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Abstract: It is true that many times relationships in the real world do not fall into a linear pattern. Nevertheless, even if 

the true causal structure of the phenomenon under study is not linear, it does not mean that the causal relationship cannot 

be detected using linear modeling. With the advanced use of non-linear modeling, especially in the field of business data 

mining, researchers feel the tension of choosing between linear and nonlinear models. It is the conviction of the author 

that the appropriateness of non-linear modeling and linear modeling depends on specific research purposes (prediction vs. 

explanation). While nonlinear models are suitable to illustrate a physical or mechanical process under a natural interpreta-

tion, researchers occasionally have to go beyond the natural interpretation to look for theoretical explanations of the rela-

tionships between attributes. Judging the efficacy of statistical modeling, which is essentially a scientific method, should 

be based upon the criteria developed throughout the history of science, rather than through observations from the business 

market and political events within one or two decades. Examples from the history of science, including Dalton’s atomic 

model, Galileo’s law of uniform acceleration, and the Titius-Bode Law, will be cited to illustrate the usefulness of linear 

models in terms of providing explanation with theoretical depth. It is not the case that explanatory models are still useful 

in spite of the fact that they are wrong to some degree. On the contrary, they are useful because they are wrong.  
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The financial tsunami that exploded near the end of 2008 
caught most people by surprise. Before this turmoil, quite a 
few authors had questioned the validity of conventional 
business research and statistical modeling in general, for 
these over-simplified models failed to take many unpredict-
able variables into account. For example, Taleb [1, 2] coined 
the phrase “black swans” to illustrate how outliers and im-
probable events throw all linear models off-track, whereas 
Smick [3] introduced the phrase “the world is curved” to 
convey the message that the fluctuation of world events and 
their consequences are highly unpredictable. Nonetheless, it 
is important to point out that judging the efficacy of statisti-
cal modeling, which is essentially a scientific method, should 
be based upon the criteria developed throughout the history 
of science, rather than through the observations from the 
business market and political events within one or two dec-
ades. Thus, this article aims to put simple linear modeling in 
a historical perspective, and defend its value. 

Indeed, the debate regarding simplicity and linearity 
emerged much earlier than the current financial crisis. The 
idea of simplicity was popularized by Zellner’s phrase “Keep 
It Simple, Stupid” (KISS). Later, Zellner [4] refined the 
phrase to “Keep It Sophisticatedly Simple” and further ar-
gued for KISS by citing its ubiquity in business domains. For 
example, the slogan of the Honda Motor Company is, “We 
make it simple.” The Dutch Schipol airport in its advertising 
claims that, “It excels because it is simple and convenient”. 
The counter-example cited by Zellner is the “Vector 
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Autogressive Regression” (VAR) developed by the Federal 
Reserve Bank of Minneapolis. Due to its poor performance, 
Zellner mocked it as “Very Awful Regression.”  

However, with advances in computer technology and 

mathematics, researchers feel the tension of choosing con-

ventional linear modeling and nonlinear modeling. In recent 

years use of these methods has reached a crescendo where 

many non-linear data mining techniques have been proven to 

be effective tools for unveiling hidden data patterns. The 

following are some examples of popular nonlinear or/and 
non-parametric models: 

• Polynomial regression [5] 

• Wavelet smoothing [6-8] 

• Kernel regression and Kernel discriminant analysis [9 
-12] 

• Local polynomial smoothing [13, 14] 

• Smoothing splines [15]  

• Tree-based models [16-18] 

• Multivariate adaptive regression splines (MARS) [19, 
20]  

• Neural networks [21, 22] 

• Projection pursuit [23] 

• Various Bayesian methods [24]  

Some critics of linear modeling concentrate on the prob-
lem of unrealistic assumptions. Freedman [25] lists many 
popular responses to doubts about the linearity assumption 
and offers criticism against linear modeling: 
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In the social sciences, however, statistical assumptions 
are rarely made explicit, let alone validated. Questions pro-
voke reactions that cover the gamut from indignation to ob-
scurantism. We know all that. Nothing is perfect. Linearity 
has to be a good first approximation. The assumptions are 
reasonable. The assumptions do not matter. The assumptions 
are conservative. You cannot prove the assumptions are 
wrong. The bias will cancel. We can model the bias. We are 
only doing what everybody else does. Now we use more so-
phisticated techniques. What would you do? The decision–
maker has to be better off with us than without us. We all 
have mental models; not using a model is still a model 
(p.103). (Italics appear in the original text). 

