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Abstract:

Background:

In the statistical analysis of directional data, the von Mises-Fisher distribution plays an important role to model unit vectors. The
estimation  of  the  parameters  of  a  mixture  of  von  Mises-Fisher  distributions  can  be  done  through  the  Estimation-Maximization
algorithm.

Objective:

In this paper we propose a dynamic clusters type algorithm based on the estimation of the parameters of a mixture of von Mises-
Fisher distributions for clustering directions, and we compare this algorithm with the Estimation-Maximization algorithm. We also
define the between-groups and within-groups variability measures to compare the solutions obtained with the algorithms through
these measures.

Results:

The comparison of the clusters obtained with both algorithms is provided for a simulation study based on samples generated from a
mixture of two Fisher distributions and for an illustrative example with spherical data.

Keywords:  Directional  data,  Dynamic  Clusters  algorithm,  EM algorithm,  Hypersphere,  Monte  Carlo  method,  Simulation,  Von
Mises-Fisher distribution.

1. INTRODUCTION

Clustering  data  in  the  unit  sphere  is  an  important  task  in  modern  data  analysis,  for  example,  in  clustering  text
documents when analysing textual data.

One approach to address such issue is the spherical k-means clustering. This technique was proposed by Dhillon and
Modha (2001) [1] and implemented in a R package, called skmeans by Hornik et al. (2012) [2], and it is based on the
cosine similarity to obtain a partition of term weight representation of the documents.

Other works that have appeared in the literature for clustering directional data are based on model-based clustering
methods. For instance, Peel et al. (2001) [3] used the Kent distribution [4] to form groups of fracture data through a
model-based clustering and Dortet-Bernadet and Wicker (2008) [5] supposed a model-based clustering of data that lies
on a unit sphere and applied this clustering method to gene expression profiles. Banerjee et al. (2005) [6] applied a
model-based clustering of directional data to text analysis. These authors considered the estimation of a mixture of von
Mises-Fisher distributions using two variants of the Estimation-Maximization EM algorithm, denoted by soft-movMF
and hard-movMF algorithms. Another variant of the EM algorithm, denoted by stochastic EM was given by Celeux and
Govaert (1992) [7]. Banerjee et al. (2005) [6] showed that the spherical k-means algorithm may be obtained as a variant
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of  the  EM  algorithm for  the  maximum likelihood estimation of  the  mean direction parameters  of  a  mixture  of  von
Mises-Fisher distributions with common concentration parameter κ, using hard-max classification E-step. Figueiredo
and  Gomes  (2015)  [8]  proposed  an  algorithm  based  on  the  dynamic  clusters  algorithm  proposed  by  Diday  and
Schroeder  (1976)  [9]  for  the  estimation  of  the  parameters  of  a  mixture  of  Watson  distributions  defined  on  the
hypersphere  and  compared  it  with  the  EM  algorithm,  proposed  by  Dempster  et  al.  (1977)  [10]  for  problems  of
incomplete data. Similarly in this paper, to estimate the parameters of a mixture of k von Mises-Fisher distributions and
obtain a partition of the sample into clusters, we propose a dynamic clusters type algorithm and we compare it with the
EM algorithm. This proposed algorithm has the advantage of converging quickly to a local optimum, while the EM
algorithm may converge slowly to the local optimum. On the other hand, the EM algorithm provides strongly consistent
estimators with asymptotic normal distribution (Redner and Walker, 1984) [11]. For comparing the solutions obtained
in  both  algorithms,  we  define  between-groups  and  within-groups  variability  measures.  Then,  for  several  generated
samples and a real data set we compare the solutions obtained with these algorithms.

In Section 2, we recall the von Mises-Fisher distribution and the maximum likelihood estimators of the parameters
of this distribution. In Section 3, we describe the EM algorithm and we propose the dynamic clusters type algorithm for
the estimation of a mixture of k von Mises-Fisher distributions. In Section 4, we define the variability measures and we
compare the algorithms through these measures, using simulated data from von Mises-Fisher populations and a real data
set. In Section 5 we present some concluding remarks.

2. VON MISES-FISHER DISTRIBUTION

The von Mises-Fisher distribution is one of the most used distributions in the statistical analysis of directional data.
It is usually denoted by Mp (µ, κ) and has probability density function defined by

(1)

where the normalising constant is given by , and Iv (.) denotes the
modified Bessel function of the first kind and order ν and Sp−1 denotes the unit sphere in . This distribution is called
von Mises distribution for circular data and Fisher distribution for spherical data. The parameter µ is the vector of the
mean direction and κ is the concentration parameter around µ. This distribution is rotationally symmetric about µ.

