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Abstract: A new method is proposed for testing the mixed Poisson model which employs the well known identity 

between the probability generating function of the mixed Poisson distribution and the Laplace transform of the mixing 

distribution. The method utilizes a weighted L2-type statistic which may be easily calculated and the resulting test is 

consistent against general alternatives. A limit statistic is shown to be related to earlier methods which employ moment--

based contrasts. Some simulation results are also shown.  
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1. INTRODUCTION 

The Poisson distribution typically constitutes a 
benchmark model in most situations involving counts. 
However a feature which is frequently encountered when 
faced with such data is the presence of overdispersion (or 
underdispersion) or some form of clustering, often found in 
biological and financial data. Hence there is a need to 
consider more general count models than the Poisson, which 
can accommodate such features and develop statistical 
techniques for them. The family of mixed Poisson (MP) 
distributions, whereby the conditional Poisson variable is 
coupled with a density of positive support for the (stochastic) 
Poisson parameter, is one approach towards generalizing the 
Poisson model. Members of this class are the Poisson 
distribution, the negative binomial distribution, as well as 
other less well--known models. Many researchers have 
considered MP laws; see for instance, Karlis and Xekalaki 
[1], Green and Plotkin [2], Fang [3, 4], Carriere [5], Willmot 
[6, 7], and Nye and Hofflander [8]. 

The MP class of laws is conveniently defined via the 
corresponding probability function   

f (x) = P(X = x) =
0
e

x

x!
g( )d , x = 0,1,...,        (1) 

where g( )  is called the mixing distribution. To fix notation, 

let PX (t) = E(t
X )  denote the probability generating function 

(PGF) of an arbitrary count variable X . Also write 

Lg (t) = E[e
(1 t ) ]  for the (modified) Laplace transform of 

g( ) . It can be easily shown that if X  is MP with mixing 

distribution g( ) , then   

PX Lg .             (2) 
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In fact, it is well known that for MP models, the 

knowledge of g( )  is equivalent to the knowledge of f ( ) , 

and that X  is MP if and only if the PGF of X  is equal to the 

LT of a random variable with positive support. 

In what follows, we employ (2) to test the null hypothesis 

H 0  that the law of X  is MP for some specified distribution 

g( ) , based on independent copies X1,X2 ,...,Xn , of X . In 

our approach we replace in (2), the PGF by its empirical 

counterpart Pn (t) = n
1

j=1

n
t
X j . Then the test statistics may 

be written as   

Tn, = n 0

1
Dn
2 (t)t dt, > 0,           (3) 

where Dn (t) := D(Pn (t),
ˆ
n; t)  is some distance measure 

incorporating Pn (t) , and ˆn  denotes a consistent estimator 

of the parameter  (possibly vector--valued) which is 

involved in the mixing distribution g( )  (under the null 

hypothesis H 0 ). Note that the test statistic in equation (3) is 

formulated as a weighted L2--type statistic, and in this 

connection the function Dn (t)  plays the role of an empirical 

contrast which should be identically, i.e. for all 0 < t <1 , 

equal to zero under H 0 , as n . For more information on 

these type of statistics the reader is referred to Meintanis and 

Swanepoel [9]. 

2. TEST STATISTICS 

Typical examples for the mixing distribution g( )  of  

are the Gamma distribution and the uniform distribution. A 

less well known, but nevertheless interesting, example is 

when stochastic behavior of  is driven by a strictly positive 

stable law. These possibilities are considered below. 

(i) Gamma mixing: Then the density of  is given by 

g( ) = ( ( )) 1 1 exp( / ) , > 0 . Consequently 
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one gets from (1) the well known fact that the distribution of 

X  is negative binomial with probability function  

f (x) =
1

x! ( )

x

( +1) +x ( + x).  

Since the LT of g( )  is given by Lg (t) = [1+ (1 t)]  

with Lg (t) = [1+ (1 t)] ( +1)
, an appropriate distance 

function is   

Dn (t) = [1+ (1 t)]Pn (t) Pn (t).          (4) 

By straightforward calculation we arrive from (3) at the 
following representation of the test statistic, 

Tn, =
1

n j ,k=1

n

X jXk

(1+ )2 I (Xjk + 2)+ 2I (Xjk + ) (2 2 + 2 )I (Xjk + 1){ }
 

+ 2 2 1

n j ,k=1

n

I(Xjk + ) 2
1

n j ,k=1

n

X j

(1+ )I(Xjk + 1) I(Xjk + ){ },
 

where Xjk = Xj + Xk  and I(x) =
0

1
t xdt = (1+ x) 1 . 

