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Abstract:

Background:

The properties of the group PGL(2,C) on the Upper Poincar´e Half Plane have been analyzed.

Objective:

In particular, the classification of points and geodesics has been achieved by considering the solution to the free Hamiltonian associated problem.

Methods:

The free Hamiltonian associated problem implies to discard the symmetry sl(2,Z) for the definition of reduced geodesics. By means of the new
definition and classification of reduced geodesics, new construction for tori, punctured tori, and the tessellation of the Upper Poincar´e Half Plane
is found.

Results:

A definition of quadratic surds is proposed, for which the folding group corresponds to the tiling group, (also) for Hamiltonian systems on the
Hyperbolic Plane (also realized as the Upper Poincar´e Half Plane (UPHP)).

Conclusion:

The initial conditions determine the result of the folding of the trajectories as tiling punctured tori and for tori.
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1. INTRODUCTION

The analysis  of  the  solutions  of  Hamiltonian  systems  on
the Upper Poincar´e Half Plane (UPHP) allows to outline the
differences  between  the  possible  tessellation  groups  of  the
system  and  the  folding  groups  for  ·  chaotic  systems.  The
symmetry groups which leave the solution of the Hamiltonian
system unchanged allow one to define the folding group(s) for
the problem, the (expression(s) defining the) shape(s) [1] of the
potential being considered, as studied by G.C Layek [2]. The
correspondences with the tiling group of the Poincar´e Plane
associated with the same problem can be investigated.

This approach follows the hints by C. Series [3] about open
issues (emerging after the work  by  C.  Series  [4]  and  [5])  in
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tessellating the Hyperbolic Plane.

Considering (the solutions of) a Hamiltonian system allows
one to investigate the properties of the action of the PGL(2,C)
group  on  the  Poincar´e  Plane  and  needs  the  construction
indicated by A. Terras [2] of the proper congruence subgroups
designated by N.I.  Koblitz  [6].  The correspondences  and the
differences between the two approaches are directly outlined.

A definition for quadratic surds in Hamiltonian problems is
also proposed for the Gauss-Kuzmin Theorem (where the latter
is summarized, i.e., by S.J. Miller and R. Takloo-Bighash [7])
which is to be applied [8, 9].

The  Hamiltonian  approach  allows  one  to  consider
geodesics,  and,  on  them,  the  solutions  to  the  equations  of
motion  as  segments  of  geodesics,  where  the  (set  of  initial
condition(s)  chose  an  orientation  for  the  oriented  endpoints.
The problem of rational geodesics is described according to its
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dynamical properties.

As outlined by R. Adler and L. Flatto [10], the geometrical
measure is  needed to be invariant under the (transformations
associated with) Hamiltonian flow.

Hamiltonian  problems  on  Hecke  triangles  have  been
investigated  by  D.  Mayer  and  F.  Stroembergin  [11].  In
particular, the group PSL(2,Z) is analyzed as a conjugate to a
congruence subgroup of the modular group. The interest in the
role  of  arithmetical  groups  and  semi-arithmetical  groups  is
raised.  Natural  extensions  of  the  symbolic  dynamics  are
proposed.

The need for the structure PSL(2,Z) has been recalled for
the  Hamiltonian  formulation  of  chaotic  systems  in  closed
domains  (generalized  triangles)  on  surfaces  of  constant
negative  curvature  by  D.  Fried  [12].

Within the proposed approach, the guidelines of R. Adler
and L. Flatto [10] are followed to address the existence and the
description  of  periodic  orbits  and  of  rational  orbits  for  the
(generalized)  triangles,  which  derive  from  the  systems
investigated  by  C.  Series  [4],  and  [5].  The  analysis  of  the
associated Hamiltonian systems is implied by the necessity to
describe  geodesics  (on  which  orbits  lay)  as  originating  from
specific initial conditions or specific boundary conditions, and,
in  the  first  case,  also  after  a  specific  continuous  (set  of)
transformation(s).  The  folding  of  particular  geodesics  is
consistent with the construction of ’punctured’ tori and of tori.

Instead of studying the action of arithmetical groups and of
semi-arithmetical groups on geodesics in generalized triangles
(for  which  such  triangles  stay  invariant  because  of  the
invariance of the geometrical measure),  to bring together the
analyses of D. Mayer and F. Stroembergin [11] and D. Fried
[12],  here  the  Hamiltonian  systems  for  generalized  triangles
(and,  in  particular,  also  Hecke  triangles)  are  proved  to  stay
invariant  as  described  by  suitable  congruence  subgroups  of
PGL(2,C) rather than of PGL(2,Z), because, in this case, also
the  invariance  under  generic  translations  and  dilations  is
assured.

In  particular,  a  generic  dilation  is  an  inversion  of  a
geodesics with respect to a geodesic circumference, which is
not  achieved  by  PGL(2,Z);  also  generic  translations  are  not
described by this group. Furthermore, generic triangles are not
described as congruence subgroups of PGL(2,Z).

By  means  of  the  PGL(2,C)  group  and  its  congruence
subgroups,  it  is  possible  to  determine  the  tessellation  of  the
Poincar´e  Upper  Half  Plane  needed  to  describe  generic
triangles and different cases of tori as the non-limiting process
and/or the limiting process of the tessellation with respect to
the  tiling  group  individuated  by  the  folding  implied  by  the
Hamiltonian flow. This way, the biggest group, which leaves
invariant  the  Hamiltonian  flow  and  the  related  geometrical
measure is PGL(2,C).

As a result, the transformations required by the definition
of  congruence  subgroups  are  assumed  to  be  continuous  by
means  of  the  analysis  of  the  corresponding  Hamiltonian
problem. The tiling group for the Hamiltonian systems and the
folding group for their solutions coincide and are constructed

by  a  (composition  of)  continuous  transformation(s)  for  each
suitable  congruence  subgroup  (i.e.  according  to  the
transformation(s) needed to evolve the initial conditions). As
particular cases, punctured tori and tori are constructed by the
tiling implied by the folding of particular orbits.

In the following, the dynamical system corresponding to a
free particle on the desymmetrized domain of PGL(2,C) will be
described. Reduced quadratic surds are classified for the values
acquired by the endpoints of the geodesics oriented according
to the solutions of the equations of motion. The corresponding
set of allowed initial values defines rational trajectories for the
Hamiltonian system among all the possible rational geodesics
lying within the geometrical domain. The folding group for the
dynamical system is demonstrated to coincide with the tiling
group  of  the  group  domain.  Particular  trajectories  (close  to
rational ones) are demonstrated to originate, by their folding,
different kinds of tori, for which rational geodesics are defined
and classified as well.

