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Abstract: The thermally activated vortex bundle flow over the directional-dependent energy barrier in type-II 

superconductors is investigated. The coherent oscillation frequency and the mean direction of the random collective 

pinning force of the vortex bundles are evaluated by applying the random walk theorem. The flow velocity of the vortex 

bundles is obtained self-consistently. The temperature- and field-dependent Hall and longitudinal resistivities induced by 

the bundle flow for type-II superconducting bulk materials and thin films are calculated. All the results are in agreement 
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1. INTRODUCTION  

 In type-II superconductor [1-24], when the applied mag-
netic field 

1C
BB > , the flux lines penetrate the superconduc-

ting sample to form a long-range order of vortex lattice or 
flux line lattice if the sample is homogeneous [1]. However, 
the quenched disorder always destroys the long-range order 
of the vortex lattice for quenched disordered type-II super-
conductors, after which only short-range order, the vortex 
bundle, remains [3, 6-11]. The vortex lines inside the vortex 
bundle oscillate about their equilibrium positions due to 
thermally agitation for finite temperature [7, 8].  

 In this paper we are going to develop a self-consistent 
theorem of thermally activated vortex bundles flow over the 
directional-dependent potential barriers. The coherent fre-
quency of oscillation of the vortex bundle, and the mean 
direction of the random collective pinning forces of the 
vortex bundles are evaluated by applying the theorem of 
random walk. The directional-dependent potential barrier 
generated by the Magnus force and the random collective 
pinning force and strong pinning force are calculated. The 
bundle flow velocity is then obtained self-consistently. 
Finally, the Hall and longitudinal resistivities induced by the 
bundle flow are calculated.  

 The rest of this paper is organized as follows. In section 
2, a mathematical model is presented. In section 3, the 
coherent frequency of oscillation of the vortex bundles and 
the mean direction of the random collective pinning forces of 
the vortex bundles are calculated. The directional-dependent 
energy barrier is obtained in section 4. In section 5, the 
bundle flow velocity is evaluated, the Hall and longitudinal 
resistivities are calculated. Finally, the concluding remarks 
are given in section 6.  
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2. MATHEMATICAL DESCRIPTION OF THE 

MODEL 

 Let us consider a type-II conventional or high-
c

T super-
conductor, the Hamiltonian of the fluctuation for the flux 
line lattice (FLL) in the directionz  is given by [9, 11, 12].  

Rf HHH +=  (1) 

where ekinf HHH += represents the Hamiltonian for the 
free modes [9, 11, 12], with

kin
H the kinetic energy part [9, 

11, 12]  
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H  the elastic energy part [9, 11, 13],  
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and 
R

H  represents the random Hamiltonian, given as [9, 11, 
12], 

=
μ

μμ
K

RR KSKfH )()(  (4)  

where ),(),( yx=μ ,  is the effective mass density of the 

flux line [14],
222

yx KKK += , )(),( KSKP μμ  are the Fourier 

transformations of the momentum and displacement 

operators, and 4411,, CCC
L

and 
66

C are temperature- and K -

dependent bulk modulus, compression modulus, tilt modulus 

and shear modulus, respectively. )(KfR  is the Fourier trans-

formation of the collective pinning force )()( rVrf RR = , 

with )(rV
R

 the random potential energy of the collective 

pinning [15, 16], which is the sum of the contributions of 

defects within a distance  of the vortex core position r , 
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where  is the temperature-dependent coherent length. The 

correlation functions of the random collective pinning force 

are assumed to be the short-range correlation [9], 

)'(),()'()( * kkBTkfkf C

thRR =>><<  (5) 

where 
th

>><<  are the quantum, thermal, and random 

averages, and ),( BT
C

 is the temperature- and magnetic 

field-dependent correlation strength.  

 The equation of motion of the displacement operator 
)(KSμ  can be obtained from Eq. (1) as  
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 Then the solution of Eq. (6) can be obtained as  

)()()( KSKSKS fR μμμ +=  (7)  

where )(KS
Rμ  denotes the deformation displacement 

operator of the FLL due to the collective pinning of the 

random function )(KfRμ , and )(KS fμ  is the displacement 

operator for the fluctuation of the free modes. They are given 

by 
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respectively, where 1=μ  presents the component parallel to 
the K  direction, while 2=μ  is perpendicular to the K  
direction. It is understood that the free Hamiltonian can be 
diagonalized with the eigenmodes spectrum [9, 11, 12].  
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with 
+

μK
, 

μK
 are the creation and the annihilation opera-

tors for the corresponding eigenmodes.  