In the Fisherian research tradition, parameter estimators 
are said to be consistent in the sense that as the sample size 
increases, the difference between the estimated and the true 
parameters should be smaller and smaller, and eventually the 
estimator is identical to the true parameter. But if the true 
relationships among variables are non-linear, how could the 
estimated parameters based on a linear model have any hope 
of resembling the true parameters [26]?  

PREDICTIVE AND EXPLANATORY MODELING 

This short article is not a bold attempt to discuss all pros 
and cons of linear and nonlinear models. Rather, this modest 
proposal is to state the point that the appropriateness of non-
linear modeling and linear modeling depends on specific 
research purposes (e.g. prediction vs. explanation). Shmueli 
[27], and Shmueli and Koppius [28] observed that many re-
searchers are confused by the distinction between explana-
tory and predictive models. The purpose of explanatory 
modeling is, as the name implies, to provide an explanation, 
usually a causal one, of how and why certain empirical phe-
nomena occur. In contrast, predictive modeling aims to pre-
dict new observations with high accuracy even if a sound 
theory is absent. In the terminology of philosophy of science, 
predictive modeling is concerned with regularity expressed 
by empirical observation and thus empirical adequacy is the 
primary criterion of judging the efficacy of a predictive 
model. On the other hand, an explanatory model intends to 
study the relationships between properties that cannot be 
directly observed, and thus the relationships must be estab-
lished by theorization. Borrowing from the terminology of 
psychometrics, predictive modeling can be conceptualized as 
a tool for fitting the model into the data in order to illustrate 
the process of a phenomenon and to forecast the future 
events, whereas explanatory modeling is a tool for fitting the 
data into the model.     

Nonlinear models, such as data mining techniques, are 
suitable for identifying patterns and predicting the future 
occurrences. Nonetheless, it is important to point out that 
pattern recognition has a strong exploratory characteristic. 
The so-called “patterns” revealed by non-linear data mining 
may not represent the true underlying structure of the phe-
nomenon, as illustrated in the problems of induction [29- 
31]. Based on the notions that humans are designed by 
Mother Nature to be fooled and that history is driven by the 
highly improbable events, Taleb [cf. 2, 3] explicitly down-
played the usefulness of virtually all statistical models. 
However, he did not clearly distinguish predictive modeling 
from explanatory modeling, and thus at most his criticisms 

apply to one model type only, predictive models. Another 
type of modeling, namely, explanatory, is still very useful. 
The statement “all models are wrong [but] some are useful” 
[32] has been repeatedly cited by numerous modelers to 
counteract criticisms against “unrealistic” modeling made by 
Freedman, Taleb, and many other skeptics. Actually, it is not 
the case that explanatory models are still useful in spite of 
the fact that they are wrong to some degree. In contrast, they 
are useful because they are wrong. Linear modeling, which 
is inherently wrong for its high degree of noise suppression 
and pattern simplification, is instrumental in uncovering 
theoretical insights. In other words, explanatory modeling is 
abstract and decontextualized and thus it must be wrong in a 
concrete context.  

It is crucial to clarify that linear modeling should not be 
equated with explanatory modeling; by the same token, non-
linear modeling is by no means synonymous with predictive 
modeling. Linear models can be used for prediction, of 
course, and nonlinear models can also yield insightful expla-
nation. Rueger and Sharp [33] argued that nonlinear dynam-
ics in physics is capable of fulfilling empirical adequacy in 
terms of data-model fit, yet still providing theoreticians with 
ample explanatory power. Rather, the main point here is 
about the suitability of linear modeling for explanation. In 
the following section, examples from the history of science 
will be cited to illustrate the usefulness of linear models in 
terms of theory construction. To provide a balanced view, 
several counter-arguments will be discussed. 