In particular, in the study by C. Series [4], the ’free group’
F on a torus on the Poincar´e Plane is analyzed to find out its
action  on  cutting  geodesics;  in  the  present  paper,  in  the
following, such geodesics will further be classified as ’reduced
surds’  according  to  the  capability  of  the  (smaller)  group
compatible with the associated Hamiltonian problem, and the
possibility to apply the Gauss-Kuzmin theorem rather than the
properties of Markoff chains used by C. Series [4], because of
the properties of the congruence subgroups of F.

In the present work, the consideration of trajectories of the
hyperbolic  Poincar´e  plane  as  solutions  for  a  Hamiltonian
system  allows  one  to  classify  the  initial  conditions  for  the
construction of tori and of punctured tori.

The quantum-mechanical-systems description associated is
described by the  author  [13],  also  for  the  graded algebras  of
Hecke Groups and those for Winberg groups.

The  aim  of  this  analysis  is  to  establish  a  more  general
definition for reduced geodesics (quadratic surds) for the group
PGL(2,C) in hyperbolic geometry, on the Upper Poincar´e half
plane; within this framework, the symmetry SL(2,Z) cannot be
implemented. The geodesics solutions of the free Hamiltonian
problem  for  the  group  PGL(2,C)  are  classified,  and  the
parametrization  for  the  reduced  geodesics  is  found.  Among
these geodesics, periodic geodesics are parameterized, and the
corresponding expressions in terms of finite reduced continued
fractions are rewritten. By means of the definition of reduced
geodesics, several new constructions of tori and of punctured
tori  for  the  group  PGL(2,C)  are  achieved.  The  definitions
provided are also employed for definitions of the tessellations
of  the Upper  Poincar´e  Half  plane achieved by means of  the
considered group PGL(2,C), and compared with those obtained
by means of other groups.

The paper is organized as follows.

In  Section  II,  examples  of  classifications  of  points,
geodesics, and their continued-fractions expressions for several
for  several  groups  on  the  Upper  Poincar´e  Half  Plane  are
revised.

In Section III, generalized triangles are defined sectiona1
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for the smallest domain.

In  Section  IV,  a  theorem  for  surds  is  stated.  The
Hamiltonian  problem  associated  with  a  symmetry  group  is
investigated.  For  the  smallest  domain,  the  group  needed  is
PGL(2,C). For the equations of motion of Hamiltonian systems
to  be  continuous,  the  symmetry  SL(2,Z)  has  to  be  discarded
(except for specific cases).

A definition of quadratic surds is given, which contains all
the  elements  needed  for  the  description  of  the  tessellations
following from the folding groups for the solutions and for the
corresponding tiling group for the Poincar´e Plane. In Section
V,  rational  geodesics  admitted  as  a  solution  for  the
Hamiltonian  system  to  the  free  Hamiltonian  problems  are
classified.

In  Section  VI,  tori  are  described  as  resulting  from some
limiting  process  in  the  tessellation  of  the  Poincar´e  Plane
according to the folding of particular solutions, for which the
limiting process is achieved by irrational orbits. In Section VII,
’punctured’  tori  are  defined  according  to  similar  tesselation
techniques, which can be compared to the analysis proposed by
C. Series [3 - 5].

In  Section  VIII,  different  tiling  groups  for  the  Poincar´e
Plane have been illustrated to be non-efficient for the folding of
the  solutions  of  the  Hamiltonian  systems  described  in  their
domain.

Generalizations and further applications are discussed, and
concluding remarks are also mentioned , IX follows.

2.  SEVERAL  DEFINITIONS  OF  CONTINUED  FRAC-
TIONS AND REDUCED CONTINUED FRACTIONS

The  study  of  the  properties  of  continued  fractions
corresponding to the hyperbolic geometry of the surfaces for
Hecke groups has widely been investigated.

Some of the aspects of the congruence subgroup Γ(m) of
the linear-fractional transformations group have been studied
by A.O.L. Atkin and J. Lehner [14]. All discontinuous groups
on the hyperbolic plane have a connected fundamental domain,
whose compactification points are cusps points, which can be
rational points on the real axes, or points at infinity. Given a
subgroup Γ with a cusp point, there exists a Hermitian operator
wrt the scalar product, and there exists a basis for the Fourier
decomposition  of  each  complex-valued  function  on  it,  i.e.
which are the eigenfunction of the translation operator and for
any transformation Wq (where Wq is defined as (qβ,1;mγ,q) with
(q2β − mγ = q)). The normalizer of Γ in GL+(2,Z) contains any
product  of  Wq.  The  annihilator  operator  is  well-defined.  The
vector space < Γ(m),k > has a basis which is a direct sum of
classes;  every  form  in  the  same  class  admits  the  same
eigenvalues of the operator Tp, for all primes p such that (p,m =
1). An alternative basis consists of forms that are eigenforms of
all the Wq for q | m.

Lehner  continued  fractions  Lcf(x),  as  characterized  by  J.
Lehner [15], and K. Dajani and C. Kraaikamp [16], are

defined as

(1)

for any irrational number x ϵ (1,2) and there exists the map
LL(x) s.t.

(2)

(3)

The Lehner map and the Gauss-Kuzmin map are therefore
inequivalent.

Chains  of  discontinuous  fractions  and  discontinuous
groups  have  been  classified  by  D.  Rosen  (Rosen  fractions),
[17].

Given the group structure

(4)

(5)

(6)

(7)

with λ fixed real number and ad − bc real coefficients, the
features  of  the  corresponding  Fuchsian  group  Γ(λ)  can  be
analyzed, and, in particular, the features of the boundaries of
the  domain  as  far  as  the  existence  of  continuous  trajectories
and cusp points are concerned by means of the Lehner fractions
Eq. (1).

For a group Γ(λ), infinite continued fractions are expanded
as

(8)

with ǫ = ±1, ri integer rational, r ϵ N+, i ≥ 1, λ > 0 fixed.

A finite continued fraction is expressed by a finite number
of components;  as an example,  the point is  decomposed as a
finite continued fraction

(9)

of which the simplest example is 

A point  is  a  parabolic  point  if  it  is  expressed  by  a  finite

continued fraction. The point  is a parabolic point.
For λ = 2cos(π/q), q ≥ 4, or λ ≥ 2, when a real number α can be
expressed by a reduced continued fraction (it corresponds to an
α-Rosen continued fraction).

z = −d
c
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Rosen  continued  fractions  can  be  used  to  study  some
particular  features  of  Hecke  groups.  As  an  example  of  a
particular  group  structure,  studied  by  D.  Rosen  and  T.A.
Schmidt  [18],  given  Gq  a  Hecke  group  of  the  first  class

(10)

with q ϵ Z, λ-periodic continued fractions determined by G,
which correspond to periodic closed geodesics, are analyzed.

