The Open Mathematics, Statistics and Probability Journal

Content list available at: https://openstatisticsandprobabilityjournal.com

RESEARCH ARTICLE

On The Distribution of Partial Sums of Randomly Weighted Powers of Uniform Spacings

Emad-Eldin A. A. Aly¹,*

¹Department of Statistics & Operations Research, Faculty of Science, Kuwait University, Safat 13060, Kuwait

Abstract:
Objectives:
To study the asymptotic theory of the randomly weighted partial sum process of powers of k-spacings from the uniform distribution.

Methods:
Earlier results on the distribution of the uniform incremental randomly weighted sums.

Results and conclusions:
Our first contribution is to classify the multitude of earlier proofs in Section 3. The second contribution consists of a new class of proofs.

Keywords: Uniform spacings, Weak convergence, Gaussian process, Incremental asymptotic convergence, Random Sample, k spacings.

1. INTRODUCTION

Let \(0 = U(0) \leq U(1) \leq U(2) \leq \cdots \leq U(n-1) \leq U(n) = 1 \) be the order statistics of a random sample of size \((n-1)\) from the U(0,1) distribution. Let \(k=1,2, \ldots \) be arbitrary but fixed and assume that \(n=mk \). The \(k \) (0,1) k-spacings are defined as

\[
R_{i,k} = U((i-1)k) - U((i-1)k), \quad i = 1, 2, \ldots, m. \tag{1}
\]

Let \(X_1, X_2, \ldots \) be iidrv with \(E(X) = \mu \), \(\text{Var}(X) = \sigma^2 < \infty \) and common distribution function \(F(.) \). Assume that the \(X_i \)'s are independent of the \(U_i \)'s. Define

\[
S_m(t, k, r, F) = \begin{cases} \sum_{i=1}^{[mt]} R_{i,k}^r X_i, & \frac{1}{m} \leq t \leq 1 \\ 0, & 0 < t < \frac{1}{m} \end{cases}, \tag{2}
\]

where \([s]\) is the integer part of \(s \) and \(r>0 \) is fixed.

Looking at \(S_m(t, k, r, F) \) of (2) as a weighted partial sum of the \(X_i \)'s, Van Assche [1] obtained the exact distribution of \(S_1(1, 1, 1, F) \). Johnson and Kotz [2] studied some generalizations of Van Assche results. Soltani and Homei [3] considered the finite sample distribution of \(S_n(1, 1, 1, F) \). Soltani and Roozegar [4] considered the finite sample distribution of a case similar to \(S_m(1, k, 1, F) \) in which the spacings (1) are not equally spaced. It is interesting to note that \(S_m(t, k, r, F) \) of (2) is also a randomly weighted partial sum of powers of \(k \)-spacings from the U(0,1) distribution.

Here, we will obtain the asymptotic distribution of the stochastic process

\[
\alpha_m(t, k, r, F) = \begin{cases} \sum_{i=1}^{[mt]} (k^r m^{r-1} S_m(t, k, r, F) - t \mu_r F), & \frac{1}{m} \leq t \leq 1 \\ 0, & 0 < t < \frac{1}{m} \end{cases}, \tag{3}
\]

where
\[\mu_{lk} = \frac{\Gamma(k+l)}{\Gamma(k)}, k \geq 1, l > 0 \quad (4) \]

and \(\Gamma(.) \) is the gamma function.

The motivations and justifications of this work are given next. First, as noted by Johnson and Kotz [2], \(S_n (1, l, l, F) \) is a random mixture of distributions and as such it has numerous applications in Sociology and in Biology. Second, the asymptotic theory of \(S_n (t, k, r, F) \) is a generalization of important results of Kimball [5], Darling [6], LeCam [7], Sethuraman and Rao [8], Kozioł [9], Aly [10] and Aly [11] for sums of powers of spacings from the \(U(0, 1) \) distribution. Finally, we solve the open problem of proving the asymptotic normality of \(S_n (1, l, l, F) \) proposed by Soltani and Roozegar [4].