EXAMPLES IN THE HISTORY OF SCIENCE 

Today it does not take a well-trained scientist to learn 
that atomic weight is calculated using linear approximation. 
The atomic number of an element is determined by the num-
ber of protons the element has, and the atomic weight de-
pends on the number of neutrons and protons together. Ac-
cording to Aston’s discovery of isotopes, the number of pro-
tons and that of neutrons are almost equal in each element. 
Thus, we know that the atomic weight is approximately line-
arly dependent on the atomic number.  However, what is 
common sense today was a puzzle in the early 19th century. 
At that time there was no certain procedure for determining 
atomic weights. Dalton, the advocate of atomism, knew 
about the weight ratios in which different chemical sub-
stances combined with each other, but he had little informa-
tion about the molecular formulas of the compounds or the 
atomic weights of the elements. Determination of one re-
quired knowledge of the other. In spite of this “catch-22,” 
Dalton moved ahead with the assumption that elements 
combined with each other in the simplest possible atomic 
configurations. Although this approach led him to some in-
correct conclusions, such as his hypothesis that water was 
HO rather than H2O, at least a simple model allowed him to 
get off the ground and eventually learned the fundamental 
structure of the physical world [34].  

The same pattern could be observed in other great dis-
coveries in the history of science. Galileo noticed that the 
frequency with which a pendulum goes back and forth does 
not depend on how far the pendulum swings. This is because 
as long as the magnitude of the oscillation is small enough, 
the pendulum is a linear system in the sense that the rates of 
change of its displacement and momentum are proportional 
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to its momentum and its displacement [35]. Similarly, Gali-
leo’s law of uniform acceleration is considered a simple lin-
ear equation because air resistance is considered too negligi-
ble to be put into the equation of describing the movement of 
bodies. It is true that Galileo’s linear approximation failed to 
support the design and manufacture of parachutes, in which a 
parameter must be added into the equation for representing 
the air resistance on the body [36]. Nevertheless, without the 
simple and linear model of acceleration suggested by Gali-
leo, it is doubtful whether the complex model for designing 
parachutes could have been developed at all. 

The discovery of the Titius-Bode Law, a linear model 
that predicts and explains the spacing of the planets in the 
Solar System, is another example. The pattern was first 
pointed out by Johann Titius in 1766 and was formulated as 
a linear model by J.E. Bode in 1778. As this pattern is only a 
linear approximation, it does not hold for the Neptune and 
Pluto. More importantly, it had no clear theoretical explana-
tion. Nevertheless, later it was found that the suggested pat-
tern agreed with the orbit of the newly discovered planet, 
Uranus. Moreover, it found a missing planet between Mars 
and Jupiter, and shortly thereafter, the asteroids were found 
in very similar orbits [cf. 36]. Although Pluto was demoted 
to be a dwarf plant in 2006, its position is unaffected and 
thus the linear approximation of the solar system model is 
still valid.  

The ideal gas law and the Hooke’s law were also postu-
lated as linear approximations. In the ideal gas law, gas will 
break down if the pressure is too high or the temperature is 
too low, whereas in Hooke’s law gas will also break down if 
the displacements are too large [37]. Nevertheless, the non-
linear structure of these natural phenomena did not stop sci-
entists from producing a usable model. In the ideal gas law 
there are several assumptions aside from linearity. Specifi-
cally, the gas law tells us that the temperature of a gas is a 
function of pressure and volume. This causal relationship 
can be explained by Newton’s laws of motion based upon 
the assumptions that particles are solid bodies and that the 
gravitational force is the only force that is taken into ac-
count. However, atoms are only approximately perfectly 
hard bodies and the gravitational force is just one of many 
forces [38]. The significant point in this example is that sci-
entific inquiry could still proceed with false assumptions. 

Consider a more recent example: Linearity in classical 
physics is never exact and thus Weinberg [cf. 35] has a 
strong reason to suspect that in quantum mechanics the wave 
function may not be exactly linear after all. Although he 
came up with a slightly non-linear model to explain quantum 
mechanics that seemed to promise better accuracy, he admits 
that the foundation of building a better non-linear model is 
the linear precursor.  In brief, linear approximation has been 
used successfully to advance scientific inquiry.  