(ii) Uniform mixing: Then the density of  is given by 
g( ) =1 / , 0 < < . Consequently one gets from (1) the 
probability function of X  as  

f (x) =
1
1

(1+ x, )

x!
,  

where (x1, x2 ) = x2

t
x1 1e tdt  is the complimentary 

incomplete Gamma function. Since the LT of g( )  is given 

by Lg (t) =
1[1 e (1 t ) ](1 t) 1 , an appropriate distance 

function is  

Dn (t) = (1 t)Pn (t)+ e
(1 t ) 1.  

By straightforward calculation we arrive from (3) at the 
following representation of the test statistic, 

Tn, =
2 1

n j ,k=1

n

I(Xjk + )+ I(Xjk + + 2) 2I(Xjk + +1){ }  

+2 e
j ,k=1

n

J( ,Xj + ) J( ,Xj + +1){ }  

2
j=1

n

I(Xj + ) I(Xj + +1){ }  

+n e2 J(2 , ) 2e J( , )  

where J(x1, x2 ) = x1
1 x2 [ (1+ x2 ) (1+ x2 , x1 )] . 

(iii) Stable mixing: Strictly positive stable laws are 

conveniently defined via the LT Lg (t) = e
c (1 t ) ; see for 

instance Meintanis [10]. Scale is denoted by c > 0 , while 

0 < <1 , often termed the characteristic exponent, denotes 

a shape parameter regulating the tail behavior of the 

underlying density. For =1/ 2 , the density of  is given 

by g( ) = (1 / 2) c( 3 ) 1e c/4 , > 0 . Consequently one 

gets from (1) the probability function of X  as  

f (x) =
1

x!
2
1
2

x
c
1
2
(x 1)

K
1

2
x, c ,  

where K( , )  denotes the modified Bessel function of the 

second kind. When 1 / 2 , closed--form expression for 

g( )  (and of course for f (x) ) are not available. Since the 

LT of g( )  satisfies Lg (t) = c (1 t) 1Lg (t) , an 

appropriate distance function is  

Dn (t) = Pn (t) c (1 t) 1Pn (t).  

By straightforward calculation we arrive from (3) at the 
following representation of the test statistic,  

Tn, =
1

n j ,k=1

n

X jXk I (Xjk + 2)+ 2c2

j ,k=1

n

B(Xjk + +1,2 1)  

2

n
c

j ,k=1

n

X jB(Xjk + , ),  

where B(x1, x2 ) = 0

1
t
x1 1(1 t)

x2 1
dt  is the Beta function. 

3. CONSISTENCY 

It is transparent from the expressions of Tn,  above that 

in order to actually perform the test, estimates of the 

parameters involved are required. Write T̂n,  for the test 

statistic resulting from Tn,  when parameter are replaced by 

corresponding estimates. Because (2) implies that the 

moments of X  can be analytically obtained from the 

moments of , a standard and straightforward choice is to 

employ classical moment estimation. As moment estimation 

is non--parametric we will assume that the estimator ˆn  

attains a limit value not only under the null hypothesis H 0 , 

but also under alternatives, that is ˆn . In fact we 

assume that ˆn  (taken to be univariate for simplicity) is a 

regular estimator of  in the sense that there is an expansion 

of the form  

ˆ
n = + (x; )dFn (x)+ n ,  

where (i) Fn  denotes the empirical distribution function of 

Xj , j =1,...,n , (ii) n 0 , almost surely, and (iii)  is a 

measurable function satisfying E[ (X; )] = 0 , and 

E[ 2 (X; )] < . Under this assumption and since 

Pn (t) = t xdFn (x) PX (t) , almost surely and uniformly in t  
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(see Rémillard and Theodorescu, [11]), the distance function 

Dn (t) := D(Pn (t),
ˆ
n; t)  may be written as   

Dn (t) = d(x, ; t)dFn (x)+ un (t),           (5) 

for some measurable function d(x, ; t)  which satisfies 

E[d(X, ; t)] = 0 , identically under H 0 , where 

un
2 (t)t dt 0 , almost surely. We now consider the 

asymptotic behavior of T̂n,  in a nonparametric, setting. The 

following result implies the consistency of a goodness-of-fit 

test based on T̂n,  against general alternatives.  

Theorem 3.1 Under the standing assumptions,   

n
liminf

T̂n,
n 0

E d(X, ; t)[ ]( )
2
t dt          (6) 

almost surely.  

Proof. From (5) we have that as n , 
Dn (t) E[d(X, ; t)] , almost surely. Then by Fatou's 
lemma,  

n
liminf

T̂n,
n

:=
0

1
E d(X, ; t)[ ]( )

2
t dt  

almost surely, which finishes the proof of the theorem.  