2. METHODS

2.1. The asymptotic distribution of \(\alpha_m (\cdot, k, r, F) \)

Let \(Y_i, Y_{2i}, \ldots \) be \(iidrV \) with the exponential distribution with mean 1 which are independent of the \(X_i \)'s. By Proposition 13.15 of Breiman [12] we have for each \(m \),

\[\{ 0 = U(0), U(1), U(2), \ldots, U(n-1), U(n) = 1 \} \]

\[= \left\{ 0, \frac{Y_1 + Y_2}{2 \sigma^2_{\alpha_1}}, \frac{Y_1 + Y_2 + Y_3 + Y_4}{4 \sigma^2_{\alpha_1}}, \ldots \right\} \quad (12) \]

Hence, for each \(m \),

\[\{ R_{lk}, 1 \leq i \leq m \} \]

\[= \left\{ \frac{Z_{lk}}{\sum_{i=1}^{m} Z_{lk}}, 1 \leq i \leq m \right\} \]

where for \(1 \leq i \leq m \),

\[Z_{lk} = Y_{(i-1)k+1} + \cdots + Y_{ik} \]

are \(iid \ Gamma (k, 1) \) random variables. Hence, for each \(m \)

\[S_m (t, k, r, F) = \sum_{i=1}^{m} Z_{ik}X_i / \left(\sum_{i=1}^{m} Z_{ik} \right)^r, 0 \leq t \leq 1 \quad (5) \]

and

\[\alpha_m (\cdot, k, r, F) = \left\{ \beta_m (\cdot, k, r, F) \right\} \quad (6) \]

where

\[\beta_m (t, k, r, F) = \left\{ \begin{array}{ll} 0, & 0 \leq t < \frac{1}{m}, \\ m^2 \left\{ k^r \left(\sum_{i=1}^{m} Z_{ik}X_i \right)^{-r} \left(\sum_{i=1}^{m} Z_{ik} \right)^{r-1} \right\}, & \frac{1}{m} \leq t \leq 1 \end{array} \right. \quad (7) \]

Let \(\mu_{lk} \) be as in (4). Note that

\[E(Z_{ik}^r) = \mu_{ik} \]

\[E(Z_{ik}^r X_i) = \mu_{r, ik} \]

\[\sigma^2_{r, ik} = \text{Var}(Z_{ik}^r X_i) = \sigma^2 \mu_{2r, ik} + \mu^2 \left\{ \mu_{2r, ik} - \mu^2_{r, ik} \right\} \quad (8) \]

and

\[\text{Cov}(Z_{ik}^r X_i, Z_{lj}^s) = r \mu_{r, ik} \mu_{s, lj} \]

The following theorem will be needed in the sequel.

Theorem A. There exists a probability space on which a two-dimensional Wiener process \(\{ W(s) = (W_1(s), W_2(s)); s \geq 0 \} \) is defined such that

\[\sup_{0 \leq t \leq 1} \left\{ \left(\sum_{j=1}^{m} Z_{ij}^r X_j - \mu_{r, ik} \right)^2 \right\}^{1/2} = \sigma_{r, ik} \]

\[(Z_{jk} - k)^r - W^r_t \left(\frac{m^2}{m} \right) \quad (9) \]

where \(E(W(s)) = 0, \) and

\[EW(s)W^r_t = \min(s, t) \left\{ \frac{\sigma_{r, ik}^2}{\mu_{r, ik} k} \right\} \]

(10)

Theorem A follows from the results of Einmahl [13], Zaitsev [14] and Götz and Zaitsev [15].

The main result of this paper is the following Theorem.

