Fabrication of Magnetic Co/Pt Nanodots Utilizing Filled Diblock Copolymers

A. Neumann*,1, N. Franz1, G. Hoffmann1, A. Meyer2 and H.P. Oepen1

1Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, D-20355 Hamburg, Germany
2Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany

Abstract: The potential of nanosphere lithography utilizing di-block copolymers is demonstrated. The starting configuration is a single layer of micelles, filled with silica, deposited on a ferromagnetic system. After removing the organic shell the SiO2 cores remain on the surface and are used as shadow mask for a succeeding ion milling process. It is demonstrated how the magnetic properties of the dots can be varied by tuning either the magnetic properties of the ferromagnetic layer/multilayer or the size of the cores. Dots are created that reveal ferromagnetic or superparamagnetic properties.

Keywords: Nanosphere lithography, diblock copolymers, micelle, nanodot, magnetism, ion milling, patterned media, anisotropy tuning.

INTRODUCTION

The slogan “Nano is beautiful” has been created with respect to the fascinating possibilities and rich variety of new effects that emerge due to size reduction on the nanoscale. The fields of interest cover new optical properties in nanosized semiconductors [1, 2], increased chemical activity in nanoscale catalysis [3], and one-/two- dimensional phenomena in electrical transport and/or electronics [4-7]. Magnetic particles have attracted much attention because of their high potential in different technological fields of application. In biotechnology magnetic particles are used as contrast enhancing media in magnetic resonance imaging and as a direct addressable consistent in hypothermic treatment or drug delivery [8, 9]. A boost in the research field on magnetic nanoparticles, however, is generated due to their high potential in ultrahigh density storage media [10, 11]. The so called bit patterned media are proposed where one bit is represented by a single magnetic nanoparticle to shift the superparamagnetic limit, which is a problem in granular thin film media [12], towards smaller sizes. Magnetic nanoparticles are also important in down scaling of magnetic logic known as spintronics. Particularly in spin transfer torque devices the smaller scales reduce the current for switching and magnetization precession that generate radio frequencies [13-17]. Besides the application that is directed towards development, the investigation of the physical properties is in itself an amazing field of research.

The fabrication of magnetic nanoparticles is performed along very different routes [8, 18, 19]. A very successful approach is the synthesis using wet chemical processes. Large quantities of nanoparticles with a narrow distribution of sizes are achieved [20-23]. The limitation of this method, however, is that tuning of the magnetic properties is almost impossible. In accordance with their natural environment of fabrication (in solution) such nanoparticles are frequently and successfully used in biotechnology [24-27]. For the application in magnetic storage and spin devices a severe problem is to bring the particles on a supporting sample with the particles well aligned with regards to their crystal structure or magnetic axis [28-30]. The latter obstacle is circumvented by alternative methods that directly create the nanostructures on the supporting surface. Here, either artificial structuring of magnetic films or the so-called bottom up approach utilizing self-assembling procedures is used to generate nanoparticles at a surface. Via e-beam lithography perfect large arrays of almost identical particles can be fabricated which are very well adapted to the needs of storage media [31-34] although the effort of serial structuring grows tremendously when approaching the sub 50 nm limit. This bottleneck is overcome by the so-called graphoepitaxy [35, 36] which uses an artificially generated large scale pattern that serves as template for guided self-organization of organic systems which create smaller periodicities [37-39]. The arrays of smallest particle size and best homogeneity of magnetic properties have been created by this method [40]. New attempts of parallel processing were made via extreme ultraviolet lithography recently [41].

The direct bottom up approach is either to use self-assembling in thin film growth of magnetic systems on single crystal surfaces [42-46] or to create a nanoscaled surface morphology via ion milling for the deposition of magnetic material [47, 48]. Nanostructures fabricated by these methods have typically a broad distribution of sizes and the magnetic properties are fixed, determined by growth, structure and shape. For technical applications this ansatz is not from interest as it does not guarantee the tuning of geometries and magnetic properties while it is very well suited for investigation of magnetism on the nanoscale in basic research. Self-assembling of organic systems made from block copolymers is a promising route to create nanoscaled surfaces for deposition of magnetic material. The advantage over the ion milling ansatz is a higher symmetry
and flexibility of the size and the geometry. The scales fit the sizes that are interesting nowadays [49-54].

