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Abstract: This article describes the origins of the conventional use of null hypothesis significance testing and why this 

convention has led to difficulties in implementing research results in applied settings. This article continues to explain the 

the value of expressing research results with confidence limits and effect sizes for sporting application. 

As researchers investigating human performance, one of 
our greatest measures of success is for our research outcome 
to be implemented by sports coaches for their athletes. While 
coaches are becoming increasingly receptive to the results of 
sports scientists, coaches are often frustrated by the incon-
clusive and numerically cryptic results we report. Conven-
tional null hypothesis significance testing dictates that unless 
the probability of rejecting the null in error (p-value) is less 
than 5%, we must accept the null hypothesis that the differ-
ence between our groups is zero. But to return to a sports 
coach after six weeks of a training intervention to report 
“nothing happened” is frustrating and probably not entirely 
accurate. It may be possible that the intervention did have an 
effect, but due to sources of error in human performance 
testing, the results lacked sufficient consistency to pass the 
conventional 5% rule. However, is the p-value returned by 
our results greater than 5% because nothing happened, or is 
the problem in our use of the arbitrary 5% line in the sand to 
justify the success or failure of our intervention? After all, 
“… surely, God loves the .06 nearly as much as the .05." [1, 
p. 1277]. 

Origins of the p-values in Null Hypothesis Significance 
Testing 

Initially describing type I and type II error rates was the 
work of Neyman and Pearson [2]. Neyman and Pearson con-
sidered that there was sufficient evidence to reject a null hy-
pothesis if the probability of its rejection in error was less 
than 5%. The work by Fisher [3] initially described some 
standard levels (e.g. 1%, 5%, 10%, etc.) of area under the 
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t- and f-distributions, thereby making 5% of these distribu-
tions widely accessible to researchers. While Fisher only 
intended percentages of these distributions to add support to 
inferences drawn from data, Neyman and Pearson argued 
that in order for research to be used to make decisions, 5% of 
these distributions was an acceptable  (cut-off point) [4]. 
Since this time, accepting or rejecting a null hypothesis 
based on a 5% probability of error has become the norm. The 
sport science interpretation of Neyman and Pearson’s work 
would be that sports coaches (i.e. research end-users) can 
only make informed decisions when told if an intervention 
works or does not work, whereas Fisher would argue that 
sports coaches should be the ones to decide what probability 
of error is unacceptably high for their athletes [4].  
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Confidence Limits 

After decades of accepting or rejecting null hypotheses 
based on p-values of less than or greater than 0.05, there has 
been a recent criticism of using solely the p-value to accept 
or reject research findings [5]. Confidence limits express the 
precision of the mean changes within a sample (or mean dif-
ferences between samples, hereafter called the mean esti-
mate) by expressing upper and lower boundaries within a 
confidence bandwidth (e.g. 90%, 95%) rather than simply 
expressing the probability that the mean estimate equals 
zero. When expressing a mean estimate (e.g. there was 66 W 
difference between two groups) Fig. (1), the true difference 
between the two groups for the population is unlikely to be 
exactly 66 W. The 66 W only represents an estimate from 
the sample; there is certain to be error in the mean estimate 
when making inferences from the sample to the population. 
For example, in a recent piece of research [6] we indicated 
that the estimated difference between two trials was 66 W 
and, while accepting that 66 W was unlikely to be the exact 
effect of the intervention, we were 95% certain that the true 
value of the difference between trials lay between 36 and 
96W. In this way, we provided much more useful informa-
tion about the precision of our estimate, rather than just the 
66 W estimate and that the probability of the estimated dif-
ference was actually zero was less than 1% [6]. 

Confidence limits can be derived for any percent level, 
though most common are 90% and 95%. While some re-
searchers [7] feel that the range of 95% confidence limits is 
too broad to be useful, others [6] feel that 95% confidence 
limits are more suitable in the current climate in which many 
journal reviewers still look for statistical significance of re-
sults. A p-value of less than 0.05 (i.e. ‘statistically signifi-
cant’) can be derived from 95% confidence limits if both the 
upper and lower limits are on the same side of the zero (e.g. 
36 to 96 W, Figure 1, Series 1); if the upper and lower limits 
are on different sides of the zero (e.g. -14 to 146 W, Fig. (1), 
Series 2) then the result had a p-value of greater than 0.05. 

Effect Sizes 

Imagine a new training method that could reduce a per-
son’s 100-m sprint time by a statistically significant 0.04 
seconds. The primary consideration for a coach in wether to 
implement the intervention or not is if the change will have a 
worthwhile, not just a statistically significant, effect on per-
formance. This distinction demonstrates the difference be-
tween statistical versus practical significance [8]. Cohen [9] 
detailed a method of dividing the change score by the stan-
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dard deviation (SD) of the raw data to arrive at a standard 
effect size (Cohen’s d). While the SD of both the men’s and 
women’s 100-m sprint final 2004 Athens Olympic Games 
was 0.09 s, the SD of a school sports carnival may be 2 sec-
onds. The impact of the 0.04 seconds in the Olympic final 
would have a meaningful impact (Cohen’s d = 0.04 ÷ 0.09 = 
0.44), though the impact would be trivial at the school sports 
carnival (Cohen’s d = 0.04 ÷ 2 = 0.02). Hopkins has also 
conducted extensive work and published resources to calcu-
late likelihoods for effects being clinically beneficial [10].  

CONCLUSION 

Simply because a result is statistically significant does 
not necessarily mean it is worthwhile, just as a result that is 
not statistically significant is not necessarily useless. A 
coach could be presented with statistically non-significant 
results indicating that an intervention improved 100-m sprint 
time by a meaningful 0.04 seconds with 95% confidence 
limits ranging from -0.02 to 0.10 seconds. The coach may 
decide that the risk of doing actual harm to an athlete likely 
to win a bronze medal, thus knocking them out of the medal 
standing, is too great. A coach may also decide for an athlete 

likely to place 4
th

 that the risk of doing harm, thus moving 
the athlete further down the ranking, is worth the chance if it 
could move the athlete into the medal standings. Further-
more, a statistically significant 0.01 second improvement 
that has a trivial effect size requiring an extra 10 hours of 
training per week may not be worth the time and effort re-
quired. Regardless, the coach is able to make much more 
informed decisions about the course of action to be taken 
based on the research. For these reasons, sport scientists 
should look to express the mean estimates of their research 
using standardised effect sizes (i.e. Cohen’s d) and confi-
dence limits rather than the making a ‘yes’ or ‘no’ decision 
based on the mean estimate’s probability of equalling zero. 
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Fig. (1). Power output differences between two trials. Error bars 
represent 95% confidence limits. 