Theorem 1. On some probability space, there exists a sequence of mean zero Gaussian processes \(\Gamma_m (t, k, r, F), 0 \leq t \leq 1 \) such that

\[\sup_{0 \leq t \leq 1} \left\{ \left(\sum_{j=1}^{m} Z_{ij}^r X_j - \mu_{r, ik} \right)^2 \right\}^{1/2} = \sigma_{r, ik} \quad (11) \]

where \(\Gamma_m (t, k, r, F) = \Gamma(t, k, r, F) \) for each \(m \), and

\[E \{ \Gamma(t, k, r, F) \Gamma(s, k, r, F) \} = (t \wedge s) \sigma_{r, ik}^2 \]

(12)

Theorem 1 follows from (6) and the following Theorem.

Theorem 2. On the probability space of Theorem A,

\[\sup_{0 \leq t \leq 1} \left\{ \beta_m (t, k, r, F) - \beta_m (t, k, r, F) \right\} = \frac{m^2}{m} \sigma_{r, ik}^2 \quad (13) \]

where \(W(.) \) is as in (9).

Proof of Theorem 2: We will only prove here the case when \(E(X) = \mu \neq 0 \). The case when \(\mu = 0 \) is straightforward and can be looked at as a special case of the case \(\mu \neq 0 \). Note that

\[\beta_m (t, k, r, F) = \frac{m^2 \sigma_{r, ik}^2 \text{Var}(A_m (t))}{\left(\sum_{i=1}^{m} Z_{ik} \right)^r_{\mu} \text{Cov}(Z_{ik}^r X_i, Z_{lj}^s) \mu_{r, ik} \mu_{s, lj}} \quad (14) \]

where

\[A_m (t) = \frac{1}{m} \sum_{i=1}^{m} Z_{ik}^r X_i - \mu_{r, ik} \frac{1}{k} \frac{1}{m} \sum_{i=1}^{m} Z_{ik}^r \]

\[= \frac{1}{m} \sum_{i=1}^{m} \left(Z_{ik}^r X_i - \mu_{r, ik} \right) + \mu_{r, ik} \frac{m(m-1)}{k} \]
\(\mu \mu_r k - t \mu \mu_r k \frac{1}{k!} \sum_{i=1}^{m} (Z_{i,k} - k + k)^r \). \quad (15) \\

It is clear that, uniformly in \(t, 0 \leq t \leq 1 \),
\[\frac{|m^2 - m|}{m} \leq \frac{1}{m} \] \quad (16)

By (9), (15) and (16) we have, uniformly in \(t, 0 \leq t \leq 1 \),
\[A_m(t) \overset{a.s.}{=} \frac{1}{m} W_1(mt) + G \left(\frac{1}{m} \sqrt{\log m} \right) + \mu \mu_r k t \]
\[- t \mu \mu_r k \left(1 + \frac{1}{mk} W_2(m) + o(m^{-\frac{3}{2}}) \right)^r + o(m^{-\frac{3}{2}}). \] \quad (19)

By Lemma 1.1.1 of Csörgő and Révész [17] we have, uniformly in \(t, 0 \leq t \leq 1 \),
\[\frac{1}{m} |W_1([mt]) - W_1(mt)| \overset{a.s.}{=} O \left(\frac{1}{m} \sqrt{\log m} \right). \] \quad (18)

By (17) and (18) we have, uniformly in \(t, 0 \leq t \leq 1 \),
\[A_m(t) \overset{a.s.}{=} \frac{1}{m} W_1(mt) + G \left(\frac{1}{m} \sqrt{\log m} \right) + \mu \mu_r k t \]
\[- t \mu \mu_r k \left(1 + \frac{1}{mk} W_2(m) + o(m^{-\frac{3}{2}}) \right)^r + o(m^{-\frac{3}{2}}). \]

By the LIL
\[\left(\frac{1}{m} \sum_{i=1}^{m} Z_{i,k} \right)^r \overset{a.s.}{=} \left(k + O \left(m^{-\frac{3}{2}} \sqrt{\log m} \right) \right)^r \]
\[\overset{a.s.}{=} r^r + O \left(m^{-\frac{3}{2}} \right). \] \quad (20)