 The quenched disorder destroys the long-range order of 

the FLL, after which only short-range order, the vortex 

bundle, prevails. The corresponding size of vortex bundle 

|| R  is determined by the relation [11, 12].  

22|)0()(| fthRR rSRS =>><<  (11)  

where fr  represents the random collective pinning force 
range.  

3. COHERENT OSCILLATION FREQUENCY AND 
MEAN DIRECTION OF COLLECTIVE PINNING 

FORCE FOR VORTEX BUNDLES  

 Let us consider a p-type superconductor, with the applied 

magnetic field B in the z-axis and the external current 

density J in the x-axis 
x

eJJ =  with 
C

JJ < , where 
C

J  is 

the critical current density of the superconductor. The 

equation of motion of the vortex line inside the vortex 

bundle driving by the thermal radiation of frequency  is 

given by  
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where 
v

r  is the displacement of vortex line from its 

equilibrium position, E denotes the electric field of the 

thermal radiation, 
v

M  stands for the effective mass, and q  

is the total circulating charge of the vortex line, 
0

 is the 

unit flux, 
R

/1  characterizes the damping rate associated 

with the motion of the vortex line, 
R

k  represents the 

restoring force constant for the vortex line under the action 

of random collective pinning force, and elf is the elastic 

force of the vortex line inside the vortex bundle. The 

homogeneous solution of the equation (12) vanishes quickly 

due to the presence of damping. The particular solution 

includes two parts: the time-dependent and time-independent 

parts.  

 The time-dependent part of the particular solution 

oscillates with frequency  about a new equilibrium 

position, which is determined by the time-independent part 

of the particular solution. By identifying the oscillation 

energy of the vortex line inside the potential barrier with the 

thermal energy, the thermal oscillation frequency  of the 

individual vortex inside the potential barrier can be 

expressed as  

T=  (13) 

with 
vB

MkA 2/)/1(= , where A  stands for the 
random- and thermal-averaged amplitude of the oscillation 
of the vortex line in the bundle, 

B
k  is the Boltzmann 

constant.  

 However, the oscillations of vortex lines inside the vortex 

bundle are not coherent, namely, their oscillations are at 

random. To obtain the coherent oscillation frequency 
c

 of 

the vortex bundle as a whole, by utilizing the random walk’s 

theorem, the frequency  in equation (13) must be divided 

by the square root of N, the number of vortices inside the 

vortex bundle  

BR

T

N
c

0
==  (14) 

where R  is the transverse size of the vortex bundle and B  

is the value of the applied magnetic field.  
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 The time-independent part of the particular solution is 
give by 

R
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p
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 The above result indicates that the vortex line moves to a 

new equilibrium position pr  from its original one. Since the 

elastic force is much less than the Lorentz force, the angle 

between the random collective pinning force and the positive 

y-direction measured in the counterclockwise sense can be 

obtained approximately as  
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 where || elf and || Lf are the magnitudes of elastic force and 

Lorentz force of the vortex line, respectively. Taking into 

account the fact that the compression modulus 
11

C  is much 

larger than shear modulus 
66

C  [9, 10], we arrive at, the 

magnitude of the displacement vector |)(| rS f  of the vortex 

line as well as its corresponding elastic force || elf is 

proportional to 
66

Ck
B

, or )/()1( TTTB
C

.  

 The temperature- and field-dependent  can therefore be 
written as 
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T
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c

=
1

),(  (17)  

where  is a proportional constant. By applying the random 
walk theorem, the mean angle ),( BT between the random 
collective pinning force of vortex bundle and positive y-
direction measures in counterclockwise sense, can be 
expressed as  

TT

T
BTNBT

c

== ),(),(  (18) 

where 
0

/= R . 