Given 

√D is periodic iff P2 − DQ2 = 1.

For q > 3, periodic continued functions are defined if there
exists  a  solution  to  the  Pell  equation  with  DQ/P  and  P/Q
consecutive  convergents.

For  Q(λq),  a  cusp  point  P/Q  is  defined  by  the  continued
fraction given the convergent Pn/Qn such that P/Q ≡ Pn/Qn

(11)

(12)

which satisfies the determinant relation

(13)

Periodic √D/C geodesics, α(√D/C), with D square-free up
to the unit, are defined as:

(14)

, with 
being, therefore, called the cyclic part.

As investigated by T.A. Schmidt and M. Sheingorn [19], as
far as the lengths of the spectra for Hecke triangular groups are
concerned,  given  a  Hecke  group  Gq  on  the  upper  Poincar´e
half-plane H, the length of closed geodesics on GH is calculated
after the Gq-equivalence for quadratic binary forms over Z[λq].
The  discriminants  for  the  reduced  quadratic  forms  are  listed
explicitly.

T.A. Schmidt has investigated λ-Rosen continued spectrum
with particular emphasis on the number-theoretical

aspects of the Markovv theory [20]: invariant measures for
transformations of Hecke groups have been defined by means
of the definition of the Rosen continued fractions.

In  the  case  λq  =  λ4  =  √2,  in  the  interval  ,  the
extended transformation M → M is defined

(15)

(16)

(17)

where

. The invariant measure for the transformation M, dM(x,y), is

.

For  Hecke  triangles  surfaces,  as  pointed  out  by  T.A.
Schmidt  and  M.  Sheingorn  [21],  the  equivalence  of  simple
closed geodesics on GH and Γ/

′ H does not hold for q > 7, where
Γq

′ is the commutator subgroup of Gq.

3. A DEFINITION FOR HYPERBOLIC TRIANGLES

The smallest domain considerable on the Poincar´e plane is
the desymmetrized domain of the modular domain, such that

(18)

(19)

on which the reflections group

(20)

(21)

(22)

defines the reflections of the geodesics on the sides of the
domain as PGL(2,C).

Remark  1.  The  reflections  with  respect  to  geodesic
(degenerate  circumference(s))  (20),  (21)  lines  and  geodesics
(non-degenerate circumferences (22)) are particular cases.

The  associated  dynamical  problem  is  that  solving  the
Hamiltonian of a free point particle moving inside the domain;
the analysis of the solution of the equations of motion shows
the motion is chaotic.

The metric-transitivity  of  transformations  on generalized
hyperbolic triangles, as indicated by G.A. Hedlund [22], for the
more  general  case  of  closed  surfaces  of  constant  negative
curvature,  will  be  discussed  at  the  end  of  the  next  Section.

4. A THEOREM FOR SURDS

It is useful to consider a definition of quadratic surds for
Hamiltonian  problems  where  the  equation(s)  of  motion  are
continuous,  for  which the folding group and the tiling group
coincide.

For  future  purposes,  the  quantity  ∆x  is  defined  as  the
maximum range of the real variable acquired by the potential
shape. For the system (19), this interval is ∆x: −1/2 < x < 0.

 T˜ ∈ G3 

Pn = rnλPn−1 + ǫnPn−2 

Qn = rnλQn−1 + ǫnQn−2 

PnQn−1 − QnPn−1 = (−1)n−1ǫ1ǫ2...ǫn 

 
α(√D/C) ≡ (r0λ,ǫ1/r1λ/,...,ǫs/rsλ,ǫs+1/β), 

β ≡ rs+1λ,ǫ1/r1λ1,...,ǫs/rsλ,ǫs+1/β, β 

[ ) 

= 
1+ lg2 (1+xy)2

. 

−1/2 ≤ u ≤ 0

v ≥
√

1− u2

T1 : T1z → z̄ + 1

T2 : T2z → −z̄

T3 : T3z → 1

z̄
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The  solution  of  the  equations  of  motion  z′  consists  of  a
composition of the operators (21) acting on a geodesics z, and
is represented, as hinted from E.B. Bogomolny, B. Georgeot,
M.-J. Giannoni, C. Schmit [23], as

(23)

with F(ni) ϵ N an opportune number, defining the number
of  iterations  of  the  composed  operator  (resulting  as  a
translation).

Periodic geodesics are particular solutions that leave (24)
invariant,  i.e.  for  z′  ≡  z.  These  solutions  are  classified  as
reduced quadratic surds. It is now possible to define them as in
the following

Theorem  2.  Reduced  quadratic  surds  for  the
desymmetrized  modular  domain  are  those  with  oriented
endpoints  −2  ≤  x′  ≤  −1,  x  >  1.

Any  different  definition  of  x′,  i.e.  any  continuous
transformation  of  the  interval  [0,1],  does  not  modify  the
pertinent  properties  of  this  interval,  i.e.  the  distribution  of
numbers within this interval, according to the Gauss-Kuzmin
Theorem as recalled by S.J. Miller and R. Takloo-Bighash [7].

Definition  3.  The  reduced  surds  for  the  free-particle
Hamiltonian  on  a  desymmetrized  domain  of  PGL(2,C)  are
those  with  oriented  endpoints  −2  ≤  x′  ≤  −1,  x  >  1.

A definition for reduced quadratic surds corresponding to
the  oriented  endpoints  of  (the  geodesics  defining)  periodic
trajectories  of  this  dynamical  system is  derived from ancient
definitions  given,  for  more  general  cases  for  surds  and
particular  cases  of  quadratic  surds,  by  G.H.  Hardy  and  F.
Aicardi  [8,  9],  resp.

Remark 4. Because of the reflection (23), a definition of
’reduction’  is  also  needed  for  irrational  (non-periodic)
geodesics,  because  of  the  Gauss-Kuzmin  Theorem.

According  to  these  theorems,  the  initial  conditions  for
trajectories  define  geodesics.

Particularly,  rational  geodesics  enjoy  the  same
classification as far as initial conditions for dynamical systems
are concerned, even though they originate rational trajectories.

Specifically, such a definition allows one to extract items
of  information  from  the  continued-fraction  expansion  of  a
number  (i.e.  from  the  fractional  part  of  the  value  of  the
positively-oriented endpoint) after the reflection (23) has acted
on  z  in  (24)  and  allows  one  to  apply  the  Gauss-Kuzmin
theorem consistently, i.e. on the (wrt to initial conditions)-same
digit of the continued fraction.

After  the  definition  of  initial  conditions  is  achieved,  the
properties of the dynamical system are described uniquely by
the symmetry group defined on the potential.