By (14), (19) and (20) we have, uniformly in \(t, 0 \leq t \leq 1 \),
\[\beta_m(t,k,r,F) \overset{a.s.}{=} \frac{k^r}{e^{r^2} o \left(m^{-\frac{3}{2}} \sqrt{\log m} \right)} \left(\frac{1}{m} W_1(mt) - \frac{r^r \mu \mu_r k}{m k} W_2(m) + o \left(m^{-\frac{3}{2}} \right) \right) \]
\[\overset{a.s.}{=} \frac{1}{m} \left(W_1(mt) - \frac{r^r \mu \mu_r k}{k} W_2(m) + o \left(m^{-\frac{3}{2}} \right) \right). \]

This proves (13).

Corollary 1. By (4), (8) and (12),
\[\Gamma(\cdot, k, r, F) \overset{D}{=} \lambda_{r,k} W(\cdot) + \frac{r^r \mu \Gamma(r+k) \sqrt{\Gamma(k)}}{\sqrt{k} \Gamma(k)} B(\cdot), \] \quad (21)

where
\[\lambda_{r,k}^2 = \frac{\Gamma(2r+k)}{\Gamma(k)} \sigma^2 + \mu^2 \left(\frac{\Gamma(2r+k)}{\Gamma(k)} \right)^2 \left(\frac{r^r \mu \mu_r k}{k} \right)^2. \]

\(W(\cdot) \) is a Wiener process, \(B(\cdot) \) is a Brownian bridge and \(W(\cdot) \) and \(B(\cdot) \) are independent.

Corollary 2. By (11) and (21) we have, as \(m \rightarrow \infty \),
\[\alpha_m(\cdot,k,r,F) \overset{D}{=} \Gamma(\cdot, k, r, F) \overset{D}{=} \lambda_{r,k} W(\cdot) + \frac{r^r \mu \Gamma(r+k) \sqrt{\Gamma(k)}}{\sqrt{k} \Gamma(k)} B(\cdot), \] \quad (22)

and, in particular,
\[\alpha_m(1, k, r, F) \overset{D}{=} N \left(0, \lambda_{r,k}^2 \right). \] \quad (23)

Some special cases of (22) and (23) are given. For \(r=1 \) and \(k \geq 1 \),
\[\Gamma(\cdot, k, 1, F) \overset{D}{=} \sigma \sqrt{k(k+1)} W(\cdot) + \mu \sqrt{k} B(\cdot) \]
and
\[\alpha_m(1, k, 1, F) \overset{D}{=} N(0, k(k+1) \sigma^2). \]

For \(r > 0 \) and \(k = 1 \),
\[\Gamma(\cdot, 1, r, F) \overset{D}{=} \lambda_{r,1} W(\cdot) + r \mu \Gamma(r+1) B(\cdot) \]
and
\[\alpha_m(1, 1, r, F) \overset{D}{=} N(0, \lambda_{r,1}^2), \]

where
\[\lambda_{r,1}^2 = \sigma^2 \Gamma(2r+1) + \mu^2 \left(\Gamma(2r+1) - (1 + r^2) \Gamma^2(r+1) \right). \]

3. RESULTS

In this section, we will use the same notation of Section 1.

