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Abstract: We study the accuracy of a Bayesian supervised method used to cluster individuals into genetically 

homogeneous groups on the basis of dominant or codominant molecular markers. We provide a formula relating an error 

criterion to the number of loci used and the number of clusters. This formula is exact and holds for arbitrary number of 
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codominant markers studies if the number of markers used in the former is about 1.7 times larger than in the latter.  
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1. BACKGROUND 

 A common problem in population genetics consists in 

assigning an individual to one of K populations on the basis 

of its genotype and information about the distribution of the 

various alleles in the K populations. This question has 

received a considerable attention in the population genetics 

and molecular ecology literature [1-4] as it can provide 

important insight about gene flow patterns and migration 

rates. It is for example widely used in epidemiology to detect 

the origin of a pathogens or of their hosts (see e.g. [5-7] for 

examples) or in conservation biology and population 

management to detect illegal trans-location or poaching [8]. 

See [9] for a review of related methods. 

 In a statistical phrasing, assigning an individual to some 

known clusters is a supervised clustering problem. This 

requires to observe the genotype of the individual to be 

assigned and those of some individuals in the various 

clusters. For diploid organisms (i.e. organisms harbouring 

two copies of each chromosome), certain lab techniques 

allow one to retrieve the exact genotype of each individual. 

In contrast, for some markers it is only possible to say 

whether a certain allele A (referred hereafter as to dominant 

allele) is present or not at a locus. In this case, one can not 

distinguish the heterozygous genotype Aa from the 

homozygous genotype AA for the dominant allele. The 

former type of markers are said to be codominant while the 

latter are said to be dominant. It is clear that the the second 

genotyping method incurs a loss of information. The 

consequence of this loss of information has been studied 

from an empirical point of view [10] but it has never been 

studied on a theoretical basis. The choice to use one type of  
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markers for empirical studies is therefore often motivated 

mostly by practical considerations rather than by an 

objective rationale [11, 12]. The objective of the present 

article is to compare the accuracy achieved with dominant 

and codominant markers when they are used to perform 

supervised clustering and to derive some recommendations 

about the number of markers required to achieve a certain 

accuracy. Dominant markers are essentially bi-allelic in the 

sense that they record the presence of the absence of a 

certain allele. We are not concerned here by the relation 

between informativeness and the level of polymorphisms (cf 

[13, 14] for references on this aspect). We therefore focus on 

bi-allelic dominant and co-dominant markers. Hence our 

study is representative of Amplified Fragment Length 

Polymorphism (AFLP) and Single Nucleotide Polymorphism 

(SNP) markers, which are some of the most employed 

markers in genetics. 

2. INFORMATIVENESS OF DOMINANT AND CO-

DOMINANT MARKERS  

2.1. Cluster Model 

 We will consider here the case of diploid organisms at L 

bi-allelic loci. We denote by z = (zl )l=1,...,L  the genotype of an 

individual. We denote by fkl  the frequency of allele A in 

cluster k at locus l We assume that each cluster is at Hardy-

Weinberg equilibrium (HWE) at each locus. HWE is defined 

as the conditions under which the allele carried at a locus on 

one chromosome is independent of the allele carried at the 

same locus on the homologous chromosome. This situation 

is observed at neutral loci when individuals mate at random 

in a cluster. Denoting by zl  the number of copies of allele A 

carried by an individual, we have: For co-dominant markers, 

this can be expressed as  

p(zl = 2 | f ) = fl
2

            (1) 
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p(zl =1| f ) = 2 fl (1 fl )            (2) 

p(zl = 0 | f ) = (1 fl )
2

           (3) 

 For dominant markers, zl  is equal to 0 or 1 depending on 

whether a copy of allele A  is present in the genotype of the 

individual. Under HWE we have:  

p(zl =1| f ) = fl
2
+ 2 fl (1 fl )           (4) 

p(zl = 0 | f ) = (1 fl )
2

           (5) 

 In addition to HWE, we also assume that the various  

loci are at linkage equilibrium (henceforth HWLE), i.e.  

that the probability of a multilocus genotype is equal to  

the product of probabilities of single-locus genotypes: 

p(z1,...., zL ) = l
p(zl ) . We assume that the individual to be 

classified has origin in one of the K clusters (no admixture). 