Corollary 5. The following statements are equivalent.

The action of the operators (21) on (19) tiles the Poincar´e
Plane  uniformly,  i.e.  with  tiles  of  equal  (with  respect  to  the
geometrical measure dudv/v2) area.

The tiling group for this domain corresponds to the folding
group for the solutions of the equations of motion. The folding
of  the  solutions  z′  (depicted  in  Fig.  (1))  consists  of
(compositions of) the reflections (21) acting on the sides (19)
of the system and tiles the Poincar´e Plane uniformly.

This choice comprehends the action of the operators T1 and
T2 on different geodesics in (24), and, in particular, on those for
which  0  ≤  x  ≤  1.  Furthermore,  the  interval  [0,1]  is  this  way
piecewise sent to different intervals of the real axes by T3.

The  folding  group  for  periodic  geodesics  consists  of  the
action of the operators T1, T2, and T3 according to the periodic
solutions  of  (24)  and  does  not  tile  the  Poincar´e  Plane
completely.

Corollary 6. The number F(ni) corresponds to the (ni) − th
digit  of  the  continued  fraction  expansion  of  the  surd.  The
extraction  of  such  a  digit  is  consistent  with  recognizing  the
corresponding  discrete  map,  as  examined  for  more  general
cases  by  R.  Adler,  L.  Flatto,  and  G.C  Layek  [10,  1],
respectively.  A  different  choice  for  the  definition  of  the
oriented endpoints, as, i.e. those chosen by E.B. Bogomolny,
B. Georgeot, M.-J. Giannoni, C. Schmit, or those preferred by
C. Series [23, 3], resp., does not allow for this construction for
Hamiltonian systems.

The correspondence (24) allows one to use the results of C.
Series  [4],  in  which  the  succession  of  digits  in  a  continued
fraction decomposition can be understood to better follow the
Gauss-Kuzmin distribution rather than that of a Markoff chain
analysis  of  the  corresponding  (stochastized)  process.  The  Γ2

subgroup is defined according to the first two iterations of (24),
for which it is not relevant to know whether the corresponding
geodesics is rational or irrational, and, in case, the pattern of
digits according to which the definition of ’irrational’ is further
specified, i.e. whether periodic or not.

In the study by C. Series [4], the free group F on a torus is
defined  as  consisting  of  a  translation  (resulting  from  the
composition of two reflections, such as (21) and (22) in (21))
and an inversion with respect to a circumference (such as (23)
in (21)). The definition of periodic geodesics by setting z′ = z in
(24)  allows  one  to  apply  the  Gauss-Kuzmin  theorem  to  the
(therefore so-called) ’surds’ geodesics, whose classification is
’reduced’ as their endpoint(s) are (equivalently)defined within
the unit interval. The definition of ’cutting’ is consistent with
that defining the subgroup leaving invariant the corresponding
Hamiltonian problem, for which no operator can be composed
with  its  inverse  (even  though  such  composition  exists  in  the
original bigger group).

As  a  new  result,  considering  the  Hamiltonian  problem
allows  one  to  further  classify  the  geodesics  by  choosing  an
orientation, i.e. by labelling the endpoints x and x′ according to
the Γ2 subgroup. Furthermore, the ’cutting’ (Γ2 congruence sub-
)  group (associated to a  Hamiltonian problem) allows one to
chose  an  orientation  for  endpoints,  such  that  the  same  non-
oriented geodesics are established to be classified as different
cutting  geodesics  for  the  problem  studied  by  C.  Series  [4],
according to the different classification the (naturally) occupy
within the initial conditions of the Hamiltonian problem which

z′ =
∏
i

(T1T2)
F (ni)T3z
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is defined.

Differently  from  the  analyses  by  G.A.  Hedlund  [22],
considering  the  solution  of  a  Hamiltonian  problem  does  not
require  to  take  into  account  the  metric  transitivity  of  the
(composition  of)  transformation(s).  The  metric  transitivity  is
nevertheless  still  important  in  the  comparison  of  the  folding
group with the tiling group, and in establishing which folding
group(s)  are  not  accepted  as  a  tiling  group,  (as  it  will  be
discussed in section ’Different systems’). As examined by E.
Gutkin  and  B.  Gruenbaum  [24,  25],  resp.,  Fano  orbits  are
demonstrated  to  be  ruled  out  in  Hyperbolic  geometry,  the
classification of ’oriented’ geodesics needs one to abandon the
comparison with Euclidean geometry investigated by C. Series
[4], for the presence of periodic orbits. Such a comparison is
nevertheless useful for the analysis of the role of the presence
of the absolute (i.e. the boundary of the Poincar´e plane, which
consists of the horizontal axis and one point at v  = ∞) in the
domain  of  generalized  triangles  and  the  corresponding
’punctures’  on  the  tori,  which  are  constructed  as  their
congruence  subgroups,  are  generated  by  the  effects  on  the
folding acted by the digit distribution in the continued-fraction
expansion of the (’Hamiltonianly’-)selected oriented endpoints
of trajectories which ly close to rational trajectories.

The  exclusion  of  points  from  the  sides  of  a  domain  can
also  be  considered  even if  the  shape  of  the  domain  does  not
comprehend  the  absolute;  indeed,  in  examinations  by  I.P.
Cornfeld, S.V. Fomin and Ya.G. Sinai [26], nondifferentiable
points  are  excluded  from  the  domain  enclosing  a  chaotic
dynamics  resulting  from a  Hamiltonian  system,  even  though
these  points  do  not  belong  to  the  absolute  (i.e.  but  are  the
corners of a polygon).

5. RATIONAL GEODESICS

It is now possible to classify the possibility of occurrence
of geodesics parameterized by one endpoint belonging to the
absolute  within  a  continuous,  not  differentiable  point  of  the
potential shape (corner).

Within  the  Hamiltonian  approach,  the  ’forward’  (+)
endpoint  of  such  geodesics  is  a  rational  number  (on  the  real
axis), whose continuous-fraction expansion is finite.

Theorem 7.  For the system PGL(2,C) rational  geodesics
exist.

Proof 8.− Any rational trajectories for the domain (19) are
those such that x− = ∞, x+ ϵ [−1/2,0], or x+ = ∞, x ϵ [−1/2,0], i.e.
degenerate geodesics with u = const, u−ϵ ∆[−1/2,0], ∀v ϵ (19),
and  those  transformed  by  elements  of  the  group  into  x+  =  ∞
geodesics, the value of− x represented by a continued fraction
with  one digit,  1/x−.  Transformations  able  to  send geodesics
into  x  =  ∞  geodesics  do  not  belong  to  the  group
(trivial/vanishing  definition  of  the  denominator).