3.1. The scaled sum case

Define
\[T_{m,3}(t,k,r,F) = \frac{1}{\sum_{i=1}^{m} X_i} \sum_{i=1}^{[mt]} \frac{X_i}{m} \sqrt{\log \log m}, \quad 0 \leq t \leq 1 \]
and
\[Y_{m,3}(t,k,r,F) = \frac{1}{\sum_{i=1}^{m} X_i} \sum_{i=1}^{[mt]} \frac{X_i}{m} \sqrt{\log \log m}, \quad 0 \leq t \leq \frac{1}{m}. \]

We can prove that
\[y_{m,3}(t,k,r,F) \overset{D}{=} y_3(t,k,r,F), \]
where
\[y_3(t,k,r,F) = \frac{1}{\mu \mu_r k} W_1(t) - \frac{1}{k} t W_3(1) - \frac{1}{\mu} t W_3(1). \]

\((W_1(\cdot), W_2(\cdot), W_3(\cdot)) \) is a mean zero Gaussian vector with covariance \((\sigma \Lambda \sigma)^t\) and
\[\Sigma_1 = \begin{pmatrix} \sigma_{\mu r k}^2 & \mu \mu_r k & \sigma_{\mu r k}^2 \\ \mu \mu_r k & k & 0 \\ \sigma_{\mu r k}^2 & 0 & \sigma^2 \end{pmatrix}. \]

Let
\[\delta_{r,k} = \left(\frac{\mu \mu_r k}{\mu \mu_r k} - 1 \right) \left(\frac{\sigma^2}{\mu^2 k} + 1 \right) - \frac{r^2}{k} \]

We can show that
\[\gamma_2(t, k, r, F) \overset{D}{=} \delta_{r,k}W(t) + \sqrt{\frac{r^2}{k} + \frac{\sigma^2}{\mu^2}}B(t), \]

where \(W(.) \) is a Brownian Motion and \(B(.) \) is a Brownian bridge and \(W(.) \) and \(B(.) \) are independent. Consequently,

\[\gamma_{m,1}(1, k, r, F) \overset{D}{=} N(0, \delta_{r,k}^2). \]

When \(r=1, k \geq 1 \)

\[\delta_{r,k}^2 = \frac{\sigma^2}{\mu^2}. \]

When \(r > 0, k = 1 \)

\[\delta_{r,1}^2 = \left(\frac{\Gamma(2r+1)}{\Gamma^2(r+1)} \right) \left(\frac{\sigma^2}{\mu^2} + 1 \right) - r^2. \]

3.2. The Centered Sum Process

Let \(\bar{X} = \frac{1}{m} \sum_{j=1}^{m} X_j \) and define

\[T_{m,2}(t, k, r, F) = \begin{cases} \frac{1}{m} \sum_{i=1}^{[mt]} R_{i,k}(X_i - \bar{X}), & \frac{1}{m} \leq t \leq 1 \\ 0, & 0 \leq t < \frac{1}{m} \end{cases} \]

and

\[\gamma_{m,2}(t, k, r, F) = \begin{cases} k^r m^{r-1} T_{m,2}(t, k, r, F), & \frac{1}{m} \leq t \leq 1 \\ 0, & 0 \leq t < \frac{1}{m} \end{cases} \]

We can prove that

\[\gamma_{m,2}(t, k, r, F) \overset{D}{=} \gamma_2(t, k, r, F), \]

where

\[\gamma_2(t, k, r, F) = W_2(t) - \mu W_2(t) - \mu_{r,k} t W_3(1). \]

\((W(.)\text{, } W_2(.)\text{, } W_3(.)\)) is a mean zero Gaussian vector with covariance \((\Lambda \text{ s}) \Sigma_2\) and

\[\Sigma_2 = \begin{bmatrix} \sigma_{r,k}^2 & \mu(\mu_{2r,k} - \mu_{r,k}^2) & \sigma^2 \mu_{r,k} \\ \mu(\mu_{2r,k} - \mu_{r,k}^2) & \mu_{r,k}^2 - \mu_{r,k}^2 & 0 \\ \sigma^2 \mu_{r,k} & 0 & \sigma^2 \end{bmatrix}. \]