Let (x1, x2, ...,xn) be a random sample of size n from the von Mises-Fisher distribution, Mp (µ, κ) . Let  be the

resultant length mean of the sample defined  where  is the sample mean vector of (x1,

x2, ...,xn ) defined by . The maximum likelihood estimator of µ is the sample mean direction, i.e.,

and the maximum likelihood estimator of κ is the solution of the equation

where the function Ap (κ) is defined by 
For more details about this distribution, see for instance, Mardia and Jupp (2000), p. 198. [12]

3. ESTIMATION OF A MIXTURE OF K VON MISES-FISHER DISTRIBUTIONS

A mixture of k von Mises-Fisher components C1,...,Ck has probability density function given by

(2)

where  and   is  the  density  function  of  the  Cj  component,  i.e., 

Ap(κ) = c′p(κ)�cp(κ) = Ip�2(κ)�Ip�2−1(κ).

ψ(x|Q) =

k∑
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πjf(x|θj) x ∈ Sp−1,
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the  density  of  Mp  (µj,  κj)  distribution.  The  parameters  πj,  j  =  1,  ..,  k  with  0  <  πj  <  1  and   are  the
proportions of the mixture, Q = (V, θ), with V = (π1,π2,.....πk) and θ = (θ1,....,θk) is the vector of unknown parameters of
the mixture.

For the estimation of the parameters of the mixture, we review the EM algorithm and its variants (soft-movMF,
hard-movMF and stochastic EM) in Subsection 3.1. and we propose a dynamic clusters type algorithm in Subsection
3.2.

3.1. EM Algorithm

The Estimation-Maximization (EM) algorithm is used to obtain the maximum likelihood estimates of the parameters
of the mixture and can be briefly described as follows.

Let (x1, x2, ...,xn) be a random sample from the mixture and let Z = (z1, z2, ....,zn) be the be the missing data, where

the  indicator  vector zi  =  indicates

the component of the mixture for xi. The expected log-likelihood as associated with the complete sample (x1, ....,xn, Z),
derived in Appendix A, is given by

(3)

where tj(xi) is the a-posteriori probability of xi belonging to Cj defined by

So (3) may be written as

(4)

Let

(5)

and let

(6)

To estimate the vector of unknown parameters Q, the EM algorithm uses iteratively the two steps: Estimation (E)
and Maximization (M).

The  algorithm  starts  with  an  initial  solution:  or  with  an  initial
partition into k groups, and then determine the estimates Q 0 based on the partition. In the mth iteration (m ≥ 1) the steps
are:

E -Step

For j = 1,...,k, i = 1,...,n, calculate the a-posteriori probability of xi belonging to the j th component of the mixture

(7)

 

∑k
j=1 πj = 1

(Zi1, Zi2, ..., Zik)
T , with Zij =

{
1 if xi ∈ Cj
0 if xi /∈ Cj

,
∑k

j=1 Zij = 1

tj(xi) = πjf(xi|θj)�[ k
h=1 πhf(xi|θh)], j = 1, ..., k.

L(Q|x1, ..,xn, Z) =

n∑
i=1

k∑
j=1

tj(xi) lnπj +

n∑
i=1

k∑
j=1

tj(xi)[ln cp(κj) + κjµ
T
j xi].

L(Q|x1, ..,xn, Z) =

n∑
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k∑
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tj(xi) ln[πjf(xi|µj , κj)],

L1(Q|x1, ..,xn, Z) =
n∑
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T
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M -Step

Use estimates tj
(m) (xi) to maximize L1 (Q|x1, ...,xn, Z) subject to the constraint µT

j µj = 1 and L2 (Q|x1, ..,xn, Z) subject

to the constraint  The estimators obtained, derived in Appendix B, are the following:

• The maximum likelihood estimator of µj in the (m + 1)th iteration,  is given by

(8)

• The maximum likelihood estimator of kj in the (m + 1)th iteration,  is the solution of the equation

(9)

where Rj is the length of the vector , that is .

