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Abstract: Heavy-resistance strength training results in marked increases in maximal muscle strength and power in  

both athletes, untrained subjects and elderly individuals. The addition of eccentric overload training (loads > 100% 1RM) 

appears to evoke enhanced gains in these parameters. Further, the use of plyometric training evokes marked increases  

in maximal muscle power. The adaptive physiological mechanisms involve changes in neuromuscular activity and  

alterations in muscle morphology (fiber size, fiber lengths) and muscle architecture, respectively, while changes in tendon 

stiffness may potentially contribute as well.  
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INTRODUCTION  

 Maximal muscle strength and power can be maximized 
by means of resistance training, however different types of 
training may lead to differential gains in one or the other 
parameter. Heavy-resistance strength training (HRST) leads 
to increased levels of contractile muscle strength during iso-
metric, concentric and eccentric muscle actions of maximal 
voluntary effort. Corresponding effects of HRST on maximal 
muscle power production have been reported in the litera-
ture, while more specialized types of resistance training (i.e. 
plyometric exercises) appear to also induce gains in maximal 
muscle power production.  

 This brief review article presents and discus the effect of 
various resistance training modalities, including supramaxi-
mal eccentric training and plyometric training, on the maxi-
mal force and power production of human skeletal muscle in 
untrained subjects, athletes and aging individuals. 

HEAVY-RESISTANCE STRENGTH TRAINING  

 Maximal muscle strength typically is increased by 20-
40% in response to HRST of medium to moderate time 
length (8-16 weeks) [1-3]. Slightly greater gains may be seen 
for maximal muscle power, which typically demonstrates 
increases of 20-50% after months of HRST training both  
in young untrained persons [4-6], elite soccer players [7] 
(Fig. 1) and old individuals [8]. Notably, HRST appears to 
evoke similar [4, 8] or greater [7] gains in maximum muscle 
power than low-resistance types of resistance training (cf. 
Fig. 1).  

 As a result of adaptive alterations in neural function [9-
11], muscle morphology [3, 12, 13] and architecture [12]  
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HRST is found to induce greater gains in maximal muscle 

strength and power compared to low-resistance types of 

training [1, 4, 5, 7] (cf. Fig. 1). Notably, the increase in 
maximum muscle strength contributes per se to the gain in 

maximal muscle power observed following HRST. Further-

more, tendon stiffness may increase with HRST [14, 15], 
which theoretically allows to perform faster stretch-

shortening actions (SSC) that for a given muscle work output 

would translate into an elevated power production.  

 Excised muscle fibers obtained from subjects exposed to 

years of resistance training demonstrate greater contractile 

force and power production compared to that measured in 

single muscle fibers from untrained age-matched individuals 

[16] (Fig. 3). Maximum fiber shortening speed as well as 

muscle fiber power normalized relative to fiber size appear 

to remain unaffected by HRST [16, 17], altogether suggest-

ing that the superior in vitro power production of single 

muscle fibers with HRST is mainly the overall result of indi-

vidual muscle fiber hypertrophy.  

ECCENTRIC TRAINING 

 Neuromuscular activity is suppressed during maximal 

eccentric (ECC) muscle contraction in untrained subjects 

[10, 18], due to reduced levels of central activation [19] and 

reduced efferent motorneuron outflow indicated by dimin-

ished evoked V wave responses [20]. Maximum ECC mus-

cle force during MVC can be increased by superimposed 

electrical muscle stimulation only in untrained individuals 

and not in trained strength athletes, indicating that the sup-

pression in motorneuron activation may be altered by 

strength training [21]. In support of this notion, maximum 

ECC muscle strength was increased by use of HRST [1, 2] 

due to a removed or diminished suppression in neuromuscu-

lar activity [10, 22]. Notably, HRST was found to produce 

elevated H-reflex and V wave responses during MVC, indi-

cating increased excitability of spinal motorneurons, de-
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creased presynaptic inhibition and elevated descending mo-

tor drive [11, 23]. Notably, the use of supramaximal ECC 

strength training leads to selectively elevated V wave re-

sponses during maximal eccentric contraction [20], demon-

strating that adaptive changes in spinal motorneuron function 

and/or descending motor drive were evoked during ECC 

contraction. As a result, maximal ECC muscle strength  

is markedly increased with this particular type of training 

(discussed below). 

 Eccentric resistance training using submaximal, maximal 
(100% 1RM) or supramaximal (> 100% 1RM) training loads 
may lead to greater increases in maximal muscle strength 
compared to more conventional types of HRST [2, 24-28],  
in part due to greater or a more pronounced degree of  
muscle hypertrophy following eccentric training [22, 24-26] 
(Fig. 2).  