We can show that

\[\gamma_2(t, k, r, F) \overset{D}{=} \sigma \left(W_2(t) - \mu W_2(t) + \mu_{r,k} B(t) \right), \]

where \(W(.) \) is a Brownian Motion and \(B(.) \) is a Brownian bridge and \(W(.) \) and \(B(.) \) are independent. Consequently,

\[\gamma_{m,2}(1, k, r, F) \overset{D}{=} N \left(0, \sigma^2(\mu_{2r,k} - \mu_{r,k}^2) \right). \]

When \(r=1, k \geq 1 \)

\[\gamma_{m,2}(1, k, r, F) \overset{D}{=} N(0, k \sigma^2). \]

When \(r > 0, k=1 \)

\[\gamma_{m,2}(1, k, r, F) \overset{D}{=} N(0, \sigma^2(\Gamma(2r+1) - \Gamma^2(r+1))). \]

3.3. The Renewal Process

For simplicity, we will consider the case of \(r = 1 \). Define

\[S_m^*(t) = \begin{cases} \frac{1}{m} \sum_{i=1}^{[mt]} R_{i,k}, & \frac{1}{m} \leq t \leq 1 \\ 0, & 0 \leq t < \frac{1}{m} \end{cases} \]

\[T_m^*(t) = \begin{cases} \frac{1}{m} \sum_{i=1}^{[mt]} Z_{i,k} X_i / (\sum_{i=1}^{m} Z_{i,k}), & \frac{1}{m} \leq t \leq 1 \\ 0, & 0 \leq t < \frac{1}{m} \end{cases} \]

\[N_m(t) = \inf \{ u : S_m^*(u) > t \}, \]

\[M_m(t) = \inf \{ u : T_m^*(u) > t \}, \]

\[\alpha_m^*(t) = \left(m^2 k^2 \mu \right) (S_m^*(t) - t), \quad \frac{1}{m} \leq t \leq 1, \quad 0 \leq t < \frac{1}{m}, \]

\[\beta_m^*(t) = \left(m^2 k^2 \mu \right) (T_m^*(t) - t), \quad \frac{1}{m} \leq t \leq 1, \quad 0 \leq t < \frac{1}{m}, \]

\[\eta_m(t) = \frac{1}{m} \left(m^2 k^2 \mu - N_m(t) \right) \]

and

\[\xi_m(t) = m^2 k^2 \mu (t - M_m(t)). \]

By (5), for each \(m \)

\[\alpha_m^*(t) \overset{D}{=} \beta_m^*(t) \text{ and } \eta_m^*(t) \overset{D}{=} \xi_m^*(t). \] (24)

Note that (see (3))

\[\alpha_m^*(t) = \alpha_m(\cdot, k, 1, F) \]

and hence, by Theorem 1

\[\sup_{0 \leq t \leq 1} [\alpha_m^*(t) - \Gamma_m(t, k, 1, F)] \overset{P}{=} o \left(m^{-\frac{1}{2}} \right). \]

where \(\Gamma_m(\cdot, k, 1, F) \text{ is as in (11).} \)

Theorem 3. On the probability space of Theorem A,

\[\sup_{0 \leq t \leq 1} [\eta_m(t) - \Gamma_m(t)] \overset{P}{=} o \left(m^{-\frac{1}{2}} \log m \log \log m \right)^{\frac{1}{2}}, \]

where

\[\Gamma_m(t) = m^{-\frac{1}{2}} (W_2(mt) - \mu W_2(mt)) \]

and \(W(.) \) is as in (9).
Theorem 3 follows directly from (24) and the following Theorem.

Theorem 4. On the probability space of Theorem A,

\[\sup_{0 \leq t \leq 1} |\xi_m(t) - \Gamma_m(t)| \overset{a.s.}{=} 0 \left(m^{-\frac{1}{2}} (\log m \log \log m)^{\frac{3}{2}} \right), \]

where \(\Gamma_m(t) \) is as in (25).