• The maximum likelihood estimator of πj in the (m + 1)th iteration,  is given by

(10)

In the particular case of components with the same concentration parameter k, the estimates of µj and πj , j = 1, ..., k,
are  given  by  the  expressions  (8)  and  (10),  and  the  estimate  of  the  common  concentration  parameter  κ,  derived  in
Appendix C, is the solution of the equation

(11)

where Rj is defined as before.

The EM algorithm is assumed to have converged if the relative change in the log-likelihood values is smaller than a
threshold or if the relative absolute change in the parameters is smaller than a threshold. A partition (P1, ..., Pk ) of the
sample is obtained assigning xi to the component for which the aposteriori probability is the largest, that is,

(12)

and when tj (xi) = th (xi) consider 

This  algorithm is  denoted by soft-movMF algorithm by Banerjee  et  al.  (2005,  p.  1357)  [6].  These  authors  also
proposed the hard-movMF algorithm (p. 1358), which is a modification of the soft-movMF by adding a hardening step
(H -step) between E -step and M -step. This step is:

H -Step

Replace the aposteriori probabilities by assigning each observation with probability 1 to the component for which its
aposteriori probability is maximum.

∑n
i=1 t

(m)
j (xi)xi Rj = ‖

∑n
i=1 t

(m)
j (xi)xi‖
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(m+1)
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1

n
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t
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j (xi), j=1,...,k.
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Rj

n
,
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{
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h
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}
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Celeux  and  Govaert  (1992)  [7]  denoted  the  previous  algorithm  by  Classification  EM  algorithm  and  proposed
another variant of the EM algorithm, the stochastic EM, where instead of the hardening step, a stochastic step (S -step)
is added between E -step and M -step. This step is:

S -Step

Assign at random each observation to one component with probability equal to its aposteriori probability.

These three variants of the EM algorithm are implemented in a R package called movMF [13].

3.2. Dynamic Clusters Type Algorithm

Let E be a finite sample. The aim is to determine a partition P = (P1, P2, ..., Pk) of E into k classes, so that for every j
(1 ≤ j ≤ k), Pj may be considered as a sample from a population with density fθ .

Let  be  the  family  of probability densities, from which the distributions of the different components
belong: θ is a vectorial parameter and L its definition space:

(13)

Let Pk be the set of partitions of E into k classes and let  be the set of vectors of dimension k of  .The method
starts with an initial partition  of E or starts with a vector of dimension k of values of the unknown

parameter vector of dimension k of values of the unknown parameter .

The two following functions f and g are successively applied until obtaining stable elements of L and P:

L → P

where L = (θ1, ...,θk ) and P = (P1, ..., Pk), so that for  is  the  set of observations, which are
less distant from the distribution fθi

 than from others. Then, it is important to define a function D, which measures the
distance from an observation  to a distribution fθ :

D: E × L → +

(x, θ) → D (x, θ) .

The distance is defined by

(14)

where C is a constant defined by  Then

(15)

and each group Pi is defined by

The function

P → L

is such that for  satisfies the condition

D(x,θ) = C − ln cp(κ)− κμTx

g : Pk → Lk

∀i (1 ≤ i ≤ k), θi

6

6

fθ(x) = cp(κ) exp(κμ
Tx), x ∈ Sp−1, θ = (μ, κ).

Lk

(P 0
1 , P

0
2 , ..., P

0
k ) (

θ0
1, ...,θ

0
k

)

f : Lk → Pk

∀i 1 ≤ i ≤ k, Pi

x ∈ E

R

L

Pi = {x ∈ E|D(x,θi) ≤ D(x,θj), ∀j 6=i with i < j if D(x,θi) = D(x,θj)}

=
{
x ∈ E| ln cp(κi)− κiµTi x ≥ ln cp(κj)− κjµTj x, ∀j 6=i

}
.

D(x,θ) = ln

[
C

fθ(x)

]
,

 fθ (θ ∈ L)

C ≥ max {fθ(x)| θ ∈ L, x ∈ E} .
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where card (Pi) is the number of observations of Pi. So the parameters θI are estimated based on the k classes Pi: the
function g defines the estimation by the maximum likelihood method and the function f enables us to define again k new
classes Pi and then, evaluate again the value of the criterion W.

4. COMPARISON OF THE ALGORITHMS

For comparing the solutions obtained with the algorithms, we define next the between-groups and within-groups
variability measures, in the decomposition of the total variability used to test the null hypothesis of a common mean
vector  across  k  von  Mises-Fisher  populations  with  concentration  parameters  not  necessarily  equal.  This  test  was
considered in the literature for the particular case of equal concentration parameters, for the circle or the sphere, see for
instance,  Mardia  and  Jupp  (2000,  pp.  222-226)  [12],  Watson  (1956)  [14],  Watson  and  Williams  (1956)  [15]  and
Harrison et al. (1986) [16].