4. DIRECTIONAL-DEPENDENT ENERGY BARRIER 

 In this section we shall calculate the directional-
dependent energy barrier of the vortex bundles generated by 
the Magnus force, random collective pinning force, and the 
strong pinning force inside the vortex bundle. The 
directional-dependent potential barrier means that the energy 
barrier is a function of direction of the thermally activated 
motion. Assuming that the external current is in the x-
direction and the applied magnetic field in the z-direction, 
the Magnus force acting on the vortex bundle can then be 
obtained as  

zbTsM
eBvvenVF ˆ)(=  (19) 

where 
b

v  is the velocity of the thermally activated vortex 

bundle flow, V  is the volume of the vortex bundle, e  is the 

electron charge, 
s

n  and 
T

v  are the supercharge density and 

its velocity, respectively, with 
xTs

eJvenJ == , and 

z
eBB = . From the theory of mechanics, the potential 

generated by a force field )(rF  is  

rdrFVRV
R

=
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 After some algebra, the directional-dependent energy 
barrier of the vortex bundles both in the positive and 
negative x-direction as well as y-direction are obtained as  
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respectively, where U  is the potential barrier generated by 

the strong pinning force due to the randomly distributed 

strong pinning sites inside the vortex bundle, R  represents 

the transverse size of the vortex bundle, the range of U is 

assumed to be of the order R , and RpF ><  stands for the 

random average of the random collective pinning force per 

unit volume.  

5. BUNDLE FLOW VELOCITY AND ITS INDUCED 
LONGITUDINAL AND HALL RESISTIVITIES  

 The results of equation (21) indicate that the directional-
dependent potential barrier used for calculating the vortex 
bundles flow velocity actually itself contains the vortex 
bundles flow velocity. Therefore, the velocity of thermally 
activated vortex bundles flow over the directional-dependent 
energy barrier must be solved self-consistently as follows  
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with 
c

 is the coherent oscillation frequency of the vortex 

bundle. Taking into account the fact that 1)/( <<
Tbx

vv , the 

vortex bundle flow velocity can be approximately obtained 

as, 
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where  is the mean angle between the random collective 

pinning force of the vortex bundles and positive y -direction 

measured in the counterclockwise sense. By considering the 

identities BvE
b

= , JE
xxx
/= , JEyxy /=  together 

with Eq. (18) and bearing in mind that  is usually very 

small, the longitudinal and Hall resistivities induced by the 

vortex bundles flow can now be obtained, respectively, as 

follows: 
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and 

BJv xxby /|| =  (28)  

where 2

1

)/),(( VBT
C

 is the magnitude of the random 
average of the random collective pinning force per unit 
volume, and  is a proportional constant.  

 In fact, the arguments in the exponential functions inside 
the curly bracket of Eqs. (26) and (27) are very small when 
the Lorentz force is close to the random collective pinning 
force, we finally obtain the temperature- and field-dependent 
longitudinal and Hall resistivities as  
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respectively, with BJv xxby /|| = .  

 In the following subsections, we shall calculate the 
longitudinal and Hall resistivities induced by thermally 
activated vortex bundles flow for type-II superconducting 
bulk materials and thin films as functions of temperature and 
applied magnetic field. The results are then comparing with 
experiments. 

5.1. Induced Longitudinal and Hall Resistivities for 
Type-II Superconducting Bulk Materials  

 Now let us concentrate on the case for type-II 

superconducting bulk materials, the volume V  for the vortex 

bundle in Eqs. (29) and (30) is given as LRV
2

= , where 

)(LR  is the transverse (longitudinal) size of the vortex 

bundle. In this case, the longitudinal and Hall resistivities for 

type-II superconducting bulk materials now become  
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respectively, with BJv xxby /|| = .  

5.1.a. Longitudinal and Hall Resistivities for Constant 
Temperature  

 Under the framework of present theory, the results of 

numerical calculations for 
xx

and xy , when the 

temperature is kept at KT 91= , are given in Table 1. It is 

shown that as the applied magnetic field decreasing, xy  

initially decreases, crossing over from positive to negative 

near 3.03 Tesla, after reaching a minimum at 1 Tesla, then 

increases again; while 
xx

 decreases monotonically. These 

results are in agreement with the experimental plotting for 

xy and 
xx

 versus applied magnetic field on 
732

OCuYBa  

high-
c

T  bulk materials [17]. In obtaining the above results, 

the following approximate data have been employed:  
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C
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362/1 /109849.2)/)03.3(( mNV
C
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C
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362/1 /109668.1)/)2(( mNV
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362/1 /104748.1)/)5.1(( mNV
C

= , 
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352/1 /10854.9)/)1(( mNV
C

= , 

352/1 /104042.7)/)75.0(( mNV
C

= , 

and 
352/1 /10915.4)/)5.0(( mNV

C
= . 