There is a common thread in the preceding examples 
from the history of science: Researchers have to make bold 
assumptions, and live with uncertainty and inaccuracy in 
order to develop a theoretical, causal explanation of the phe-
nomenon under study. One might invoke the “file-drawer 
problem” to respond to the preceding idea. While great sci-
entific discoveries have resulted from linear approximation, 
those were the successful stories that went into science his-

tory records. Failed attempts due to over-simplified model-
ing simply stayed in the “file drawers” of anonymous scien-
tists, and thus, those failed theories are unknown to us. I do 
not dispute that the file-drawer problem exists; however, 
there is no guarantee that every ambitious endeavor will lead 
to fruitful scientific discovery. It does not matter whether 
only 50%, 30%, or even 10% of incomplete models survive 
in the long run; the scientific community corrects and aug-
ments incomplete theories in subsequent inquiries. To put 
strong demands on initial research, as Freedman did, would 
kill theory generation before a model gets a chance to de-
velop and prove itself. 

NATURAL INTERPRETATION AND THEORETICAL 
EXPLANATION 

One may point out that in recent history nonlinear models 
also produce numerous fruitful research results. But, it is 
noteworthy that many recent examples of nonlinear models 
are mechanistic in the sense that there is a natural physical 
interpretation of the non-linear pattern [39, 40]. By “natural” 
it means that the interpretation can be taken at the face value 
or at the observational, empirical level. A typical example is 
the growth of biological entities over time. One may argue 
that certain nonlinear models, such as neural networks, are 
hard to interpret and the meaning of the conclusion is hardly 
natural or obvious. Interestingly enough, there are many suc-
cessful applications of neural nets in the domains that in-
volve mechanical or physical processes. Examples of appli-
cations of neural nets include signal processing [41], auto-
mation in manufacturing [42-44], navigation, speech recog-
nition, and object recognition in robotics [45-47]. More pre-
cisely, the process of neural nets, such as use of hidden lay-
ers, makes the results hard to interpret, but the physical or 
mechanical process by itself can be intuitively conceptual-
ized. Consider another non-linear method--the Fourier series 
approach. Examples of its applications are modeling hourly 
energy use in commercial buildings [48] and biological 
rhythms [49]. Again, these subjects do not urge researchers 
to go beyond a natural interpretation.  

However, whether the underlying relationship is physical 
should not be the criterion for determining the appropriate-
ness of linear or non-linear modeling. It is a well-known fact 
that stress and performance forms a curvilinear relationship. 
It is absurd to claim that because this is a psychological, not 
physical process, non-linear modeling is treated as being 
improper to explain this phenomenon. The main point here is 
about whether the researcher aims to draw a causal explana-
tion, no matter if it is physical or psychological, from the 
data.  

As a matter of fact, many phenomena are not embedded 
with a natural interpretation. A sociological process, which 
involves many variables and human agents, is an obvious 
example. No doubt the complexity of the financial market 
makes it qualified as a sociological process. Using neural 
nets, some financial forecasters correctly predicted the direc-
tion of the market change for the next day with a very small 
error rate and made wise decisions about investments on 
mortgages [50, 51]. However, unlike basic or theoretical 
research, these predictions do not shed light on the causal 
mechanism of market value. On the other hand, psychologi-
cal research and many other types of research have a differ-
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ent goal. In the following section let’s consider several ar-
guments against linear modeling. 

ARGUMENTS AGAINST SIMPLICITY 

One of the popular arguments in favor of linear models is 
that they are too simple to be true. But, how simple is sim-
ple? What is the meaning of simplicity? Simplicity is usually 
defined in terms of the numbers of parameters within a given 
representational system. However, simplicity in a different 
conceptual sense is much more difficult to define. Zellner 
[52] pointed out that a quantitative or a parametric definition 
of simplicity can be controversial because parametric sim-
plicity implies a formal (mathematical) structure. But some 
people may regard mathematics as quite complex, and thus, 
it violates another meaning of simplicity: Communicability. 
While one kind of simplicity/complexity is parametric, our 
overall judgment about models may be influenced by other 
ways of being simple/complex, too. It is appropriate, though, 
to take parametric simplicity into account. Weinberg [cf. 35] 
equates simplicity with the simplicity of ideas, rather than 
simplicity measured by counting equations and symbols.  
However, a definition like this can lead to very ambiguous 
results.  