For  the  congruence  subgroups  of  PGL(2,C)  rational
geodesics  exist.

Theorem 9.  For  the  congruence  subgroups  of  PGL(2,C)
defined on domains containing one point at the absolute v = ∞,
rational  geodesics  are  those  parameterized  by  the  condition
[cfr.  Th.  3]− x−  = ∞, x+  in  the abscissa interval  on which the

(sub)group  domain  is  defined,  or  x+  =  ∞,  x  in  the  abscissa
interval on which the (sub)group domain is defined, and those
so-transformed by the evolution of the equations of motion.

Theorem 10. For the congruence subgroups of PGL(2,C)
defined on domains containing more than one point ui on the
absolute  at  v  =  0,  rational  geodesics  are  the  degenerate
geodesics  with  x±  =  ui,  (i.e.  u  =  const  =  ui),  and  the  non-
degenerate  geodesics  with  x±  =  ui,  the  other  endpoint
parameterized such that the intersection with the group domain
is  not  at  v  =  0  (the u  axes),  and those so transformed by the
evolution  of  the  equations  of  motion  (in  both  cases,
respectively).

For larger domains, obtained as congruence subgroups of
PGL(2,C), the set of values parameterizing rational geodesics
is one defining rational geodesics for the cases in Theorem 9
and Theorem 10, and those for which the cases of Theorem 10
are predicted by the evolution of the equations of motion. Such
larger  domains  can  be  understood  as  particular  (arbitrary)
truncations  of  the  tiling  resulting  from  the  folding  of  a
trajectory  in  a  (most  generally,  asymmetric)  triangle.

6. TORI

Tori are obtained as the tiling resulting from the folding of
particular orbits of triangles. For the folding of irrational non
periodic geodesics in the domain (19) of the PGL(2,C) group,
no particular geodesics have to be chosen for the obtainment of
a torus.

Defining tori by their rational geodesics is allowed as by
the investigation by G.A. Hedlund [22], where tori have been
commented  to  be  metrically  invariant  under  a  smaller  group
(the  modular  group),  as  well  as  their  rational  geodesics;  this
approach  to  the  problem  is  opposite  to  that  proposed  by  the
applications by C. Series [4], as far as the definition of kinds of
the  torus  is  concerned:  it  rather  follows  Series’  suggestion
about the research guidelines specified by G.A. Hedlund [27].

The invariance of the rational geodesics of tori under the
action of the modular group allows one to describe punctured
tori as well.

Their  derivation  is  here  achieved  with  respect  to  the
PGL(2,C)  group  for  the  dynamical  problem  associated.

Definition  11.  Tori  are  obtained  as  the  limiting  (with
respect  to  the  absolute)  tiling  resulting  from  the  folding  of
particular orbits, (for example, irrational geodesics).

Differently,  ’punctured’  tori  are  obtained  as  the  tiling
resulting  from  the  folding  of  particular  orbits  (for  example,
rational ones and periodic ones).

Remark 12. By means of the action of the PGL(2,C) group
on Hamiltonian systems, there is a one-to-one correspondence
(by construction) on the orbits in the triangle and the orbits in
the  tori  of  which  they  are  the  evolution  of  the  folding.  The
converse is not true.

Because  of  the  hyperbolic  geometry,  no  ’horizontal’  tori
can be (at least geodesically) defined.

It is indeed possible to define Hamiltonian systems whose
potential  is  defined  by  two  degenerate  (straight  lines)
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geodesics.  Within  the  present  approach,  such  a  construction
coincides  with  the  limn→∞  Γ2n  congruence  subgroup  of
PGL(2,C), i.e. with the tessellation of the domain u ϵ ∆x, ∀v
according to the reflection with respect to a circumference of
the considered PGL(2,C) group. If the limit is not achieved, a
(degenerate) ’punctured torus’ is obtained (Fig. (2)), similarly
to the constructions by C. Series [4].

Theorem  13.  Rational  geodesics  for  the  Hamiltonian
system associated with the limiting process of tessellation of a
(degenerate) torus are any geodesics for which x+ ϵ ∆x, or x− ϵ
∆x on the torus.

Corollary 14. (Non-degenerate) Rational geodesics for the
(degenerate)  torus,  are  geodesics  with  one  oriented  endpoint
coinciding with any point on the absolute of the domain, and
intersecting the torus domain at a different point, for which v =
0.6

Corollary  15.  Degenerate  rational  geodesics  for  the
(degenerate) torus are those with one endpoint coinciding with
any point on the absolute of the domain, and the other at ∞.

The initial  conditions also define the allowed orientation
for the solutions of the equations of motion.

Theorem  16.  Rational  geodesics  for  the  Hamiltonian
system associated with the limiting process of tessellation of a
(non-degenerate) torus are any geodesics with x+ = χ+ and x− on
the  potential  sides;  such  a  case  is  within  the  allowed  initial
conditions of the problem.

Corollary 17. (Non-degenerate) Rational geodesics for the
(non-degenerate)  torus  are  geodesics  with  one  oriented
endpoint  coinciding  with  any  point  on  the  absolute  of  the
domain  of  the  potential  shape,  and  intersecting  the  torus
domain  at  a  different  point,  for  which  v  =  0.6

Corollary 18. Degenerate rational geodesics for the (non-
degenerate)  torus  are  allowed  as  initial  conditions;  the
corresponding  geometrical  construction  is  a  (degenerate)
geodesics having in common with the potential only one point
on the absolute and one on the potential side corresponding to
the same abscissa.

7. PUNCTURED TORI

Definition 19.  ’Punctured’  tori  are  obtained as  the  tiling
resulting  from  the  folding  of  particular  orbits  (for  example,
rational ones and periodic ones).

Theorem  20.  Rational  geodesics  for  the  Hamiltonian
system associated with the limiting process of tessellation of a
(degenerate) ’punctured’ torus are any geodesics for which x+ ϵ
∆x, or x− ϵ ∆x on the (’punctured’) torus.

Corollary 21. (Non-degenerate) rational geodesics for the
(degenerate) ’punctured’ torus are geodesics with one oriented
endpoint  coinciding  with  any  point  on  the  absolute  of  the
domain of the (degenerate) ’punctured’ torus, and intersecting
the torus domain at a different point, for which v = 0.6

Corollary  22.  Degenerate  rational  geodesics  for  the
(degenerate)  ’punctured’  torus  are  those  with  one  endpoint
coinciding with any point on the absolute of the domain of the
(degenerate) ’punctured’ torus, and the other at ∞.