Assume that E[d(X, ; t)] = 0 , holds identically only 

under H 0 . Then  is positive if H 0  is not true. 

Consequently, a level -test that rejects H 0  for large 

values of T̂n,  is consistent against each alternative satisfying 

the conditions of Theorem 3.1. 

4. LIMIT STATISTICS 

A user-specified choice is that of  in the weight 

function t . In fact, there is an underlying connection 

between the choice of  in the test statistic (3) and moment 

estimation. By way of example we will consider this 

connection in the case of Gamma mixing. Make the 

substitution t = e u
 and use (4) in (3) to write the test 

statistic as   

Tn, = 0
(u)e ( +1)udu,            (7) 

where (u) = nDn
2 (e u ) , and  

Dn (e
u ) = [1+ (1 e u )]

1

n j=1

n

X je
u(X j 1) 1

n j=1

n

e
uX j .  

Simple Taylor approximation of the exponential 
functions followed by some algebra yields,   

Dn (e
u ; , ) = (Xn )+ Xn + Xn + Xn X (2)( )

u+Mn ( , )u2 ,
        (8) 

 u 0 , where Xn = n
1

j=1

n
X j , X (2) = n 1

j=1

n
X j
2

, and  

Mn ( , ) :=Mn (X1,...,Xn; , ) =

1

2
X (12)

+ Xn X (2) X (2) ,
 

with X (12) = n 1

j=1

n
X j (Xj 1)2 . 

Let ( ˆ n ,
ˆ
n )  denote the moment estimator of ( , ) . 

Then the first two terms in (8) vanish, giving   

Dn
2 (e u ; ˆ n ,

ˆ
n ) =Mn

2 ( ˆ n ,
ˆ
n )u

4
+ o(u4 ).          (9) 

From (7) and (9) and an Abelian theorem for Laplace 
transforms (see Zayed [12], § 5.11), we conclude that  

lim 5T̂n, = 4!nMn
2 ( ˆ n ,

ˆ
n ).  

Hence when the test is implemented via moment estimation, 
the resulting test statistic (properly scaled) approaches a limit 
value as , this limit value involving a complicated 
moment equation. Moreover since moment estimators are 
typically consistent, and provided that E(X 3 ) < , we have 
by the law of large numbers  

Mn (X1,...,Xn; ˆ n ,
ˆ
n )

P

M (X; , ),  

where  

M (X; , ) =
1

2
E X(X 1)2{ }+ E(X) E(X 2 ) E(X 2 ),  

and it is easy to show after some further computation of 
E(Xm ),m =1,2, 3 , that M (X; , ) 0  under Gamma 
mixing. Thus the limit statistic, incorporating an equation 
involving the first three empirical moments, is asymptotically 
a contrast under Gamma mixing. Consequently our test 
statistics appear as generalizations of moment--type 
procedures such as those employed in [5] and [3]. 

5. SIMULATIONS 

We have run a small simulation study for the test statistic 

in the case of Gamma mixing with moment estimation of the 

parameters. The sample size is n =100  and the number of 

replications was set to 1,000 . Since the finite--sample as 

well as the asymptotic distribution of the test statistic under 

H 0  is, for all practical purposes, intractable, we employ the 

following parametric bootstrap procedure in order to actually 

carry out the test: (i) Conditionally on the observations 

x j , j =1,...,n , compute the estimate ˆ
n  (ii) generate a 

bootstrap sample of size n  from the postulated negative 

binomial distribution with parameter ˆn , (iii) compute the 

estimator ˆn
*

 from the bootstrap sample, and (iv) compute 

the value of the test statistic corresponding to the bootstrap 

sample. If steps (ii)--(iv) are repeated a number of times, say 

B , the bootstrap distribution of the test statistic is 

reproduced, and we obtain the critical value of an --size 

test as the (1 ) 100%  quantile of this distribution. 

Table 1 shows percentage of rejection (rounded to the 
nearest integer) from this bootstrap procedure with bootstrap 
size B = 200 . The alternatives considered are the Poisson 
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distribution with parameter  (left part of the table), and a 
fifty--fifty mixture of a Poisson distribution with parameter 

, and a negative binomial distribution with parameters 
with parameters = =1  (right part of the table). The 
results show that the test has considerable power and at the 
same time it is not so much affected by the value of the 
weight parameter Y. 
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Table 1. Rejection Rate for 1,000 Monte Carlo Samples for n = 100,  = 0.10 

 = 2  3  5  10 2 3 5 10 

 = 0.5 60  60  60  60   92  92   92   92  

 = 1 60  60  60  60   82   81   80   79  

 = 2 60  60  59  59   78   75   74   69  

 