 The greater gains in maximal muscle strength is expected 
to result in greater increases in maximal muscle power, since 
power is constituted by the product between instantaneous 
muscle force and muscle shortening speed, respectively. 
Animal experiments have shown that eccentric resistance 
training, especially when performed at long fiber lengths (i.e. 
at highly flexed joint positions, such as in deep squats) may 
lead to sarcomere addition and elongated muscle fiber 
lengths [29-32]. Notably, elongated muscle fiber lengths will 
contribute substantially to the gain in maximal muscle power 
induced by training. Thus, simulation analysis using empiri-
cal F-V and P-V relationships obtained for single human 
muscle fibers reveals that a 10% increase in maximal isomet-

ric muscle fiber force leads to a 10% gain in maximum 
(peak) power production, while a 10% increase in fiber 
length with a corresponding increase in maximal fiber short-
ening speed (Vo) cause maximum (peak) power to also in-
crease by 10%. However, the relative gain in muscle power 
generated at high contraction speed (corresponding to 75% 
of Vo) is 4-fold higher (42% vs 10%) when comparing the 
effect of increasing muscle fiber length by 10% vs increasing 
maximum isometric force by 10%, respectively. Most 
potently, however, if a 10% gain is achieved both for maxi-
mum force and muscle fiber length, respectively, this yields 
a 56% gain in high-speed power (at 75% Vo). In compari-
son, maximum (peak) power production is increased by 
21%. Thus, any training induced increase in muscle fiber 
length is likely to have a strong positive influence on the 
magnitude of maximal muscle power production, especially 
during very fast movements.  

PLYOMETRIC TRAINING 

 Plyometric training involves forceful stretch-shortening 
(SSC) actions in the muscle-tendon complex [32] that typi-
cally involves production of high eccentric muscle forces, 
and where the magnitude of peak muscle loading (net joint 
moments) is remarkably similar to those observed during 
conventional HRST exercises. Consequently, plyometric 
training may lead to muscle hypertrophy, at least when per-
formed in previously untrained subjects [33, 34], while fre-
quently also leading to more pronounced gains in maximal 
muscle power than that attained by HRST alone [35]. How-
ever, the latter finding may be obscured by the fact that 

 

 

 

 

 

 

Fig. (1). Peak quadriceps muscle power production before (full line) and after (dotted) 12 wks of heavy-resistance (8 RM, HRgroup) or low-

resistance (24 RM, LRgroup) strength training in elite soccer players. Data from Aagaard et al. [7]. 

 

 

 

 

 

 

Fig. (2). Changes in quadriceps muscle cross-sectional area after conventional (grey bars) and supramaximal eccentric (black bars) strength 

training. Data from Norrbrand et al. [27]. 
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plyometric training typically introduces a large learning ef-
fect when subjects are evaluated (tested) in SSC exercises 
that are identical to those used in the plyometric training. 
Regardless, for athletes involved in explosive-type events 
such as sprinting, maximal jumping and throwing, the com-
bination of HRST and plyometric training may lead to en-
hanced performance and greater gains in maximal muscle 
power than HRST alone.  

 Single muscle fiber data obtained in previously untrained 
subjects (physical education students) before and after plyo-
metric training suggest this training modality results in an 
elevated maximum muscle fiber shortening speed in vitro, 
which explains the substantial gain in maximal power pro-
duction observed for isolated muscle fibers [33].  

 The optimal loading intensity for maximizing the gain in 
muscle power with plyometric training remains a subject of 
debate [35]. In addition, the optimum power load (i.e. the 
load eliciting maximal power output) varies between muscle 
groups, and is also affected by the training status of the  
subject, as well as the choice of exercise [35]. For example, 
in strength trained individuals maximum leg muscle power 
was found to occur during unloaded (0% 1RM) squat jump-
ing whereas the optimum load for maximizing the power 
output during conventional squat exercise was 40-70% of 
1RM [14]. Nevertheless, the optimal training load for induc-
ing maximal longitudinal gains in muscle power may well 
include very high loading intensities of 80-100% of 1RM  
(cf. Fig. 1) to ensure that optimal adaptation take place both 
in neural function [11, 36] and muscle size [37], and while 
performed in combination with eccentric training and/or 
plyometric training exercises. The functional significance  
of the latter training modality may primarily be to evoke 
increases in muscle fiber length, and to train ('learn') the 
CNS to perform very rapid SSC movements. 

CONCLUSIONS 

 Maximal muscle strength and power are elevated in re-
sponse to heavy-resistance strength training (HRST), and the 
addition of eccentric and/or plyometric training appear to 
evoke enhanced gains in these parameters. The adaptive 
physiological mechanisms involve changes in neuromuscular 
activity and alterations in muscle morphology (fiber size, 
fiber lengths) and muscle architecture, respectively, while 
changes in tendon stiffness may potentially contribute as 
well.  
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Fig. (3). Force-velocity and power-velocity relationships (group mean curves) obtained for single isolated muscle fibers from long-term re-

sistance trained (RT; 7.6 ± 1.6 yrs of RT, full lines) and age matched untrained (NT, dotted lines) individuals. Data from Shoepe et al. [16]. 
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