2.2. Sampling Model 

 We will measure the accuracy of a classifying rule for a 

given type of markers by the probability to assign correctly 

an individual with unknown origin. We are interested in 

deriving results that are independent (i) on the particular 

origin c of the individual to be classified (ii) on the genotype 

z  of this individual and (iii) on the allele frequencies f in the 

various clusters. We will therefore derive results that are 

conditional on c, z  and f and then compute Bayesian 

averages under suitable prior distributions. The mechanism 

assumed in the sequel is as follows  

1. The individual has origin in one of the K clusters. This 

origin is unknown and all origins are equally likely. We 

therefore assume a uniform prior for c on {1,...,K} .  

2. In each cluster, for each locus the allele frequencies 

follow a Dirichlet(1,1) distribution with independent 

across clusters and loci.  

3. Conditionally on c and f, the probability of the genotype 

of the individual is given by equations (1)-(3) or (4)-(5), 

i.e we assume that the individual has been sampled at 

random among all individuals in his cluster of origin. 

2.3. Accuracy of Assignments Under a Maximum 

Likelihood Principle 

 We consider an individual of unknown origin c with 

known genotype z  with potential origin in K clusters with 

known allele frequencies. Following a maximum likelihood 

principle, it is natural to estimate c  as the cluster label  

for which the probability of observing this particular 

genotype is maximal. Formally: c* = Argmaxk p(z | c = k, fk ) . 

This assignment rule is deterministic, but whether the 

individual is correctly assigned will depend on its genotype 

and on cluster allele frequencies. Randomising these 

quantities and averaging over all possible values, we can 

derive a generic formula for the probability of correct 

assignment pMLA  as  

  

pMLA = maxp(c = , z = | f = )dp( )          (6) 

 See section A in appendix for details. This formula is of 

little practical use and deriving some more explicit 

expression for arbitrary value of K and L seems to be out of 

reach. However, for K = 2  and L =1 , under the 

assumptions that the individual has a priori equally likely 

ancestry in each cluster and that each fk  has a Dirichlet 

distribution with parameter (1,...,1)  (flat). We get 

pc
MLA (K = 2, L =1) = 17 / 24 for codominant markers       (7) 

and  

pd
MLA (K = 2, L =1) = 16 / 24 for dominant markers         (8) 

 Because of the lack of practical usefulness of eq. (6), we 

now define an alternative rule for assignment that is similar 

in spirit to maximum likelihood but also leads to more 

tractable equations. 

2.4. Accuracy of Assignments Under a Stochastic Rule 

 Considering the collection of likelihood values 

p(z | c = k, fk )  for k =1,...,K , following [15], we define a 

stochastic assignment (SA) rule by assigning the individual 

to a group at random with probabilities proportional to 

p(z | c = k, fk ) . In words, an individual with genotype z  is 

randomly assigned to cluster k with a probability 

proportional to the probability to observe this genotype in 

cluster k. The rationale behind this rule is that high values of 

p(z | c = k, fk )  indicate strong evidence of ancestry in group 

k  but do not guarantee against miss-assignments. To derive 

the probability of correct assignment, we first consider that 

the allele frequencies are known, and then account for the 

uncertainty about these frequencies by Bayesian integration. 

The use of a Bayesian framework is motivated by the fact 

that (i) there is a genuine uncertainty on allele frequencies 

which can not be overlooked, and (ii) under some fairly mild 

assumptions, allele frequencies are known to be Dirichlet 

distributed (possibly with a degree of approximation see e.g. 

[16, 17]). Refer to [18] for further discussion of the Bayesian 

paradigm in population genetics. 

 We now give our main results regarding this clustering 

rule. 