A further generalization of the material in the above is the
definition of a Hamiltonian system whose potential is defined
by two (non-degenerate) geodesics with one common endpoint
(χ+), the other endpoint defining an interval ∆x non containing
the common endpoint. This shape is interpreted as the limiting
tessellation iteration of a Γ2 congruence subgroup of PGL(2,C).
The  non-limiting  (tessellation)  process  provides  on  with  a
(non-degenerate)  ’punctured  torus’  (Fig.  (3).

Theorem  23.  Rational  geodesics  for  the  Hamiltonian
system associated with the limiting process of tessellation of a
(non-degenerate) punctured torus are any geodesics with x+ = χ+

or x− on the potential sides; such a case is within the allowed
initial conditions of the problem.

Corollary 24. (Non-degenerate) Rational geodesics for the
(non-degenerate)  ’punctured’  torus  are  geodesics  with  one
oriented endpoint coinciding with any point on the absolute of
the  domain  of  the  potential  shape,  and  intersecting  the  torus
domain at a different point, for which v = 0.6

Corollary 25. Degenerate rational geodesics for the (non-
degenerate) ’punctured’ torus are allowed as initial conditions;
the  corresponding  geometrical  construction  is  a  (degenerate)
geodesics with one endpoint on the absolute.

Remark  26.  The  existence  of  such  geodesics
notwithstanding,  not  all  the  corresponding  solutions  of  the
equation of motion are allowed by the initial conditions. It is
indeed possible to define such rational geodesics also outside
the  potential  of  the  system  (for  which  the  need  for  the
specification of the intersection with the potential sides not to
be on the absolute).

Degenerate ’punctured’ tori  can be identified in Fig.  (3):
they are delimited by two degenerate (’vertical’) geodesics and
one (non-degenerate) circumference with the two endpoints in
common with the other two vertical geodesics. Non-degenerate
’punctured’ tori are also described in Fig. (3); they are closed
domains  delimited  by  three  half  circumferences  having  in
common  one  endpoint  with  each  other.

8. DIFFERENT SYSTEMS

It  is  interesting  to  analyze  different  systems,  for  which
discrepancies can be outlined.

Any group smaller than PGL(2,C), as defined by A. Terras
and employed by C. Series [2, 4], resp., can be described on the
corresponding domain also used in [2] as a suitable congruence
subgroup of it, as studied, i.e., by N.I. Koblitz [6].

Because the associated chaotic system is Hamiltonian, it is
indeed easy to verify that the evolution of the geodesics z′ (24)
is continuous. For this problem, not all sequences of operators
in  (24)  are  comprehended,  even  though  they  are  allowed  by
(21), and, in particular, by (21), which is usually taken as on of
the  two  transformations  (different  from  one  on  a  non-
degenerate geodesics), which defines the folding group for the
discrete map associated to the dynamical system.

The modular group SL(2,Z) is defined by the reflections Ta,
Tb, Tc, s.t.

(24)Ta : Taz → −z̄ + 2
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(25)

(26)

on the domain .
For the symmetric domain of the modular group, the folding
group [28] does not correspond to the tiling group [3], as the
translation z → z − 1 does not compose consistently with the
reflection with respect to (”on”) the geodesics x2 + y2 = 1.

The  inadequacy  of  the  folding  group  to  provide  with  a
suitable tiling of the Poincar´e Plane for this construction has
also  been  outlined  in  [11]  for  the  group  PSL(2,R),  for  the
solution of the corresponding Hamiltonian system, as examined
by R. Adler and L. Flatto [10], was proposed by D. Fried [12].
In  particular,  the  translation  defining  SL(2,R)  in  E.B.
Bogomolny [28] does not imply the reflections needed for the
folding to be also a tiling, the high symmetry of the problem
not with standing.

The subgroup Γ0 of PGL(2,C) on the domain delimited as

and  by the transformations

(27)

(28)

and  by  the  reflections  on  the  two  circumferences.  This
subgroup,  smaller  than  PGL(2,C),  is  different  from  one
constructed  from  SL(2,Z),  as  it  is  not  consistent  with  the

reflection  of  PGL(2,C).  For this
symmetric  domain  of  PGL(2,C),  the  folding  group  does  not
correspond to the tiling group.

Any  group  smaller  than  PGL(2,C),  studied  also  by  A.
Terras in [2], can be described on the corresponding domain, as
pertinently  outlined  by  A.  Terras  in  [2],  as  a  suitable
congruence subgroup of it, as reported, i.e., by N.I. Koblitz [6].

Because the associated chaotic system is Hamiltonian, it is
indeed easy to verify that the evolution of the geodesics z′ (24)
is continuous. For this problem, not all sequences of operators
in  (24)  are  comprehended,  even  though  they  are  allowed  by
(21), and, in particular, by (21), which is usually taken as on of
the  two  transformations  (different  from  one  on  a  non-
degenerate geodesics), which defines the folding group for the
discrete map associated to the dynamical system.

Series  [3],  as  the  translation  z  →  z  −  1  does  not  compose
consistently  with  the  reflection  with  respect  to  (”on”)  the
geodesics  x2  +  y2  =  1.

The  inadequacy  of  the  folding  group  to  provide  with  a
suitable tiling of the Poincar´e Plane for this construction has
also been outlined by D. Mayer and F. Stroemberg [11], for the
group  PSL(2,R),  for  the  solution  of  the  corresponding
Hamiltonian system studied by R. Adler and L. Flatto [10], was
proposed  by  D.  Fried  [12].  In  particular,  the  translation
defining  SL(2,R),  as  outlined,  for  a  different  Hamiltonian
application,  by  E.B.  Bogomolny  [28],  does  not  imply  the
reflections needed for the folding to be also a tiling, the high
symmetry of the problem notwithstanding.

The subgroup Γ of PGL(2,C) on the domain delimited as u
= −1, u = 0, v = √1 − u2 for −1/2 < u < 0

and  v  =  p1  −  (u2  +  1)  and  by  the  transformations

 and  by  the
reflections on the two circumferences. This subgroup, smaller
than PGL(2,C), is different from one constructed from SL(2,Z),
as it is not consistent with the reflection Tα : Tαz → −z¯ + 1 of
PGL(2,C). For this symmetric domain of PGL(2,C), the folding
group does not correspond to the tiling group.

The definition in Th. 5.23 in enunciated by C. Series [3],
applies to a Hamiltonian system whose potential is consistent
with  a  congruence  subgroup  Γ2  of  PGL(2,C)  which  leaves
invariant the solutions of a Hamiltonian system whose potential
is specified as containing at least one point in the interval −1 <
x < 1. Four realizations of this (sub)group can be outlined in
Fig. (3).