Let xi1, ...,xini
 (i = 1, ..., k) be k independent random samples of sizes n1, ..., nk from populations Mp (µi, κi) , with

vectors of the mean direction µi and concentration parameters κi, i = 1, ..., k. Let n = n1 + ... + nk be the global sample
size. The null hypothesis of interest is

H 0: µ1 = .... = µk = µ,

against the alternative hypothesis that at least one of the equalities is not satisfied.

Next  we  consider  the  concentration  parameters  κi  unknown,  but  if  these  parameters  are  unknown,  we  have  to
estimate them through their maximum likelihood estimates for instance. Let’s consider the following identity

(16)

The optimum value of θi is the maximum likelihood estimator of θi associated with Pi and the optimum criterion is
function of the partition P * and L*  obtained in convergence:

where C is the constant previously defined and  the  maximum likelihood estimators of µi and κi

respectively, based on the sample Pi. Then,

(17)

∑
x∈Pi

D(x,θi) = inf
θ∈L

∑
x∈Pi

D(x,θ).

W (L∗, P ∗) =
∑

1≤i≤k
D(P ∗i ,θ

∗
i ) =

∑
1≤i≤k

∑
x∈P ∗i

D(x,θ∗i )

= C +
∑

1≤i≤k

∑
x∈Pi

[
− ln cp(κ̂i)− κ̂iµ̂

T

i x
]
,

W (L∗, P ∗) = C −
∑

1≤i≤k

card(Pi) ln cp(κ̂i) +
∑
x∈Pi

κ̂iµ̂
T

i x

 ,
  areµ̂i and κ̂i

∈ L

Summing from i = 1 to k, j = 1 to ni and replacing µ and µi by their maximum likelihood estimates, the following
identity is obtained

(18)

where

The previous identity can be written as

2κi(1− µTxij) = 2κi(1− µTi xij) + 2κi(µ
T
i xij − µTxij).

2
k∑
i=1

ni∑
j=1
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T
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j xij)�‖
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and the hypothesis H  0 is rejected for large values of F . When all concentration parameters κi are equal to κ, the
statistic (20) reduces to the following statistic given in Mardia and Jupp (2000, pp. 222-223):

where Ri is resultant length of the ith sample and R is the resultant length of the global sample. The F -statistic has
under H 0 approximately the F(k−1)(p−1),(n−k)(p−1) distribution for large κ.

4.1. Simulation Study

We generated samples of size n from a mixture of equal proportions of two Fisher distributions F (e3, κ) and F (µ,
κ), with a common concentration parameter κ. We considered without loss of generality, e3 = (0, 0, 1)T and µ = (0, (1 −
cos2 θ)1/2 , cos θ)T, where θ is the angle between µ and e3. Should other mean directions have been used, which form an
angle θ,  the same results would have been obtained. We considered two sample sizes n  = 20, 40, several angles of
separation between the two components, θ = 30o, 90o, 150o and two values of the common concentration parameter κ =
5, 10.

For  generating  observations  from the  Fisher  distribution,  we  used  the  method  given  in  Wood  (1994)  [17].  We
supposed that the parameters of the mixture are unknown and we estimated these parameters based on each generated
sample,  using  the  three  variants  of  the  EM  algorithm (soft-movMF,  hard-movMF and  stochastic  EM)  described  in
Subsection 3.1, and the dynamic clusters type algorithm described in Subsection 3.2. We obtained the estimates of the
concentration parameters and the angle between the estimated mean directions, indicated in the Table 1. for the sample
size of 20 and concentration parameters of the components equal to 5 or 10 and in Table 2 for the sample size of 40 and
concentration  parameters  of  the  components  equal  to  5.  In  these  tables,  we  also  present  for  each  sample,  the
classification  results  (confusion  matrix),  the  sizes  of  the  groups  and  within-groups  and  between-groups  variability
measures for the final solution, which were obtained by the expressions given in the previous subsection, where the
concentration parameters were replaced by their maximum likelihood estimates. We note that when the angle θ = 30o,

or equivalently,

(19)

where  and  Ri  is  the resultant length of the ith sample. This identity is the decomposition of

total variability  into  within-groups  variability  and  between-groups  variability

. The test statistic is defined by

(20)

(21)

2

(
k∑
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κini −R

)
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(κini − κiRi) + 2

(
k∑
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i.e.,  the  components  are  poorly  separated,  the  stochastic  EM  algorithm  did  not  converge  for  any  run.  When  the
components are reasonably or well-separated. i.e.,  θ  = 90° or θ  = 150°, all  algorithms lead to the same solution, in
general.