For example, Kepler, who discovered that the orbit of 
earth around the sun is elliptical rather than circular, claimed 
that his conjecture was based on the principle of the econ-
omy of nature. To him, nature is the paradigm of an efficient 
machine designed by an Intelligent Being, and thus, nature 
should be explained by simpler ideas. However, this simplic-
ity of ideas did not result in simplicity of modeling [53]. 
Popper [54] argued that the hypothesis that the orbit of a 
planet is a circle is simpler than the hypothesis that it is an 
ellipse. This leads to another contentious point: Representa-
tion. In 2006, Creath asserted in a personal communication 
that defining a circle in an equation is more complex than 
doing the same for an ellipse because a circle can be defined 
as a special case of an ellipse (circle = ellipse + (radius x = 
radius y)). Let’s go back to the example of linear modeling. 
In Cartesian coordinates, it takes fewer parameters to define 
a line than a curve. However, the opposite is true when 
curves are represented in a polar coordinate system [55]. In a 
polar coordinate system, a curve can be defined by just the 
distance from the center and the angle. Even if a single rep-
resentational system, such as the Cartesian plane, is adopted, 
simplicity is still a contextually-dependent concept. For ex-
ample, when comparing regression models with different 
sets of predictors, model comparison and variable selection 
procedures can be employed to determine whether the in-
crease of R

2
 can justify the increased complexity of the 

model. However, linear models in SEM are not necessarily 
simpler than non–linear models in regression analysis, and 
there is no objective way to tell whether one is simpler than 
another.  

GENERALIZABILITY AND USEFUL INFORMATION 

One might argue that a non-linear model with more terms 
can fit the data better than a linear model. However, this type 
of “good” fit tends to be very sample-dependent and hence 
this model may not be transferable to other samples. While a 
linear function that fits a dataset with a particular coefficient 
may have a different weight in another setting, whether the 

relationship is positive or negative may remain the same in 
the new sample. On the contrary, it is very likely that a curve 
in a scatter plot that passes through as many points as possi-
ble does not hold the same quadratic pattern in another data 
set. It is important to note that a non-linear model does not 
only indicate whether the relationship between variables is 
positive or negative; it also indicates how many “turns” are 
in the functional curve. In another sample, the data points 
would not fall along the “turns” of that curve. Jeffreys [56] 
explicitly points out that including too many terms in a rela-
tion can improve fit but “the conclusion is that including too 
many terms will lose accuracy in prediction instead of gain-
ing it” (p. 46). The aim of model selection should also in-
clude the ability of a model to generalize to predictions in a 
different domain [57]. In a similar vein, Sober [58] asserted 
that more adjustable parameters increase its risk of over-
fitting the data. In contrast, simpler hypotheses have higher 
likelihoods. 

One may use the Item Characteristic Curve (ICC) in psy-
chometrics to argue for the usefulness of a non-linear model 
(the red curve in Fig. 1). ICC indicates the relationship be-
tween the probability of answering an item correctly and the 
student skill level (the Y-axis is the probability of answering 
an item correctly and the X-axis is the skill level). For exam-
ple, if the skill level of a student is +5, then the probability of 
passing the item is near 100%. If the skill level is 0, the 
probability is .5. But the probability drops to zero if the stu-
dent is very unskilled (-5). It is important to point out that 
the relationship between the probability and the skill level is 
not proportional; rather, the slope of the ICC is less steep as 
the skill level increases from +2 to +5. The same pattern is 
observed with the range of -2 to -5, but the curve takes a 
sharp turn from -2 to +2. This non-linear pattern is called 
“ogive.” At first glance, this seems to be a sound argument 
against linearity. 