The occurrence of rational geodesics in dynamical systems
on tori is characterized here for dynamical systems as for their
(Hamiltonian-time) irreversibility; their geometrical occurrence
declares a set of initial conditions, similarly to the cases studied
By G.A Hedlund [29], which is outlined, the metric transitivity
of the manifold remaining unchanged.

Non-arithmetical  triangles,  i.e.  those  triangles  whose
angles define a domain for a non-arithmetical group, as in the
study  by  W.  Barth,  C.  Peters  and  A.  Van  de  Ven,  B.N.
Apanasov  and  E.B.  Bogomolny,  C.  Schmit  [30,  32]  need
different  definitions  for  the  tiling  of  tori,  and  will  not  be
analyzed  here.

9. RESULTS

In the present paper, Hamiltonian systems (whose potential
is)  associated  with  the  group  PGL(2,C)  ant  its  congruence
subgroups  have  been  analyzed.  A  definition  for  reduced
quadratic  surds  has  been  proposed  for  the  Gauss-Kuzmin
Theorem  to  apply  for  the  geodesics  of  the  problem.  This
method allows for the analysis of the definition of the allowed
initial conditions, and, therefore, for the classifications of the
orbits  of  the  system.  The  use  of  the  group  PGL(2,C)  and  its
congruence  subgroups  is  the  only  one  valid  in  defining  the
folding  group  for  the  system  as  the  tiling  group  for  the
Poincar´e  Plane.




Tb : Tbz → − 1
z̄

Tc : Tcz → 1

z̄
,
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The modular group SL(2,Z) is defined by the translations

,  on  the

domain  .  For  the
symmetric domain of the modular group, the folding group, as
investigated, for different purposes, by E.B. Bogomolny [28],
does  not  correspond  to  the  tiling  group  individuated  by  C.
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CONCLUSION

In  a  study  [33]  by  M.  Henneaux  and  C.  Teitelboim,  the
quantization  of  gauge  systems  is  analyzed  for  constrained
Hamiltonian  systems.

The  Lagrangean  for  the  motion  of  a  particle  of  unitary
mass  without  potential  on  the  upper  Poincar´e  half  plane  is
given as

(29)

where  the  Lagrangian  variables  are  this  way  defined.
Outside  the  group  domain,  the  Lagrangian  reads

(30)

The  quantization  of  the  case  of  the  Lagrangians  in  the

present analysis, i.e.  (topological classical mechanics)

and  ,  where  the  Lagrangians  variables  qi

form the upper Poincar´e half plane are defined in Eq. (30). In
the present work, the case L = 0 (which applies in the regions
of the hyperbolic plane outside the subgroups domains and the
group  domains)  is  not  invariant  under  arbitrary  shifts  of  the

variables qi. For the case , which applies in
the  regions  of  the  hyperbolic  plane  inside  the  subgroups
domains  and  the  group  domains,  the  Lagrangian  is  not
invariant  under  arbitrary  shifts,  but  only  to  those  defined  by
each group under consideration, i.e. u → u + λ.

The  phase  space  associated  is  indeed  one  with  unitary
geodesics velocities.

The  primary  constraints   =  0,  for  the  Hamiltonians

 are  defined  for  the  class  of  transformations
(i.e.

for  the  groups)  under  consideration.  The  secondary

constraints  are   =  0.  The  constraints   =  0  and   =  0
both  second-class  constraints.  Upon  gauge  fixation,  they  are

equivalent to the first-class constraint  = 0. The constraint

 = 0 cannot be interpreted as a gauge-fixing condition, as
the Lagrangian L = 0 is not invariant under arbitrary shifts of

the variables qi. The gauge is completely fixed by  = 0; by

means of unfreezing th degrees of freedom of the gauge  =
0, the same constrained Hamiltonian system is recovered.

The  constraints  structure  can  also  be  analyzed  for  the
transformations  (22)  and  (23)  in  (21).

Given a phase space with constraints by J. Stasheff [34], by
means  of  the  symplectic  structure,  they  correspond  to
Hamiltonian vector fields tangent to the constraint surface and
foliating  the  constraint  surface,  the  zero  locus  of  the
constraints. Ghosts, i.e. Grassmann algebra generators, can be
added to the Poisson algebra of the so-obtained reduced phase

space,  endowed  with  a  complex  structure,  to  the  Poisson
algebra of the smooth functions of the original phase space, as
demonstrated by E.S. Fradkin and G.S. Vilkovisky [35].

A foliation procedure can also be applied to the coordinate
space  of  General  Relativity  (within  the  thin-sandwich
conjecture under the hypothesis of the Geroch theorem), and
the  corresponding  constraints  formalism  can  be  applied  to
phase  space  resulting  from  the  Hamiltonian  expression  for
General  Relativity  [36],  as  formulated  by  R.  L.  Arnowitt,  S.
Deser  and  C.  W.  Misner.  In  the  canonical  form,  the  Dirac
algebra  of  the  constraints  can  be  formulated  in  terms  of
Lagrange  multipliers  in  the  phase  space.  In  particular,  the
scalar  constraint,  the  vector  constraint  and  the  momenta
constraint  are  implemented.

For  a  Hassan-Rosen  theory  of  gravity,  it  is  possible  to
introduce an interaction terms such as V ((g−1f)n) or

V  ((pg−1f)n),  with  the  external  metric  fµν,  as  in  the  model
analyzed by Z. Molaee and A. Shirzad [37]. For the bi-gravity
theory  to  be  ghost  free,  the  interaction  terms  have  to  be
diffeomorphism-invariant,  its  derivatives  w.r.t  to  the  lapse
functions and the shift function must obey suitable conditions,
and  the  corresponding  constraint  must  not  contain  lapse
functions  and  shift  functions.  The  Hassan-Rosen  bimetric
theory  of  gravity  has  been  shown  to  be  a  ghosts-free,  as
outlined  by  S.  F.  Hassan  and  R.  A.  Rosen  [38].

Three-gravity  has  been  studied  by  M.  Sadegh  and  A.
Shirzad [39], for which 2 of the 6 components of the metric are
found to be dynamical. The corresponding st of constraints is
analyzed. Constraints for three-dimensional gravity are found.
A 6-member family of second class constraints is analyzed to
correspond  to  a  family  of  24-member,  2-level  and  cross-
conjugate second class system, a one-level 12-member family
of  second  class  constraints,  an  8-member  2-level  family  of
second class constraints and a 6-member family of second class
constraints gathered in three-level chains, a 6-member, 2-level
and  first  class  family  of  constraints  (which  correspond  to  6
first-  class  constraints.  As  a  result,  36  primary  and  26
secondary constraints are found, of which 56 are second-class
and 6 are first-class.