Recently, the structuring of magnetic films via nanosized etching masks, which are generated in a self-organization process, has gained attraction. For that purpose colloidal particles (natural lithography [55]) or polystyrene nanospheres are frequently used (nanosphere lithography [56]). On the one hand the self-assembled polystyrene spheres are covered by magnetic films and multilayers which creates separated nanodots on the top of the spheres [57] while on the other hand reactive ion etching or ion milling is used to clone the periodic structure into a magnetic thin film system [58, 59]. To tune the diameter as well as the spacing of the particles the organic spheres are shrunk in a plasma etching step before structure transfer [60-62]. A similar technique uses diblock copolymer micelles as self-assembling units which are filled with magnetic or non-magnetic material [28-30, 63-65]. Magnetic dot arrays can be directly created when magnetic core material is used and the organic shell is removed in oxygen plasma [28-30]. Alternatively, non-magnetic cores can be brought onto a magnetic film in an identical procedure. A replica of the structure is then created in the film via ion milling [66]; a procedure that is very close to nanosphere lithography. In this paper we report on the flexibility which is obtained by using the latter technique in which micelles with SiO2 cores are deposited on the surface of magnetic films and multilayers.

FABRICATION PROCEDURE

All systems discussed in the following have a seed layer of platinum with a thickness of at least 4 nm. The seed layer is grown by ion beam sputtering utilizing an electron cyclotron source, which has been shown to trigger multilayers with high texture [67, 68]. The multilayers are grown via DC magnetron sputtering, starting with a 1 nm Pt layer grown on the seed layer and finishing with a 3 nm Pt cap layer. The thickness, roughness and texture are controlled via X-ray reflectometry and -diffraction. We will not comment on these properties as it is out of the scope of this paper.

The synthesis of diblock copolymers and their filling with SiO2 is published elsewhere [69, 70]. The micelles are deposited via dip or spin coating. They form a close packed monomolecular layer on the multilayer film [65]. In the next step the polymer shell of the micelles is removed in oxygen plasma. The SiO2 cores remain on top of the film. The scanning electron microscope (SEM) image (Fig. 1a) is taken with the sample tilted by 60°. This view reveals that the well separated SiO2 particles are spheres. The separation of the SiO2 particles is determined by the diameter of the micelles (about 90 nm in Fig. 1).

The structure of the particle array is transferred into the magnetic film via Ar ion milling at 500 eV (Fig. 2). The sputtering takes off the film material between the particles while the SiO2 cores protect the underlying film from being removed. The ion dose determines the amount of material which is taken off. The milling has to be stopped when the magnetic material is totally removed and before the material below the SiO2 dots is affected. The milling process has been investigated and calibrated utilizing the evolution of the magneto-optic saturation signals of an unstructured film with the same Co/Pt layer structure [66]. A linear decrease of the Kerr signal with ion dose is found while the perpendicular easy axis of magnetization is preserved at the beginning. The latter result is important as it indicates that material is erased while the destruction of the multilayer by ion bombardment is small, evidenced by the persisting perpendicular magnetic anisotropy. This means that the stopping of the milling is not very critical as the Pt cap layer below the SiO2 particles serves as a further protection. To determine the sputtering yields of the porous SiO2 we have measured the ratio of the yields of silica and Pt by measuring the evaluation of dot height with atomic force microscopy (AFM) [66]. A SEM image of a magnetic dot array is shown in Fig. 1b. Obviously, the structure of the SiO2 particles (Fig. 1a) is reproduced in the multilayer film. The micrograph again is taken under an angle of 60° which reveals the three

Fig. (1). SEM micrograph of SiO2 cores (a) and magnetic nanodots (b) taken at an angle of 60°. The SiO2 cores are spheres whereas the nanodots look more like spherical caps. The seed layer between the dots is roughened which is caused by spatially varying milling yields that depend on orientation of grains.
dimensional structure of the magnetic dots. The nanomagnets have a shape like a spherical cap. The morphology of the surface between the dots comes from a roughening of the polycrystalline seed layer due to the ion milling process. The origin is the sputtering yield that varies on the orientation of grains [71-73].