However, when the item information function (IIF, indi-
cated by the blue curve) is superimposed on the graph, it is 
not clear that this is the case. The IIF indicates how much 
precise information about the student ability the test devel-
oper can obtain if the item is included in the test. The curve 
height indicates the amount of precise information at differ-
ent skill levels. In this example, most information concen-
trates on the skill levels ranging from -1 to +1 (the green 
shade). Within the green region, the ICC is almost linear. In 
other words, a linear model in this case can yield most of the 
useful information. As mentioned before, proper use of non-
linear and linear models depends on the research question. 
Theoretically speaking, if the skill level (theta estimation) of 
a student is +5, the probability of answering an item cor-
rectly is .99. However, in the empirical data there might not 
be any students who achieve such a high skill level, and thus, 
interpretation of the item attribute should be restricted within 
the linear range of the ICC.  Nonetheless, if one is interested 
in counterfactual reasoning (what-if), it will be helpful to go 
beyond the linear range to the non-linear model. In short, 
even when the relationships are nonlinear, the researchers are 
often only interested in a limited range of the phenomenon, 
which can be sufficiently approximated by a linear model. 

The range for proper interpretation is context-specific. 
Suppose that Y=a+bX+e denotes an invariant relationship 
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within a reasonable range of values of X and Y. However, if 
the values of any linear model are extended to the extreme, 
the model will certainly turn into a non-linear one. For ex-
ample, if I water my plant with 1–3 liters of water, my plant 
would grow. If I pour more water, the plant will grow faster 
to some point. But if I water the same plant with 1,000 liters 
of water and the plant dies, it does not negate the linear rela-
tionship between watering and plant growth [59]. Like the 
preceding IRT model, the most useful information can be 
obtained within the linear region. Similar examples can be 
found in economics. Interventions that change the money 
supply may change the price level within some range of cir-
cumstances, but not in others [60].   

FORCED LINEARITY IN FACTOR MODELING 

The problem of Likert scaling is a less common, yet 
powerful argument against linearity. A Likert scale is com-
monly used for constructing answer options in psychological 
and sociological research. There is some controversy consid-
ering whether the Likert-scaled data can be properly used in 
Generalized Linear Model (GLM), such as ANOVA, be-
cause Likert-scaled data are essentially ordinal measures. 
Unlike an interval scale, in an ordinal scale the assumption 
of equal spacing is highly questionable. To be specific, the 
distance between “5” and “4” may not be equal to that be-
tween “4” and “3,” and so on.  If the Likert Scale is mapped 
to a “true” interval scale (if there is one), the curve will be 
non-linear. For example, the “true” score of a particular con-
struct between 1 and 100 would be assigned a Likert score of 
1, 101-500 would be assigned to 2, and so on. It is argued 
that the non-linear nature of the data may lead the measures 
to be unsuitable for a linear model. Some critics go so far as 
to argue that as ordinal variables do not have origins or units 
of measurement, the reporting of their means, variances and 
covariances is meaningless [61, 62].  

I agree that any data analysis on a single Likert-scaled 
item should avoid interval-based tools; rather, ordinal logis-
tic regression is no doubt a better option. Interestingly 
enough, when many Likert-scaled items are loaded into a 
latent construct to formulate a factor structure, researchers 
seem to be more forgiving to the non-linear and non-additive 
nature of ranked order variables. Once a researcher explained 
his rationale to me by saying, “When ten five-point Likert 
scale items are summed together as a composite score, the 
range of the scores will expand from 0-5 to 0-50. It adds 
more variability to the data and thus parametric procedures 
such as Analysis of Variance can be appropriately em-
ployed.” Actually, this approach does not address the issue 
of non-linearity at all. My explanation is very straightfor-
ward. Researchers are simply forcing non-linear measures 
into linear modeling for convenience. After all, factor analy-
sis is a technique of data reduction in an attempt to make 
modeling manageable. If one is critical of analyzing a single 
Likert scaled variable with parametric procedures, should 
one also reject use of parametric tests for all latent constructs 
yielded from a factor model consisting of Likert-scaled 
items? But this is not what is happening in psychological 
science. Examples of mental constructs using Likert scaling 
include Attitudes Toward the Internet [63], Attributional 
Style Questionnaire [64], Curiosity and Exploration Inven-
tory [65], Online Technologies Self-Efficacy Survey [66], 
Subjective Happiness Scale [67], and White Racial Identity 
Scale [68]. In brief, most factor models of subjective cogni-
tive constructs are measured by Likert scales that do not con-
form to linearity, yet psychologists are producing fruitful 
results. 