Three-gravity theories and for four-gravity theories in the
Hamiltonian  formalisms  in  the  ADM  decomposition  where
studied  by  Z.  Molaee  and  A.  Shirzad  [40].  Within  the
framework  of  the  ADM  decomposition  of  the  phase  space,
diffeomorphisms-invariance  is  assured  by  first  -class
constraints, and second-class constraints to avoid ghost-fields
are found.

Among other maps considered for the continued-fraction
expansion for the geodesics of the fundamental domain for the
Upper Poincar´e Half Plane, the Lehner map L Eq. (2) can also
be  compared  with  (inequivalent)  the  Farey-Isola  map,  LFI,
formulated by S. Isola [41], defined on the interval [0,1] as

(31)

(32)

L =
1

2

u̇2 + v̇2

v2
,

L = 0.

L = ′

L = − 1∑
i
2q2i

L = − 1∑
i
2q2i

 π̃i

H = 1∑
i
2q2i

 q̃i q̃iπ̃i

q̃i

q̃i

p̃i

p̃i

LFIx =
x

1 x
∀x s.t.0 ≤ x ≤ 1

2
,

LFIx =
1− x

x
∀x s.t.

1

2
< x < 1.
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While  the  Gauss  map  and  and  the  Farey-Isola  map  are
inequivalent,  their  generalized  Borel  transforms  and  Laplace
transforms are  left  invariant  under  the  definitions  of  transfer
operators  as  calculated  by  V.  Baladi  and  P.  Collet  [42,  43],
resp.

A definition for reduced geodesics for the group PGL(2,C)
on the Upper Poincar´e Half Plane has been provided for the
sake  of  classification  of  solution  to  the  free  Hamiltonian
problem implemented on the fundamental domain of the group
PGL(2,C);  such  a  classification  has  implied  the  necessity  to
discard  the  symmetry  SL(2,Z).  The  properties  of  the  group
PGL(2,C)  on  the  Upper  Poincar´e  Half  Plane  allow  for  the
classification  of  points  and  geodesics  within  it  fundamental
domain. The classification of geodesics provides one with the
tools for new construction of tori and of punctured tori on the
Upper  Poincar´e  Half  Plane  (for  the  group  PGL  (2,C)).  The
properties of the geodesics for the group PGL(2,C) also allow
for new definitions of tessellation for the Upper Poincar´e Half
Plane.

The study of different groups in hyperbolic geometry for
the  Upper  Poincar´e  Half  Plane  might  allow  for  a  new
classification of points, geodesics, tori, and tessellations for the
considered  groups.  The  corresponding  free  Hamiltonian
problems lead to the proper definition of reduced geodesics to
obtain  the  classification  of  points  and  gain  insight  on  the
dynamics. The definition of the reduced continued fraction can,
therefore,  lead  to  new  kinds  of  tesselation  for  the  Upper
Poincar´e Half  Plane and for  new construction of  tori  and/or
generalized tori.

In  particular,  the  study  of  non-arithmetic  groups  is
expected  to  lead  to  the  finding  of  new  structures  and  new
results, as considered by E.B. Bogomolny, M. Georgeot, M.-
J.Giannoni ad C.Schmit [23]. The paper has been organized as
follows.

In Section II, geodesics and their corresponding continued
fraction-expressions  are  revised  for  several  groups  on  the
Upper  Poincar´e  Half  Plane.  Examples  of  classifications  of
points are also recalled.

In Section III, generalized triangles have been reminded of
the Poincar´e Plane.

In  Section  IV,  equations  of  motions  (as  the  solution  for
Hamiltonian systems) have been investigated to be continued

under the action of the group PGL(2,C), which defines a way
to classify geodesics by applying the Gauss-Kuzmin Theorem
to their ’reduced’ definition.

In  Section  V,  the  solutions  to  the  equations  of  motions
have been classified w.r.t the comparison with the tesselation
techniques for the hyperbolic plane.

In Section VI, tori and their geodesics have been defined
according to the hints of [3] for the Γ2 congruence subgroups of
PGL(2,C).

In  Section  VII,  the  construction  of  punctured  tori  is
considered  as  from  the  folding  of  rational  trajectories  and
periodic  ones.

In Section VIII, different systems have been analyzed for
comparison, in which the tiling group for the Poincar´e Plane
does  not  correspond  to  the  folding  group  of  the  associated
Hamiltonian system.

OML  would  like  to  thank  Roberto  Conti  for  useful
comments, and Pavol Zlatos’ for reading the manuscript. OML
is grateful to the Referees for having pointed out Ref.’s [33, 37,
36, 39, 40].

Four realizations of Γ2 of PGL(2,C) can be recognized in
the picture, i.e. those whose operators imply reflections on the
following  (close)  set  of  sides:

It is interesting to remark here that the group PGL(2, Z) is
not sufficient to provide with all these constructions.

Two  limiting  processes  for  the  punctured  torus  are  also
recognized, i.e.  for the degenerate punctured torus, delimited
by any two degenerate  geodesics  (vertical  lines),  and for  the
non-degenerate  punctured  torus,  delimited  by  two
circumferences having one point in common and defining an
interval  ∆x  comprehended  by  the  two  other  non-coinciding
endpoints on the

the same portion of the real axes wrt the common one, such
as, for example, u = 1, v = √1 − u2 and v = √u − u2.

.

−1 ≤ u ≤ 1, v ≥
√
1− u2; −1 ≤ u ≤ 0, v ≥

√

1− (u+ 1/2)2; 0 ≤ u ≤ 1, v ≥
√

1− (u− 1/2)2;

−1 ≤ u ≤ 1, v ≥
√

1− (u+ 1/2)2, v ≥
√

1− (u− 1/2)2
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Fig. (1). The fundamental domain (black, continuous lines) and its folding (black dashed lines) corresponding to the PGL(2,C) group for an oriented
geodesics (gray, continuous line) and for the reflections of the corresponding orbit (gray, dotted lines) within the domain.

Fig. (2). The domain of the modular group (pink, continuous lines) and the corresponding folding (yellow dashed lines) for an oriented geodesics
(gray, continuous line) and for the reflection(s) of the corresponding orbit (gray, dotted line) within the domain.
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Fig. (3). The tiling of the Poincar´e plane according to the (tiling) PGL(2,C) group on the desymmetrized domain (smallest tiles) and the tiling
according  to  the  modular  group  (bigger/overlapping  tiles)  resulting  from  the  composition  of  (generalized)  translation  Ta  and  reflections  on
circumferences. The tiling according to a modular subgroup of SL(2,C) or SL(2,Z) on the Γ0 domain results of tiling iterations consisting of two tiles
here delimited by dashed lines.
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