The shape of the dot that is carved into the multilayer is directly related to the shape of the particles that act as mask and depends on the ratio of the sputtering yields. A cross section of the effective shape of a spherical particle is shown in Fig. (3a). The amount of active material that protects the underlying film is highest in the center (thickness 2r). The thickness drops to zero within the radius of the particle (Fig. 3a). This means that ion eroding will start from the outer rim. A profile is created and the size of the magnetic part of the dots will shrink with sputtering time (Fig. 3a). The simulation shown in Fig. (3a) were made using the yield ratios of $Y_{SiO2}/Y_{Pt}/Y_{Co} = (1.9\pm0.1)/1.265/1.248$ [74] and a total sputtering dose of 8×10^{20} Ar ions/m2. The sputtering yield for porous SiO$_2$ is not published and was determined experimentally as mentioned above. For comparison dots were fabricated using the parameters of the simulation. Results of the experiments are shown in Fig. (3b). The theoretical value of the dot height 11.5 ± 1 nm deviates slightly from the experimental result 9 ± 3 nm (Fig. 3c). The deviation is most likely caused by different densities of the porous SiO$_2$ in the experiment and the calibration. To improve the accuracy it will be necessary to re-calibrate the relative sputtering yield for each batch of newly fabricated micelles. From SEM micrographs taken in normal incidence geometry (Fig. 4a, b) we can determine the diameter of the SiO$_2$ cores and the nanodots utilizing a procedure explained before [66]. The size distribution of cores and the resulting nanodots are shown in Fig. (4c, d). An average diameter of 28 ± 2 nm for the nominal 27 nm cores is found while the diameter is shrunk to 25 ± 4 nm. The reduction of the diameter comes from the fact that the base point of Pt in Pt cannot be seen in the SEM image. Due to material contrast the lower interface between the Co- and Pt layer is visible which has a smaller diameter (see Fig. 4b). The error margin is large because the contrast is very low. From the simulation we obtain a diameter of the lower Co interface of 26 ± 2 nm. The simulation is helpful for the adaption of film structure and micelle size for optimal dot parameters. A general behavior is that the smaller the cores the thinner the film system has to be. This means that the layer sequence has to be adapted to the prerequisites of the research task.

The mean size and distance of the dots can be tuned by varying the core and/or shell diameter of the deposited micelles. An example is given in Fig. (5). The SEM micrographs show SiO$_2$ particles on a ferromagnetic multilayer after treatment in the oxygen plasma before ion milling. This flexibility in tuning particle and array dimensions is very advantageous as it allows to fitting different experimental prerequisites, like e.g. area filling to meet the experimental sensitivity, and addressing scientific questions, like e.g. interactions in arrays. Another very important feature of our fabrication procedure is the ability to independently tune the magnetic properties which is achieved via tuning the magnetic properties of film or multilayer.

RESULTS

To demonstrate the flexibility of tuning the magnetic properties we give some examples in the following. We restrict the discussion on film systems that are made from Co and Pt layers. It has to be mentioned that there is neither a general restriction to the film system nor the material that can be used to create dots. For experimental reasons we measure the Kerr rotation/ellipticity for fields oriented perpendicular/parallel to the film plane. All measurements discussed here were made at room temperature. Three systems will be discussed.
Fig. (3). (a) Simulation of the nanodot profile created by ion milling and experimental results. For the simulation the effective thickness of the SiO₂ core that acts as protecting shield (left-hand side) was calculated. On applying a dose of 8×10^{20} Ar ions / m² the SiO₂ is removed and a profile in the multilayer is generated (right-hand side). For sake of simplicity a re-deposition and the angle dependence of sputter yields were not considered. Sputter yields for Pt and Co were taken from [74]. The relative yield of the porous SiO₂ compared to Pt was experimentally determined. A ratio of 1.9±0.1 has been found. (b) AFM measurements of the SiO₂ (left) and the dots after ion milling (right). The lower panel (c) shows the height distribution of the structures from (b). The height of the magnetic nanodots obtained from the simulation is slightly larger than the experimental value which is most likely caused by slight variation of the density of the porous SiO₂ used in the experiment and calibration.
Fabrication of Magnetic Co/Pt Nanodots Utilizing Filled Diblock Copolymers

Fig. (4). SEM micrograph taken under normal incident. In (a) SiO₂ cores are shown before sputtering. Image (b) displays the magnetic dot array obtained after milling the sample shown in (a). The plots in (c, d) show the size distribution of the SiO₂ cores (c) and the nanodots (d) obtained by analyzing the SEM micrographs (a, b). The mean diameter of the dots is smaller than the mean diameter of the SiO₂ cores. The width of the size distribution increases after sputtering.