From the results indicated in Tables 1-2, we conclude the following:

The algorithms gave the same solution when the two components are well separated, that is, when θ = 90° for κ
= 5 and when θ = 90° or θ = 150° for κ = 10. Therefore, in these cases, the confusion matrix is the same and the
variability measures coincide for all the algorithms, as well as the estimates of the concentration parameters and
the estimate of the angle between the mean directions.
When  the  concentration  of  the  components  increases,  the  rate  of  misclassified  observations  decreases  (or
remains equal) and the between-groups variability increases, along with the F -statistic for components with
moderate or large separation.
For each algorithm, the rate of misclassified observations decreases as the separation between the components
increases, and for well-separated components, this error rate is equal to 0. This error rate decreases or is equal to
0 when the sample size increases.
For each algorithm, the between-groups variability increases as the separation between the two components
increases and for well separated components, the between-groups variability exceeds largely the within-groups
variability.  The  F  -statistic  also  increases  when  the  angle  between  the  mean  directions  of  the  components
increases.
When the sample size increases, the between-groups variability and F -statistic increase for moderate or large
separation of the components of the mixture.

Table 1. Confusion matrices, size groups, estimates of the parameters, variability measures (between-groups and within-
groups) and F -statistic for the EM algorithm (soft-movMF, hard-movMF, stochastic EM) and dynamic clusters algorithm
(DC), for the sample size of 20 and concentrations equal to 5 or 10 (*: the results for the other three methods are equal).

k θ (°) Algorithm Group
Conf. matrix

ni Bet./With. F
1 2

5

30

Soft-movMF
1 7 3 14 15.5

46.4 23.8/18.5 23.3
2 7 3 6 18.1

Hard-movMF
1 7 3 14 16.6

48.1 26.2/20.0 17.1
2 7 3 6 20.3

DC
1 6 4 13 17.3

46.4 22.2/23.3 17.1
2 7 3 7 18.8

90

Soft-movMF
1 6 4 6 14.4

77.5 32.0/18.8 30.6
2 0 10 14 5.4

Hard-movMF
1 8 2 8 9.2

77.9 31.1/20.0 28.0
2 0 10 12 7.3

Stochastic EM
1 6 4 6 16.2

78.9 34.3/20.0 30.9
2 0 10 14 5.6

DC
1 9 1 12 6.1

75.4 27.6/20.0 24.9
2 3 7 8 10.0

150 Soft-movMF*
1 10 0 10 5.9

127.3 70.3/20.0 63.3
2 0 10 10 12.5

10

30

Soft-movMF
1 4 6 4 77.5

42.3 34.3/19.4 31.8
2 0 10 16 14.2

Hard-movMF
1 8 2 13 12.8

33.9 15.6/20.0 14.1
2 5 5 7 32.6

DC
1 7 3 11 14.4

33.4 13.5/20.0 12.2
2 4 6 9 20.9

90 Soft-movMF*
1 10 0 10 10.9

90.0 72.9/20.0 65.6
2 0 10 10 18.2

150 Soft-movMF*
1 10 0 10 10.9

142.4 163.3/20.0 147.0
2 0 10 10 20.4

κ̂i θ̂
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Table 2. Confusion matrices, size groups, estimates of the parameters, variability measures (between-groups and within-
groups) and F-statistic for the EM algorithm (soft-movMF, hard-movMF, stochastic EM) and dynamic clusters algorithm
(DC), for the sample size of 40 and concentrations equal to 5 (*: the results for the other three methods are equal).