Table 1. 
  

xy
and 

  xx
versus Applied Magnetic Field in Tesla 

for 
 
YBa

2
Cu

3
O

7 -
 High-

 
T

c
 Superconducting Bulk 

Materials at 
   
T = 91 K  

 

  
B (T )  

   xy
( m)  

   xx
( m)  

3.5 
  
1.2914 10

9  
  
1.8739 10

6  

 3.03 
  
1.7658 10

15  
  
1.5916 10

6  

 2.5 
  

1.4627 10
9  

  
1.2663 10

6  

 2.0 
  

2.7907 10
9  

 
9.5142 10

7  

 1.5 
  

3.9996 10
9  

 
6.2539 10

7  

 1.0 
  

4.6405 10
9  

 
2.9669 10

7  

 0.75 
  

3.9801 10
9  

  
1.6825 10

7  

 0.5 
  

2.0098 10
9  

  
1.226 10

7  

 

5.1.b. Longitudinal and Hall Resistivities for Constant 

Magnetic Field  

 Within the framework of present theory, the numerical 

calculations of the Hall and longitudinal resistivities when 

the applied magnetic field is kept at a constant value 

24.2=B Tesla are given in Table 2. It is shown that as  

 

Table 2. 
  

xy
 and 

  xx
 versus Temperature for 
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High-
 
T

c
 Superconducting Bulk Materials at 

   B = 2.24  Tesla 

 

  
T (K )  

   xy
( m)  

   xx
( m)  

91.6 
  
6.96 10

10  
  
1.878 10

6  

91.3 
  

1.82 10
11  

  
1.396 10

6  

91 
  

2.491 10
9  

  
1.094 10

6  

90 
  

4.199 10
9  

  
7.028 10

7  

89 
  

4.722 10
9  

 
5.22 10

7  

88 
  

3.081 10
9  

 
4.91 10

7  

 

 

temperature decreasing, xy  initially decreases, crossing 

over from positive to negative near 91.3 K, after reaching a 

minimum at 89 K, then increases again; while 
xx

 decreases 

monotonically. These results are in agreement with the 

experimental plotting for xy and 
xx

 versus temperature on 

732
OCuYBa  high-

c
T  bulk materials [17]. In arriving at the 

above results, the following approximate data have been 

used: mR
8

102= , mL
6

10= , 26
/10 mAJ = , KT

c
92= , 

sec/10
3
mv

T
= , 111

sec10= , 2/15
1059.5= T , 

21007.2)/exp( =TkU
B
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362/1 /10178.2)/)6.91(( mNVT
C
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362/1 /10194.2)/)3.91(( mNV
C
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C
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C
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C

= ,  

and 
362/1 /10224.2)/)88(( mNV

C
= .  

5.2. Induced Longitudinal and Hall Resistivities for 
Type-II Superconducting Films  

 Now let us turn our attention to type-II superconducting 

films, the volume V  of the vortex bundle is therefore 

expressed by dRV
2

= , with R the transverse size of the 

vortex bundle and d  the thickness of the film. The 

longitudinal and Hall resistivities of Eqs. (29) and (30) can 

now be described as  
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respectively, with BJv xxby /|| = .  

5.2.a. Longitudinal and Hall Resistivities for Constant 
Temperature 

 Under the framework of the present theory, the numerical 

calculations of xy and 
xx

as functions of applied magnetic 

field in Tesla, when temperature is kept at a constant value 

KT 5.4= , are given in Table 3. It is shown that as the 

applied magnetic field decreasing, xy  initially decreases, 

crossing over from positive to negative between 7.25 and 7 

Tesla, after reaching a minimum at 5.75 Tesla, then increases 

again; while 
xx

 decreases monotonically. These results are 

in agreement with the experimental plotting for xy and 
xx

 

versus applied magnetic field on SiMo
3

 conventional low-

c
T  superconducting films [18]. In obtaining the above 

results, the following approximate data have been employed: 

mR
8

102= , md
8

105= , 25
/105.1 mAJ = , 

KT
c

5.7= , sec/30 mv
T
= , 2/13

100449.1= T , 
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111
sec10= ,  
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Table 3. 
  