Fig. (5). SEM micrographs of samples covered by different SiO₂ cores. Nominal diameter and separation of the cores increase from left to right. With \(D\) the particle diameter and \(a\) the center to center distance, the values are: (a) \(D = 12\) nm, \(a = 32\) nm, (b) \(D = 17\) nm, \(a = 36\) nm, (c) \(D = 18\) nm, \(a = 43\) nm, (d) \(D = 18\) nm, \(a = 48\) nm, (e) \(D = 20\) nm, \(a = 112\) nm, (f) \(D = 20\) nm, \(a = 125\) nm.
1) In an earlier publication it has been demonstrated that ferromagnetic nanostructures with an easy axis of magnetization perpendicular to the surface can be fabricated [66]. The nanodots were made from a Pt$_{4.1\text{nm}}$Co$_{0.7\text{nm}}$Pt$_{2\text{nm}}$Co$_{0.7\text{nm}}$Pt$_{3\text{nm}}$ multilayer. The dot diameter was 17±2 nm. It was found that the coercivity of the dots is increased compared to the film system which was assigned to the difference of the reversal mechanisms in dots and films [66]. A multilayer of the same composition, with strong perpendicular magnetic anisotropy, has been used to create smaller dots with a diameter of 12±3 nm (separation ~30 nm). The dots exhibit a superparamagnetic behavior (Fig. 6). The magnetization curves for fields acting along the surface normal and parallel to the film plane are shown. Both curves have an s-like shape with no remanence. The magnetization behavior is not depending on the in-plane field orientation. Although measured at the same temperature different M(H) curves are obtained for perpendicular and in-plane oriented films (Fig. 6) which immediately demonstrates that the magnetic anisotropy is still effective in the dots. This means that the system represents a superparamagnetic system with uniaxial behavior, similar to the results for magnetic cobalt chains on platinum [75]. In common experiments on superparamagnetism the particles are randomly oriented which eliminates any uniaxial behavior although the individual particle might behave like a uniaxial magnet. In that sense the system created here is unique as it allows the investigation of the superparamagnetic behavior with respect to distinct axes. It is possible to fit the two independent measurements (Fig. 6) with a Boltzmann statistic for classical moments including the uniaxial magnetic anisotropy. For the fitting of both curves the same set of parameters are used (Fig. 6) which allows us to extract an average anisotropy. We obtain for the ratio $K_1/2M_S = 0.1435 \text{ J/(Am)}$ from which the first order anisotropy constant $K_1 = 410 \text{ kJ/m}^3$ is achieved using $M_S = 1.44 \times 10^6 \text{ A/m}$ [76]. This value is within the estimated span of the film anisotropy which could not be determined accurately for experimental reasons.

2) The advantage of the fabrication process is that the properties of the dots can be manipulated in various ways. To tune the dot anisotropy towards an isotropic behavior a film with easy axes of magnetization within the film plane is used. The magnetization behavior of the Co film sandwiched by Pt (Pt$_{10\text{nm}}$/Co$_{5\text{nm}}$/Pt$_{3\text{nm}}$) is shown in the insets of Fig. (7). The M/H curve in vertical fields reveals a hard axis behavior with an anisotropy constant in the range of the shape anisotropy (inset 7a). The hysteresis obtained in fields parallel to the surface gives a magnetization curve that saturates in very small fields. A small field scan for different in-plane directions is shown in inset 7b), which reveals almost the same magnetization behavior in all measured field orientations. The latter indicates that the system behaves almost isotropic within the film plane. There is no remarkable aligning force within the film plane and the dots can be expected to reveal a superparamagnetic response within the film plane due to thermal excitations. The result of the investigation is shown in Fig. (7) for nanodots with a diameter of 25±4 nm (separation ~94 nm). As expected the behavior in-plane has changed from the step like response to an s-like magnetization curve. Surprisingly, a strong response is also found in vertical field. This is due to the reduced lateral size of the dots in higher field applied parallel to the film surface. The system still cannot be saturated as expected for superparamagnetic behavior.