θ (°) Algorithm Group
Conf. Matrix

ni Bet./With. F
1 2

30

Soft-movMF
1 17 3 28 4.4

43.1 20.4/33.2 23.3
2 11 9 12 9.4

Hard-movMF
1 11 9 20 5.8

56.4 28.8/40.0 27.4
2 9 11 20 9.4

DC
1 13 7 20 9.0

53.9 24.2/40.0 23.0
2 7 13 20 5.3

90 Soft-movMF*
1 20 0 20 6.1

110.4 89.0/40.0 84.6
2 0 20 20 6.3

150 Soft-movMF*
1 20 0 20 5.9

77.9 126.7/39.6 121.7
2 0 20 20 4.5

4.2. Example

We used the spherical data given in Wood (1982) [18], which consist of a set of 33 estimates of a previous magnetic
pole position of the earth obtained using palaeomagnetic techniques. Each estimate is associated with a different site,
the 33 sites being spread over a large of Tasmania. As the data appear to fall into two main groups, Wood (1982) [18]
estimated the parameters of a bimodal model for the data.

We  obtained  a  partition  of  these  data  into  two  groups  based  on  the  estimation  of  a  mixture  of  two  Fisher
distributions through the three variants of the EM algorithm (soft-movMF, hard-movMF and stochastic EM) described
in Subsection 3.1 and dynamic clusters type algorithm described in Subsection 3.2. For obtaining the final solutions of
the  variants  of  the  EM  algorithm,  we  used  the  R  package,  movMF.  For  the  dynamic  clusters  type  algorithm,  as  it
depends on the initial solution, we considered several initial partitions randomly chosen for the algorithm and for all
initial partitions, the algorithm converged and the final solution obtained was the same. The final solutions obtained
with the algorithms are given in the Table 3.

Table 3. Final partitions, size groups, estimates of the concentration parameters and estimate of the angle between the mean
directions.

Algorithm Group Final Partition ni

Soft-movMF 1 9,10,11,12,14,15,16,23,24,30 10 21.5 33.3
2 Remaining observations 23 36.65  

Hard-movMF 1 9,14,16,24,30 5 22.52 39.9
2 Remaining observations 28 26.86  

Stochastic EM 1 9,10,11,12,14,15,16,22,23,24,30 11 20.52 31.2
2 Remaining observations 22 36.47  

Dynamic Clusters 1 1,5,9,10,11,12,13,14,15,16,23,24,29,30 14 13.29 31.3
2 Remaining observations 19 23.64  

The solutions obtained with the several algorithms do not coincide, probably because in this case the components
are not well-separated (the estimated angle between the mean directions is around 30o). But, the solutions obtained with
soft-movMF, stochastic EM and dynamic clusters algorithm are rather similar, as we may observe for these solutions, a
large number of observations is stable in the partitions, i.e., 87.8% of the observations stay always together in the same
group. We compared the solutions obtained in the algorithms through the between-groups variability measure and F -
statistic, where we estimated the concentration parameters. (See Table 4).

Table 4. Between-groups variability measure and F-statistic for the final partitions.

Algorithm Soft-movMF Hard-movMF Stochastic EM DC
Between-groups variability 21.549 22.353 26.136 20.004

F -statistic 12.048 21.000 24.549 35.088

κ̂i θ̂

κ̂i θ̂ (o)
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The  solution  obtained  in  stochastic  EM  is  preferable  in  what  concerns  to  the  between-groups  variability,  but
considering the F -statistic, the solution obtained with dynamic clusters algorithm is preferable.

CONCLUDING REMARKS

The simulations revealed that only for poorly or moderately separated components, the variants of the EM algorithm
and the dynamic clusters type algorithm lead to different solutions in general. For very well separated components, the
algorithms seem to  originate  the  same result.  Additionally,  the  larger  concentration parameters  associated  with  the
components, greater is the tendency to obtain the same solution for the algorithms.

For each algorithm, as expected, the between-groups variability and the F -statistic increase when the separation
between components increases or when the concentration of components increases,  since these components are not
badly separated (i.e., the angle θ is 30o).
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APPENDIX A

Derivation of the Expected Log-Likelihood of the Complete Sample
The vectors zi are independent and have multinomial distribution with parameters (1, π1,...πk) and the probability

density function is given by

The density function of xi|zi is given by

Then, the density function of (xi, zi) is defined by the product

Replacing the densities g (zi|Q) and l (xi|zi, Q) in the previous expression, we obtain

The complete data log-likelihood of (x1, x2, ..., xn, Z) is given by

g(zi|Q) =
k∏
j=1

π
zij
j .

l(xi|zi, Q) =
k∏
j=1

f(xi|θj)zij .

h(xi, zi|θ) = g(zi|Q)l(xi|zi, Q).

h(xi, zi|Q) =
k∏
j=1

π
zij
j f(xi|θj)zij .