 For bi-allelic loci and denoting by pc
SA

 the probability of 

correct assignment using codominant markers we have:  

pc
SA (K ,L) =

1

1+ (K 1)(5 / 8)L
          (9) 

 For bi-allelic loci and denoting by pd
SA

 the probability of 

correct assignment using dominant markers is  

pd
SA (K ,L) =

1

1+ (K 1)(25 / 33)L
        (10) 

3. IMPLICATIONS 

 Our investigations considered bi-allelic loci and are 

therefore representative of AFLP and SNP markers which 
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are some of the most employed markers in genetics. In this 

context, for supervised clustering, our main conclusions are 

that (i) codominant markers are more accurate than dominant 

markers, (ii) the difference of accuracy decreases toward 0 as 

the number of markers L increases, (iii) Ld dominant markers 

can achieve an accuracy even higher than that of Lc 

codominant markers as long as the numbers of loci used 

satisfy 
 
Ld Lc  where 

 
= ln(5 / 8) / ln(25 / 33) 1.69 . 

 The figures reported have to be taken with a grain of salt 

as they may depend on some specific aspects of the models 

considered. For example, the model considered here assumes 

independence of allele frequencies across clusters. This 

assumption is relevant in case of populations displaying low 

migration rates and low amount of shared ancestry. When 

one of these assumptions is violated, an alternative 

parametric model based on the Dirichlet distribution that 

accounts for correlation of allele frequencies across 

population is often used (see [16] and references therein). It 

is expected that the accuracy obtained with both markers 

would be lower under this model. Besides, the present study 

does not account for ascertainment bias [19-22], an aspect 

that might affect the results but is notoriously difficult to 

deal with. However, it is important to note that the 

conditions considered in the present study were the same for 

dominant and codominant markers so that results should not 

be biased toward one type of marker. Our global result about 

the relative informativeness of dominant and co-dominant 

markers contrasts with the common belief that dominant 

markers are expedient one would resort to when co-dominant 

markers are not available (see [12] for discussions).  

 A comparison of dominant and codominant markers for 

unsupervised clustering has been carried out [23]. This study 

based on simulations suggests that the loss of accuracy 

incurred by dominant markers in unsupervised clustering is 

much larger than for supervised clustering. This is 

presumably explained by the fact that in case of HWLE 

clusters, supervised clustering seeks to optimise a criterion 

based on allele frequencies only. This contrasts with 

unsupervised clustering which seeks to optimise a criterion 

based on allele frequencies and HWLE. A similar theoretical 

analysis of unsupervised clustering algorithm similar to the 

present study would be valuable but we anticipate that it 

would present more difficulties. 
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APPENDIX 

A. Supervised Clustering with a Maximum Likelihood 

Principle 

 We consider the setting where the unknown ancestry c of 

an individual with genotype z  is estimated by 

c* =Argmax c p(z | c, f ) . As this estimator is a deterministic 

function of z  we denote it by cz
*
 for clarity in the sequel. 

Consider for now that the allele frequencies f are known to 

be equal to some 
 

. Under this setting, randomness comes 

from the sampling of c and then from the sampling of 

z | (c, f ) . We are concerned with the event defined as  

 
= {the individual is correctly assigned}  

 Applying the total probability formula, we can write  

   

p( | f = ) = p( , c = , z = | f = )         (11) 

 In the sum over , only one term is not equal to 0 , this 

is the term for 
 
= c* , hence 

 

p( | f = ) = p( , c = c*, z = | f = )        (12) 

  

 

= p(c = c*, z = | f = )        (13) 

  

 

= p(c = c* | f = )p(z = | c = c*, f = )       (14) 

  

 

= p(c = c* )p(z = | c = c*, f = )        (15) 

 Assuming that the individual has a priori equally likely 

ancestry in each cluster, i.e. assuming a uniform distribution 

for the class variable c, we get  

 

p( | f = ) = K 1 p(z = | c = c*, f = )        (16) 

 By definition, cz
*
 satisfies 

 
p(z | cz

*, f ) = max p(z | c = , f ) , 

hence  

 

p( | f = ) = K 1 maxp(z = | c = , f = )       (17) 

      = maxp(c = )p(z = | c = , f = )       (18) 

      = maxp(c = , z = | f = )        (19) 

 We seek an expression of the probability of correct 

assignment that does not depend on particular values of 

allele frequencies. This can be obtained by integrating over 

allele frequencies, namely  

 

p( ) = p( | f = )dp( )         (20) 

 

= maxp(c = , z = | f = )dp( )        (21) 

 Note that identity (21) holds for any number of cluster K, 

any number of loci L and any type of markers (dominant vs. 

codominant). 