xy
 and 

  xx
 versus Applied Magnetic Field in Tesla 

for 
 
Mo

3
Si  Conventional Low-

 
T

c
 Superconducting 

Films at 
   
T = 4.5 K  

 

  
B (T )  

   xy
( m)  

  xx
( m)  

 7.5  
  
4.3399 10

11   
  
8.2782 10

7  

 7.25  
  
1.5804 10

11   
 
7.8079 10

7  

 7.0  
  

2.6037 10
11   

  
7.2721 10

7  

 6.75 
  

6.7189 10
11   

 
6.742 10

7  

 6.5 
  

1.023 10
10   

  
6.24 10

7  

 6.25 
  

1.283 10
10   

  
5.78 10

7  

 6.0 
  

1.1842 10
10   

  
5.492 10

7  

 5.75 
  

8.8118 10
11   

  
5.3044 10

7  

 5.5 
  

3.752 10
11   

  
5.2209 10

7  

 

 
5.2.b. Longitudinal and Hall Resistivities for Constant 

Magnetic Field  

 The results of numerical calculations for xy  and 
xx

 as 

functions of temperature when the applied magnetic field is 

kept at a constant value 2=B  Tesla are given in Table 4. It 

is shown that as temperature decreasing, xy  initially 

decreases, crossing over from positive to negative near 100 

K, after reaching a minimum at 96 K, then increases, 

crossing over back from negative to positive near 88 K, 

reaching a local maximum at about 78 K, then decreases 

again; while 
xx

 decreases monotonically. These results are 

in agreement with the experimental plotting for xy and 
xx

 

versus temperature on 
8222

OCuBaTl  high-
c

T  superconduc-

ting films [19]. In obtaining the above results, the following 

approximate data have been used:  

 mR
8

102= , md
6

10= , 27
/10 mAJ = , KT

c
104= , 

sec/10
2
mv

T
= , 111

sec10= , 

2/14
1012.1= T , 

5103199.8)/exp( =TkU
B

, 

372/1 /108464.1)/)102(( mNVT
C

== , 

 
372/1 /109031.1)/)100(( mNV

C
= , 

372/1 /1093267.1)/)98(( mNV
C

= , 

372/1 /109512.1)/)96(( mNV
C

= , 

372/1 /10955.1)/)92(( mNV
C

= , 

 
372/1 /1095618.1)/)88(( mNV

C
= , 

372/1 /109588.1)/)84(( mNV
C

= , 

372/1 /10961069.1)/)78(( mNV
C

= ,  

and 
372/1 /109631.1)/)76(( mNV

C
= . 

Table 4. 
  

xy
and 

  xx
 as Functions of Temperature 

for
 
Tl

2
Ba

2
Cu

2
O

8
High-

 
T

c
 Superconducting Thin 

Films at   B = 2  Tesla 

 

  
T (K )  

   xy
( m)  

   xx
( m)  

 102  
  
2.1346 10

11   
  
1.6728 10

8  

 100  
  

3.69 10
19   

  
1.0657 10

8  

 98  
  

1.4607 10
11   

  
7.4819 10

9  

 96 
  

2.3518 10
11   

  
5.4754 10

9  

 92 
  

1.0344 10
11   

  
5.1609 10

9  

 88 
 
5.9409 10

19   
  
5.1382 10

9  

 84 
  
5.46 10

12   
 
4.951 10

9  

 78 
  
1.3011 10

11   
  
4.8488 10

9  

 76 
  
1.2967 10

11   
  
4.65 10

9  

 

CONCLUSION  

 The theory of the thermally activated vortex bundles flow 
over the directional-dependent potential barrier induced by 
the Magnus force, random collective pinning random force, 
and strong pinning force inside the vortex bundles for type-II 
superconductors is developed. The coherent oscillation 
frequency and the mean direction of the random collective 
pinning force of the vortex bundle are evaluated. The bundle 
flow velocity is obtained. Finally, the longitudinal and Hall 
resistivities induced by the bundle flow are calculated for 
type-II superconducting bulk materials as well as thin films. 
The results are in agreement with the experiments.  
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