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Abstract: MicroRNA (miRNA) is an emerging class of non-coding small RNAs, which post-transcriptionally regulate a 

large number of genes and become important regulators of a broad spectrum of biological processes. To understand the 

principles of miRNA regulation of metabolic networks, we systematically analyzed the relationships between miRNA tar-

gets and network nodes (enzymes) which have distinct network structural features through mapping the miRNA targets 

onto a human metabolic network. Our analysis showed that miRNAs preferentially regulate hub nodes, i.e., top 5% of the 

highly connected nodes in the network, and the network cut points which are the bottle-necks of metabolic flows, how-

ever, avoid regulating intermediate nodes which are the nodes between the hub nodes, cut points, upstream nodes and the 

output nodes. Furthermore, two or three consecutive linear metabolic reactions in the network are enriched with miRNA 

targets, while metabolic branches are depleted with miRNA targets. By targeting the network nodes with distinct network 

structural features, miRNA regulates metabolic networks regionally and locally to reduce specific metabolite production 

in a way of fine-tune modulating metabolic flows. Functional association analysis of miRNAs and metabolic pathways 

uncovered that miRNAs predominantly regulate central metabolic pathways such as amino acid biosynthesis, certain 

sugar and lipid metabolism. 

Keywords: MicroRNA, miRNA, regulation, metabolic network. 

INTRODUCTION 

 According to the central dogma of molecular biology, 
RNAs are passive messengers and only take charge of trans-
ferring genetic information. However, this central dogma is 
being challenged by the recent findings that microRNA 
(miRNA), small noncoding RNA, is able to negatively regu-
late protein-coding genes. miRNAs regulate gene expression 
at the post-transcriptional and translational levels by base-
paring with the cis-elements located on the 3-terminus of 
target message RNAs (mRNAs), which results in the

 
cleav-

age of target mRNAs or repression of their productive
 
trans-

lation. A growing volume of evidence has revealed that 
miRNAs are involved in a variety of biological processes, 
such as embryonic development, cell proliferation, cell dif-
ferentiation, apoptosis and energy balance [1]. In terms of 
metabolism, miRNAs have been found to regulate amino 
acid catabolism, carbohydrate and lipid metabolism, al-
though the molecular mechanisms of miRNA regulation of 
metabolism are not clear [2]. It is currently estimated that 
miRNAs account for ~ 1% of predicted genes in higher eu-
karyotic genomes and that up to one-third of human genes 
might be regulated by miRNAs. Thus miRNAs play impor-
tant roles as negative regulators and add a new level of regu-
lation and fine-tuning for gene expression. Because miRNAs 
regulate a substantial fraction of genes in animal genomes, 
miRNAs may form a complex network that in turn inter-
twines with other cellular networks such as cellular signaling 
and metabolic networks. 
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 Metabolites are critical in biological systems. Some me-
tabolites such as amino acids and fatty acids take part in the 
cellular processes for growth, development and reproduction, 
while some others are involved in defending against para-
sites and cell signaling. Many metabolites are shared by dif-
ferent metabolic pathways and further intertwined to form 
complex networks. Thus, various cellular activities are ac-
companied with the changes of metabolism. It is essential to 
control the rates of metabolic processes in response to the 
changes in an internal or external environment for living 
cells. Mechanisms that control metabolic networks are com-
plex and involve transcriptional, post-transcriptional and 
translational regulations. Traditionally we think that the en-
zymes of metabolic networks are tightly controlled by tran-
scription factors. Moreover, the principles of transcriptional 
regulation of metabolic networks by transcription factors 
have been illustrated through an integrative analysis of gene 
expression profiles and the yeast metabolic network [3, 4]. 
Since miRNAs have been emerged as an abundant class of 
negative regulators, it is reasonable to think that miRNAs 
might regulate cellular networks extensively. Several recent 
computational analyses have been attempted to understand 
the miRNA regulations in a network context. We and others 
have studied the principles of miRNA regulation of the net-
works of human cellular signaling, gene regulation and pro-
tein interactions [5-8]. However, so far it is not clear to what 
extent miRNAs regulate metabolic networks, nor how miR-
NAs mechanistically regulate metabolic networks. 

 To address these questions, we systematically analyzed 
the relationships between miRNA targets and network nodes 
(enzymes) which have distinct network structural features 
through mapping the miRNA targets onto a human metabolic 
network. Our analysis showed that miRNAs preferentially 
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regulate hub nodes, network cut points and avoid regulating 
intermediate nodes. By targeting the network nodes with 
distinct network structural features, miRNA regulates meta-
bolic networks regionally and locally to reduce specific me-
tabolite production in a way of fine-tune modulating meta-
bolic flows. 

MATERIALS AND METHODOLOGY 

Metabolic Network Construction and microRNA Target 

Gene Mapping 

 We used the human metabolic pathways from KEGG 
database (ftp://ftp.genome.jp/pub/kegg/xml/organisms/hsa) 
to construct the metabolic network. We identified all the 
reactions and their associated enzymes and genes. We used a 
reaction-centric model to represent the metabolic network. 
The network is presented as a directed graph in which nodes 
represent enzymes or reactions. For two nodes (reactions) A 
and B, we linked A  B if a product metabolite of A is a 
substrate metabolite of B. 

 The most commonly used molecules such as ATP, NAD, 
CO2 in biochemical reactions were excluded in the network. 
For each node in the metabolic network, we identified all the 
genes associated with it. Human metabolic network contains 

1,549 nodes and 4,740 directed links. In the network, over 
70% of the nodes are linked to form the largest network 
component. The largest component of the human metabolic 
network contains 1,099 nodes and 4,196 links. In this study, 
we used only the largest contiguous component of the net-
work to perform analyses. 