 We now consider a two-cluster problem in the case 

where the genotype of an individual has been recorded at a 

single bi-allelic locus. We denote by f1  (resp. f2 ) the 

frequency of allele A in cluster 1 (resp. cluster 2). 

A.1. Codominant Markers 

 There are only three genotypes: AA,Aa  and aa . 

Denoting by fk  the frequency of allele A in cluster k and 
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conditionally on fk , these three genotypes occur in cluster 

k  with probabilities fk
2 ,2 fk (1 fk )  and (1 fk )

2
, and 

equation (21) can be simplified as  

 

p( ) = p(c) max f 2 + 2max f (1 f ) +max(1 f )2 dp( )       (22) 

 We need to derive the distribution of max f 2  and of 

 
max f (1 f ) . Assuming a flat Dirichlet distribution for 

fk , elementary computations give: 

p(
k
max fk

2 < x) = x          (23) 

i.e kmax fk
2

 follows a uniform distribution on [0,1]  so that  

E(
k
max fk

2 ) =1 / 2                     (24) 

 Besides, we also get  

p(
k
max fk (1 fk ) < x) = (1 1 4x )2        (25) 

and deriving 

dp

dx
(

k
max fk (1 fk ) < x) = 4

1 1 4x

1 4x
       (26) 

Integrating by part, we get  

 

E(
k
max fk (1 fk )) = 0

1/4
4x
1 1 4x

1 4x
dx = 5 / 24       (27) 

Eventually  

   
p( ) = 17 / 24           (28) 

which proves equation (7). 

A.2. Dominant Markers 

 For a single locus, there are two genotypes A and a. 

Conditionally on fk , these two genotypes are observed in 

cluster k with probabilities 1 fk
2

 and fk
2

. Equation (21) can 

be simplified here as 

 

p( ) = p(c) max f 2 +max(1 f 2 ) dp( )        (29) 

 We now need the density of 
 
1 f 2   

p(
k
max(1 fk

2 ) < x) = (1 1 x )2        (30) 

dp

dx
(

k
max(1 fk

2 ) < x) =
1

1 x
1        (31) 

and  

 

E(
k
max(1 fk

2 )) =
0

1
x

1

1 x
1 dx = 5 / 6       (32) 

 Eventually we get  

 
p( ) = 16 / 24          (33) 

which proves equation (8). 

B. STOCHASTIC ASSIGNMENT RULE 

 The maximum likelihood assignment rule considered 

above is not tractable for arbitrary values of K and L (cf. eq. 

(21)). In particular, a difficulty arises from the maximisation 

involved. We consider here an assignment rule that does not 

involve maximisation. The unknown ancestry c of an 

individual with genotype z  is predicted by a random 

variable c*  with values in {1,...,K}  and such that 

 
p(c* = k | z, f ) p(z | c = k, f ) . As in the previous sections, 

we first consider that the allele frequencies are known, 

however we skip this dependence in the notation at the 

beginning for clarity. We will account for the uncertainty 

about these frequencies later by Bayesian in integration. In 

this setting, the structure of conditional probability 

dependence can be represented by a directed acyclic graph as 

in the on left-hand side of Fig. (1). 

 

Fig. (1). Directed acyclic graph for our stochastic assignment rule 

(left) and for an alternative scheme (right). All downward arrows 

represent the same conditional dependence given by our likelihood 

model. Upward arrow represents the reverse probability 
dependence.   

 

 We are concerned with evaluating the probability of 

event defined as  

 
= {the individual is correctly assigned}  

 i.e. 
 
