper. The improper case was used to account for nega-
tive correlation in spherical regression by [2], and is included 
here for completeness. 

If A is improper then AJ is proper and can be described 
by AJ = (η,θ,φ), where J = Diag(1,–1,1). The 3×3 improper A 
= (aij) can be recovered from AJ by the identity A ≡ (AJ)J. 
The stage is now set for providing the details of Gauss' Rota-
tion image theorem and its stunning results:  

Gauss' rotation image theorem (A): Assume that A is 
proper and A = (η,θ,ϕ), and Am is unitary and Am = (α,β). Get 
(η,θ,ϕ) from (α,β) by:  

cos η/2 = xα, α = xα + iyα,  0 < η/2 ≤ π/2; 

cos θ = yα/sin η/2,  0 ≤ θ ≤ π;                              

cos ϕ = yβ/(xβ2 + yβ2)1/2,  β = xβ + iyβ,  −π < ϕ ≤ π; 

sin ϕ = xβ/(xβ2 + yβ2)1/2. 

For the Am = (α,β) = (0.515 – 0.441i, –0.441+0.588i) of 
Appendix I: 

Am = (α,β;–β*,α*) = (0.515 –0.441i, –0.441 + 0.588i;  

0.441 + 0.588i, 0.515 + 0.441i). 

Using (A) above we get the three angles of A in radians: 

A = (η,θ,φ) = (2.06,2.111,–0.644). 

Gauss' rotation image theorem (B): Get unitary complex 
parameters (α,β) from proper rotation angles (η,θ,ϕ) by 

xα = cos η/2,  yα = cos θ sin η/2; xβ = sin θ sin ϕ sin η/2, 
yβ = sin θ cos ϕ sin η/2. 

Applying (B) to (η,θ,φ) of A we get the (α,β) of Am that 
we obtained in Appendix I. 

Gauss' rotation image theorem (C): If A is an improper 
spherical rotation use AJ and AEzE* where 

AEzE* ↔ AJz whenever zE ↔ z and AE ↔ A.  

Equations for (A) and (B) above are adapted from [1, p. 
286-290], who gives an insightful partial proof of Gauss' 
rotation theorem, amply illustrated with figures. [12] gives a 
compact but more complete proof.  

Conversions back and forth between unitary matrices and 
various forms of rotation matrices are essential to analyses 
herein but tedious to assemble from reference books, so al-
gorithmic forms for calculating the 9 elements of a proper 
rotation matrix A = (aij) from the three angles for A = 
[η,θ,ϕ], and conversely, are presented below.  

(D) Get the 3 rotation angles (η,θ,ϕ) from the 9 matrix 
elements of a proper rotation A = (aij) by  

η = acos{½( tr A-1)},   -π < η ≤ π, 

θ = acos{(a21-a12)/(2 sin η)}, 0 ≤ θ ≤ π,  

ϕ = acos [(a32-a23)/{(a32-a23)2 + (a13-a31)2}1/2]  

where 0 ≤ ϕ ≤ π if a13 ≥ a31, -π < ϕ < 0 if a13 < a31. 

Equations for (D) are adapted from [13.1]. If a33 ≈ 1 then 
the positive rotation axis for A is n, θ is zero, φ does not ex-
ist, and it is not necessary to use (D).   

(E) Get the 9 matrix elements aij from the three proper ro-
tation angles (η,θ,ϕ) by 

A = cos η (I3 – ppT) + (1 – cos η)ppT + sin η K,     

where K is a 3×3 skew-symmetric matrix with 1st row  
(0,-t,y), 2nd row (t,0,-x), 3rd row (-y,x,0), and p = (x,y,t)T = 
rectangular coordinates for the positive axis of rotation, with 
spherical coordinates pS = (θp,φp). The equation for (E) is 
adapted from [13.2].  

Applying (E) to the (η,θ,φ) results of (A) for Am we get 
the three rows of the 3×3 proper rotation matrix A: the 1st 
row is (–0.33,–0.94,–0.091), 2nd row (0.473,–0.081,–0.878) 
and 3rd row (0.817,–0.333,0.471).  

The rotor REβ0 of section 2.2 has spherical image RβS de-
fined by the condition β = RβSs, the proper rotation which 
sends s to the spherical base point β along the meridian of β, 
and simultaneously sends –s to –β. Equals have equal im-
ages, so the planar image of (β = RβSs) is (βE = REβ00). This 
information was used to get βE in the numerical example of 
Appendix I. Put Rmβ0 = (α,β; –β*,α*) as the matrix for REβ0. 
Then REβ00 = βE implies βE = β/α*. For the numerical exam-
ple in Appendix I we get  

Rmβ0 = (0.721,–0.332 – 0.608i; 0.332 – 0.608i, 0.721), so 

βE = β/α* = (– 0.332 – 0.608i)/0.721 = – 0.46 – 0.844i. 
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