Proof: By (7),

\[\beta^*_m(\cdot) = \beta_m(\cdot, 1, F). \]

Note that

\[\xi_m(t) = \beta^*_m(M_m(t)) - m^2 k \mu \left(M_m(t) - t \right). \]

Hence

\[\sup_{0 \leq t \leq 1} |\xi_m(t) - \Gamma_m(t)| \leq E_{m1} + E_{m2} + E_{m3}. \quad (26) \]

where

\[E_{m1} = \sup_{0 \leq t \leq 1} |\beta^*_m(M_m(t)) - \Gamma_m(M_m(t))|, \]

\[E_{m2} = m^2 k \mu \sup_{0 \leq t \leq 1} |M_m(t) - t| \]

and

\[E_{m3} = \sup_{0 \leq t \leq 1} |\Gamma_m(M_m(t)) - \Gamma_m(t)|. \]

By Theorem 2 and the LIL for Wiener processes,

\[E_{m1} \overset{a.s.}{=} o \left(m^{-\frac{1}{2}} \right). \quad (27) \]

and

\[\sup_{0 \leq t \leq 1} |M_m(t) - t| \overset{a.s.}{=} O \left(\sqrt{m^{-1} \log \log m} \right) \]

By a Lemma of Horváth [18]

\[\sup_{0 \leq t \leq 1} |M_m(t) - t| \overset{a.s.}{=} \sup_{0 \leq t \leq 1} |T_m(t) - t| \]

and hence

\[\sup_{0 \leq t \leq 1} |M_m(t) - t| \overset{a.s.}{=} O \left(\sqrt{m^{-1} \log \log m} \right). \quad (28) \]

By the proof of Step 5 of Horváth [18] and Theorem 2 we can show that

\[E_{m2} \overset{a.s.}{=} O \left(m^{-\frac{1}{2}} \log m \right). \quad (29) \]

As to \(E_{m3} \),

\[E_{m3} \leq E_{m31} + E_{m32}. \quad (30) \]

where

\[E_{m31} = \sup_{0 \leq t \leq 1} |W_1(M_m(t)) - W_1(t)| \]

and

\[E_{m32} = m^2 k \mu \left[W_2(m) \sup_{0 \leq t \leq 1} |M_m(t) - t| \right]. \]

By (28) and Lemma 1.1.1 of Csörgö and Révész [17] we have, uniformly in \(t, 0 \leq t \leq 1 \),

\[E_{m31} = \sup_{0 \leq t \leq 1} |W_1(t + (M_m(t) - t)) - W_1(t)| \overset{a.s.}{=} O \left(m^{-\frac{1}{2}} \log \log m \right). \quad (31) \]

By (28) and the LIL for Wiener processes,

\[E_{m32} \overset{a.s.}{=} O \left(m^{-\frac{1}{2}} \log \log m \right). \quad (32) \]

By (30)-(32),

\[E_{m3} \overset{a.s.}{=} O \left(m^{-\frac{1}{2}} \log \log m \right). \quad (33) \]

By (26)-(33) we obtain Theorem 4.

4. THE RANDOM VECTOR CASE

Let \(X_1, X_2, \ldots \) be iid random vectors with

\[E(X_i) = \mu = (\mu_1, \mu_2, \ldots, \mu_p)^T \] and \(\text{Var}(X_i) = \Sigma = [\sigma_{ij}] \).

Assume that the \(U_i \)s and the \(R_{i,k} \)s are same as in Section 1 and are independent of \(X_1, X_2, \ldots \). Define

\[\zeta_m(t, k, r, F) = \begin{cases} \left[\sum_{i=1}^{[mt]} R_{i,k} X_i \right] \frac{1}{m} \leq t < \frac{1}{m} \\ \begin{cases} \left[\sum_{i=1}^{[mt]} R_{i,k} X_i \right] - t \mu_k \frac{1}{m} \leq t \leq \frac{1}{m} \end{cases} \end{cases} \]

and

\[\xi_m(t, k, r, F) = \begin{cases} 0 \leq t < \frac{1}{m} \end{cases} \]

and

\[\alpha_m(t, k, r, F) = \begin{cases} m \left[k^r m^{-r-1} S_m(t, k, r, F) - t \mu_k \right] \frac{1}{m} \leq t \leq 1 \end{cases} \]

Theorem 5 is a generalization of Theorem 1.