L(Q|x1,x2, ...,xn, Z) = ln

n∏
i=1

h(xi, zi|Q)
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and replacing h (xi, zi|Q), we obtain the expression

The density function of zi|xi is given by

Replacing the densities h and ψ, we obtain

The expected value of Zij |xi is given by the expression

This  expected  value  is  the  aposteriori  probability  of  xi  belonging  to  Cj  ,  which  we  denote  by  tj  (xi)  .  Then,  the
expected complete data log-likelihood may be written as

APPENDIX B

Derivation of the Maximum Likelihood Estimators

First, consider the function L1 (Q) subject to the constraint µT
j µj = 1

where λ1 is a Lagrange multiplier and tj (xi) is defined by (7). The maximum likelihood estimator of µj is the solution
of the following equation

As µT
j µj = 1; then the Lagrange multiplier is given by

L(Q|x1,x2, ...,xn, Z) =
n∑
i=1

k∑
j=1

zij ln [πjf(xi|θj)] .

f(zi|xi, Q) =
h(xi, zi|Q)

ψ(xi|Q)
.

f(zi|xi, Q) =

k∏
j=1

[πjf(xi|θj)]zij

k∑
h=1

πhf(xi|θh)

.

E(Zij |xi, Q) =
πjf(xi|θj)
k∑

h=1

πhf(xi|θh)

.

L (Q|x1,x2, ...,xn, Z) =
n∑
i=1

k∑
j=1

tj (xi) ln [πjf (xi|θj)] .

L1(Q) =

n∑
i=1

k∑
j=1

tj(xi)
{

ln cp(κj) + κjµ
T
j xi
}
− λ1(µTj µj − 1),

∂L1(Q)

∂µj
= 0⇔

n∑
i=1

tj(xi)κjxi − 2λ1µj = 0⇔ µj =
κj
2λ1

n∑
i=1

tj(xi)xi.

λ1 =
κj
2λ1

∥∥∥∥∥
n∑
i=1

tj(xi)xi

∥∥∥∥∥ .
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So the maximum likelihood estimator of µj in the (m + 1)th iteration,  is given by

Second, the maximum likelihood estimator of κj is the solution of the equation

Let 

Replacing µj by , the maximum likelihood estimator of κj obtained in the (m + 1)th iteration,  is the
solution of the equation

where Rj is the length of the vector 

Third,  consider  the  function,  L2  (Q)  subject  to  the  constraint   that  is,  maximize

 where  λ2 is  a  Lagrange  multiplier.  The  maximum  likelihood

estimator of πj is the solution of the equation

Summing the last equation from j = 1 to k, we obtain λ2 = n. Then the maximum likelihood estimator of πj in the (m

+ 1)th iteration,  is given by

   µ̂
(m+1)
j κ̂

(m+1)
j

µ̂
(m+1)
j =

n∑
i=1

t
(m)
j (xi)xi∥∥∥∥ n∑

i=1
t
(m)
j (xi)xi

∥∥∥∥ , j=1,...,k.

∂L1(Q)

∂κj
= 0⇔

n∑
i=1

tj(xi)
c′p(κj)

cp(κj)
+

n∑
i=1

tj(xi)µ
T
j xi = 0.

A(κj)
n∑
i=1

tj(xi) =
n∑
i=1

tj(xi)µ
T
j xi.

c′p(κj)�cp (κj) = −A(κj)  and then the previous equation may be written as

A
(
κ̂
(m+1)
j

)
=

Rj
n∑
i=1

t
(m)
j (xi)

, j=1,...,k,

κ̂
(m+1)
j = A−1

 Rj
n∑
i=1

t
(m)
j (xi)

 , j=1,...,k.

∂L2(Q)

∂πj
= 0⇔

n∑
i=1

tj (xi)
1

πj
− λ2 = 0.

π̂
(m+1)
j =

1

n

n∑
i=1

t
(m)
j (xi) , j=1,...,k.

π̂
(m+1)
j

∑n
i=1

∑k
j=1 tj(xi) lnπj − λ2(

∑k
j=1 πj − 1),

∑k
j=1 πj = 1 ,

∑n
i=1 t

(m)
j (xi) xi, that is Rj = ‖

∑n
i=1 t

(m)
j (xi) xi‖, i.e,

µ̂
(m+1)
j
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where Rj is defined as before.
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