= {c = c*} . We denote by pa  (resp. pb ) probabilities 

under the two conditional dependence structure of Fig. (1). 

Some elementary computations show that p( )  can be 

expressed in terms of a probability in the model of the right-

hand-side of the DAG in Fig. (1), namely:  

pa (c = c
* ) = pb (c = c | z = z )         (34) 

 The left-hand-side of this expression can be written as  

pb (c = c | z = z ) = pb (c = c , z = z ) / pb (z = z )       (35) 

 It is more convenient to manipulate this expression than 

pb (c = c
* ) . We will to use it to evaluate 

 
pa ( ) . 

B.1. Codominant Markers 

 We assume that the individual has a priori equally likely 

ancestry in each cluster. We slightly change the notation 

denoting by zl  the count of allele A at locus l for the 

individual to be assigned. Then making the dependence on f 

explicit in the notation, we have  
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pb (c = c , z = z | f ) =
z k

pb
2 (c, z | f )        (36) 

   =
z k

1

K l

fk
zl (1 fk )

2 zl (2 zl

1 )
2

 (37) 

where zl

1
 denotes the Kronecker symbol that equals 1 if 

zl =1  and 0 otherwise. 

 Accounting for uncertainty about f  by integration, we 

get  

pb (c = c , z = z ) = f
pb (c = c , z = z | f )df        (38) 

=
f

z k

1

K l

fk
zl (1 fk )

2 zl (2 zl

1 )
2

df        (39) 

 Among the terms enumerated in the sum over z  above, 

let us consider a generic term z  for which the number of loci 

having exactly h  heterozygous genotypes. The term 

corresponding to such a genotype z  in the sum above can be 

written 

k

1

K 2 2
2h

f
f 2 (1 f )2df

h

f
f 4df

L h

       (40) 

 Denoting by CL
h
 the binomial coefficient, there are 

CL
h2L h

 such terms. Equation (39) becomes  

pb (c = c , z = z ) =
h k

CL
h2L h 1

K 2 2
2h

f
f 2 (1 f )2df

h

f
f 4df

L h
  (41) 

 Assuming a flat Dirichlet distribution for the allele 

frequencies, we get  

pb (c = c , z = z ) =
1

K

8

15

L

        (42) 

 We now need to evaluate pb (z = z ) , but since  

pb (z = z | f ) =
z

pb
2 (z | f ) =

z k

pb (k, z | f )
2

,       (43) 

pb (z = z ) = z
z

pb
2 (z | f ) =

z k

pb (k, z | f )
2

      (44) 

=
z
z k

pb (k, z | f )
2
+

k k

pb (k, z | f )pb (k , z | f )       (45) 

= pb (c = c , z = z )+  

h

CL
h2L h

k k

2
1

K 2 2
2h

f
f (1 f )df

2h

f
fdf

4(L h)

      (46) 

=
1

K

8

15

L

+
K 1

K

1

3L
         (47) 

Eventually, 

 

p( ) =
1

1+ (K 1)
5

8

L          (48) 

which proves equation (9). 

B.2. Dominant Markers 

 We still have  

pb (c = c , z = z ) = f
z k

1

K l

fk
zl (1 fk )

2 zl (2 zl

1 )
2

df       (49) 

 For a generic genotype z  in the sum above, let us denote 

by 
 

 the number of loci carrying exactly one copy of the 

recessive allele, then 

pb (c = c , z = z ) =
r k

Cr
l 1

K 2 f
fk
4df

r

f
(1 fk

2 )2df
L r

      (50) 

=
r k

Cr
l 1

K 2

1

5

L
8

3

L r

        (51) 

=
1

K

11

15

L

          (52) 

 Moreover, by arguments similar to those used for 

codominant markers, we get  

pb (z = z ) =
1

K

11

15

L

+
K 1

K

5

9

L

           (53) 

And we get  

pb (z = z ) =
1

K

11

15

L

+
K 1

K

5

9

L

        (54) 

Eventually, 

 

p( ) =
1

1+ (K 1)
25

33

L          (55) 

which proves equation (10).  
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