Theorem 5. On some probability space, there exists a mean zero sequence of Gaussian processes \(\{ \Gamma_m(t, k, r, F), 0 \leq t \leq 1 \} \) such that
where, for each \(m \),

\[
\Gamma_m(c, k, r, F) \overset{D}{=} \Gamma(c, k, r, F),
\]

and

\[
E \Gamma(s, k, r, F) \Gamma'(t, k, r, F) = (t \wedge s) \sum_{r,k}^{(1)} \frac{r^2 t^2 (r+k)}{k t^2 (k)} t s \mu^t
\]

and

\[
\sum_{r,k}^{(1)} = \frac{\Gamma(2r+k)}{\Gamma(k)} \sum + \left\{ \frac{\Gamma(2r+k)}{\Gamma(k)} - \frac{k \Gamma^2(r+k)}{k t^2 (k)} \right\} \mu^t.
\]

Corollary 1. By (11) and (21) we have, as \(m \to \infty \),

\[
\alpha_m(c, k, r, F) \overset{D}{=} \Gamma(c, k, r, F)
\]

and, in particular,

\[
\alpha_m(1, k, r, F) \overset{D}{=} \mathcal{M}V\mathcal{N}(0, \Sigma^{(2)}_{r,k}),
\]

where

\[
\Sigma^{(2)}_{r,k} = \frac{\Gamma(2r+k)}{\Gamma(k)} \sum + \left(\frac{\Gamma(2r+k)}{\Gamma(k)} - \frac{k \Gamma^2(r+k)}{k t^2 (k)} \right) \mu^t.
\]

Particular cases of Corollary 1* are given next. For \(r = 1 \) and \(k \geq 1 \),

\[
E \Gamma(s, 1, r, F) \Gamma'(t, 1, r, F) = (t \wedge s) \sum_{r,1}^{(1)} - t s k \mu^t,
\]

\[
\sum_{r,1}^{(1)} = k (k+1) \sum + k \mu^t
\]

and

\[
\Gamma(1, 1, r, F) \overset{D}{=} \mathcal{M}V\mathcal{N}(0, k (k+1) \Sigma).
\]

For \(r > 0 \) and \(k = 1 \),

\[
E \Gamma(s, 1, 1, F) \Gamma'(t, 1, 1, F) = (t \wedge s) \sum_{r,1}^{(1)} - t s r^2 \Gamma^2 (r+1) \mu^t,
\]

\[
\sum_{r,1}^{(1)} = \Gamma(2r+1) \sum + \{ \Gamma(2r+1) - \Gamma^2 (r+1) \} \mu^t
\]

and

\[
\Gamma(1, 1, r, F) \overset{D}{=} \mathcal{M}V\mathcal{N}(0, \Sigma^*),
\]

where

\[
\Sigma^* = \Gamma(2r+1) \sum + \{ \Gamma(2r+1) - (1+r^2) \Gamma^2 (r+1) \} \mu^t.
\]

CONCLUSION

We proved the weak convergence of a stochastic process defined in terms of partial sums of randomly weighted powers of uniform spacings. The asymptotic results of several important generalizations and special cases are given.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The author declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[8] J. Sethuraman, and J.S. Rao, "Weak convergence of empirical distribution functions of random variables subject to perturbations and
[http://dx.doi.org/10.1214/aos/1176343058]
[http://dx.doi.org/10.1007/BF00533817]
[http://dx.doi.org/10.2307/3314641]
[http://dx.doi.org/10.1051/ps:1998103]
[http://dx.doi.org/10.1016/0304-4149(84)90166-2]