![Fig. (6)](image-url) Magnetization behavior of nanodots. The dots consist of Pt$_{4.1\text{nm}}$Co$_{0.7\text{nm}}$Pt$_{2\text{nm}}$Co$_{0.7\text{nm}}$Pt$_{3\text{nm}}$ with a mean diameter of 12 nm (separation~94 nm). The two curves display the Kerr ellipticity/rotation obtained in in-plane/perpendicular fields, respectively. The nanodot ensemble exhibits a superparamagnetic behavior with an easy axis perpendicular to the plane. The inset shows the magnetization behavior of the dots in higher field applied parallel to the film surface. The system still cannot be saturated as expected for superparamagnetic behavior.
the dots. Calculating the shape, assuming a disk like dot [77], we obtain a reduction of the shape anisotropy by a factor of two. This brings the effective shape anisotropy into the range of the first order bulk anisotropy of hcp Co (0.5 MJ/m3 [76]). Both remaining anisotropies favor contrary alignment (in-plane or perpendicular, respectively). As a consequence they almost compensate and the remaining effective anisotropy is very small. An almost isotropic superparamagnetic behavior reveals although the dot morphology is by no means spherical. This example demonstrates that in Co dots, due to the strong magneto crystalline anisotropy, the dot shape manifests already in the hysteresis for particles with a ratio of diameter to thickness of about 5. The conclusion is that solely via the thickness of cobalt the properties of the dots can be tuned to ferromagnetism or different superparamagnetic behavior, i.e. to anisotropic as well as isotropic behavior.

3) The fabrication of layered systems gives another opportunity to vary magnetic quantities of the dots. Besides the tuning of the magnetic anisotropy it is possible when changing to multilayers to vary independently magnetic anisotropy and magnetic volume. The latter flexibility allows for setting e.g. the blocking temperature on purpose. An example is given in which about the same size of nanodots but a multilayer of much smaller total Co thickness with perpendicular anisotropy ($K_{1,eff} = 47$ kJ/m3) is used. Fig. (8) gives the magnetization curves for two different dot arrays made from the same multilayer with first order anisotropy of $K_{1,eff} = 47$ kJ/m3. The diameter of the magnetic dots is 22±3 nm and 26±4 nm, respectively (separation ~115 nm/102 nm). Both curves are attained in vertical fields. Although the starting magnetic anisotropy is considerably higher in the multilayer the hysteresis curves look very similar compared to those shown in Fig. (7). This comes from the reduced magnetic volume which is also evidenced by the strong change of magnetic behavior on the reduction of the diameter by 10%. The smaller diameter should increase the perpendicular anisotropy due to shape effects (example above) and support the anisotropic behavior. The volume reduction, however, over-compensates the latter effect and the magnetic behavior of the dot is more determined by the thermal activation. The dots are obviously very close to the blocking temperature. For the larger dots the blocking temperature is closer to room temperature than for the smaller dots.

CONCLUSION

It is shown that mask replication of periodic structures into films via ion etching is a versatile technique for the fabrication of nanodots that allows the tuning of various parameters. Nanodot arrays with different properties have been generated, characterized and discussed in this paper. It is demonstrated that the separation of nano-structuring and the processes determining the magnetic properties is the key advantage. It allows the fabrication of nanodots out of almost any magnetic thin film system. The main ingredients are the availability of nanosized elements that can be deposited on the film as array of well separated elements and a mild ion milling that does not strongly affect the magnetic properties. This procedure gives the researcher the high flexibility that is needed to address different scientific questions.

Fig. (7). Magnetization behavior of nanodots made from a magnetic film with easy plane (film plane) behavior. The dots have a diameter 25±4 nm (see also histogram in Fig. (5); separation ~94 nm). The response within the film plane and perpendicular to the film is very similar. The lateral structuring drastically reduces the shape anisotropy that dominates the film property. The inset a) displays the magnetization response of the corresponding film. The inset b) shows the in-plane response in small fields for different field orientations.
ACKNOWLEDGEMENT

Financial support by the DFG via SFB668 and the Free and Hanseatic City of Hamburg via Landesexzellenzinitiative “Nanospintronics” is gratefully acknowledged.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

REFERENCES

Fabrication of Magnetic Co/Pt Nanodots Utilizing Filled Diblock Copolymers

The Open Surface Science Journal, 2012, Volume 4

Received: May 26, 2011 Revised: March 14, 2012 Accepted: March 15, 2012

© Neumann et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.