CONCLUSION 

It is not the intention of the author to downplay the merits 
of predictive modeling or nonlinear modeling. As a matter of 

 

Fig. (1). ICC and IIF. 
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fact, data mining methods, which target on making predic-
tions based upon nonlinear models, are helpful in explora-
tory data analysis and hypothesis generation [69]. Although 
the assumption of linear models is, in some sense, simpler 
than that of its nonlinear counterpart, on some occasions 
nonlinear modeling yields simpler conclusions than linear 
models. For example, in profiling college students who take 
online classes, Yu, et al. [70] employed nonlinear data min-
ing techniques and found that only one or two variables are 
relevant to identify the attributes of the target audience. In 
addition, some subject matters in biology and engineering 
can lead to an effortless, natural interpretation, while in some 
situations, such as business applications, there is simply no 
need to substantiate the results with the merit of theoretical 
sophistication. In this case, nonlinear modeling is a natural 
fit to this type of research. 

On the other hand, a research agenda that requires expla-
nation may demand the researcher to sacrifice accuracy and 
to make so-called false assumptions. Glymour, et al. [71] 
defend the adequacy of linearity by arguing that sciences 
have always proceeded by approximation and idealization. A 
linear approximation may not literally be true, however. The 
principal justification for use of a linear model is that it fits 
the correlation data very well and no alternative linear model 
is readily available which provides a comparably good ex-
planation of the correlations. Many times relationships in the 
real world do not fall into a linear pattern. But even if the 
true causal structure of the phenomenon under study is not 
linear, it does not mean that the causal relationship cannot be 
detected using linear modeling. Natural sciences use a vari-
ety of techniques to show that the postulated causes are re-
sponsible for the observed effect in spite of using false as-
sumptions to obtain them. Given that there are many success 
stories throughout the history of science by employing linear 
modeling and the criterion of simplicity in theory develop-
ment, Glymour and colleagues’ and Kincaid’s notions might 
be right. On the other hand, possible counter-examples, such 
as Item Characteristic Curves and Likert-scaled measures, do 
not sufficiently negate the value of assuming linearity in 
modeling. In short, whether linear or non-linear modeling is 
more useful should be tied to specific research objectives. 
For discovering causal explanations, researchers should not 
be afraid of modeling based upon simplicity, linearity, and 
even false assumptions. Nonetheless, a causal explanation 
does not necessarily lead to a representation of the objective 
reality. Rather, for some philosophers of science a good ex-
planatory model could be empirically adequate rather than 
literally true [72].  

Further, it is important to emphasize that the above sug-
gestion is a general guideline rather than an infallible, uni-
versal rule. There are always some exceptions. In other 
words, on some occasions a simple and linear model may not 
work well for explanatory purposes. For example, in a study 
aiming to explain why minority students have a low reten-
tion rate, the linear regression model yielded a so-called ex-
planation by identifying low college GPA as the most crucial 
factor [73]. But saying poor performance, as manifested by 
low GPA, leads to attrition, is tautological. Further, while a 
model with false assumptions could lead to sophisticated 
theoretical explanations, it could also result in accurate pre-
dictions. The ancient Ptolemaic astronomical model, also 

known as the geocentric model, postulates that the earth is 
the center of the universe, as well as many complicated no-
tions, such as using “circles on circles” to predict retrograde 
planetary motions. Nonetheless, it turns out that this model 
still generated good predictions for the movement of heav-
enly bodies [74, 75]. Thus, researchers may need to make a 
case-by-case decision and be ready to defend the rationale.  

In summary, as mentioned in the beginning, the useful-
ness of statistical modeling should be based upon the long 
term development throughout the history of science instead 
of the short term observation in the current market. Thus, the 
author sides with Zellner’s [cf. 4] assertion that researchers 
in econometrics and statistics should follow the advice of 
natural scientists to keep analyses and models sophisticat-
edly simple. 
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