 We used genome-wide computationally predicted 
miRNA target genes in human genome from a recent study 
[9]. Updated miRNA targets from the prediction were down-
loaded from authors’ website. 

Classifying Network Node Types with Distinct Structural 
Features 

 In a reaction-centric network, nodes represent enzymes 
or reactions. We classified the nodes into five categories 
based on their structural features in the network. The nodes 
that have no incoming links are called upstream nodes 
(UPNs, Fig. 1, Supplementary Data 1), where the metabo-
lites are often up-taken from the extracellular space, are used 
to produce downstream metabolites of the network. There-
fore, the UPNs are the most upstream reactions that many 
other downstream reactions and metabolites rely on. On the 
other hand, the nodes that have no outgoing links are called 

Cut point

Hub

Downstream nodes

Upstream node

Intermediate nodes

 

Fig. (1). Node types with distinct network structural features. 
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output nodes or downstream nodes (DSNs, Fig. 1, Supple-
mentary Data 1), where many pathway output metabolites 
such as amino acids of the network are produced. These me-
tabolites are then used for various cellular activities such as 
acting as cell membrane components or regulating signaling 
pathways. A cut vertex or a cut point (CP, Fig. 1, and Sup-
plementary Data 1) is such a bottleneck node that its deletion 
will disconnect at least one component from the network. 
CPs are in crucial network positions and become bottlenecks 
of the network, and therefore control metabolic flows from a 
part to another in the network. The removal of one node 
from a network results in more network components than in 
the original network, we then regarded that node as a CP. To 
identify CPs, we examined each node in the network to 
check whether its removal results in more network compo-
nents. In the network, highly connected nodes (hubs, Fig. 1, 
Supplementary Data 1) are the reactions that share metabo-
lites with many other reactions. The metabolites of these 
highly connected nodes are also major suppliers for the pe-
ripheral region of the network where many output metabo-
lites are produced. In this study, we defined the top 5% of 
the highly connected network nodes, which have higher de-
grees (in- and out-degrees together) as hubs. Besides these 
four types of nodes described above, all other nodes in the 
network are called intermediate nodes (ITNs, Fig. 1, and 
Supplementary Data 1). 

Randomization Tests 

 To test the statistical significance of observations, we 
performed randomization tests. A more detailed explanation 
of randomization tests was previously described by Wang 
and Purisima [10]. Briefly description of the randomization 
tests was the followings: 

 To test the statistical significance of miRNA regulation 
of a multiple-gene-node, we calculated the fraction of 
miRNA targets of the genes which are associated with the 
multiple-gene-node. We then randomly shuffled the miRNA 
targets (genes) 5,000 times among the metabolic genes and 
calculated the P values. We further corrected the P values by 
applying False Recovery Rate (FDR). FDR corrected P val-
ues (<0.25) were considered as significant. 

 To test the statistical significance of the node types which 
are either enriched or less-enriched with miRNA targets, we 
calculated the fraction of miRNA targets of each node type, 
and then randomly shuffled the miRNA targets (nodes) 
5,000 times among the network nodes to calculate the P val-
ues. 

 To test the statistical significance of the linear network 
motifs which are enriched with miRNA targets, we calcu-
lated the fraction of the linear motifs in which all the nodes 
are miRNA targets, and then randomly shuffled the miRNA 
targets (nodes) 10,000 times among the network nodes to 
determine the P values. 

 Metabolic flows are arranged as linear or branching reac-
tions. To test the statistical significance of the miRNA regu-
latory patterns on metabolic branches, we enumerated all the 
possible miRNA targeting patterns for each branch type (see 
Table 1) then calculated the fraction of each pattern. Finally, 
we randomly shuffled the miRNA targets (nodes) 10,000 
times among the network nodes to determine the P values. 

Table 1. Patterns of miRNA Targeting in Convergent and 

Divergent Units 

 

Motifs Type Number of Units P-Value 

 
Pattern-1 

945 <1.0 x 10
-4** 

 
Pattern-2 

212 <1.0 x 10
-4** 

 
Pattern-3 

1398 - 

 
Pattern-4 

2080 - 

 
Pattern-5 

418 <1.0 x 10
-4** 

 
Pattern-6 

4487 <1.0 x 10
-4* 

 
Pattern-7 

912 <1.0 x 10
-4** 

 
Pattern-8 

260 <1.0 x 10
-4** 

  
Pattern-9 

1207 - 

  
Pattern-10 

2492 - 

 
Pattern-11 

631 <2.0 x 10
-3** 

 
Pattern-12 

4422 <1.0 x 10
-4* 

Note: red nodes represent the miRNA-targeted nodes; - represents no significant; * and 
** represent the P-values for miRNA target enrichment and less-enrichment, respec-

tively; Patterns 1-6 and 7-12 represent convergent and divergent units, respectively. 
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Functional Association of microRNA Regulation 

 We obtained human metabolic pathways from the KEGG 
database. We conducted the analysis by considering two 
situations: (a) miRNA-target enrichment in each individual 
pathway; (b) in a network context, a pathway that contains 
miRNA-targeted downstream nodes (output nodes, DSNs) or 
miRNA-targeted CPs who are the parents of the pathway’s 
DSNs. To determine the statistical significance of the en-
richment of miRNA targets of a pathway, for each pathway 
we first calculated the number of the reactions, which are 
miRNA-targeted nodes that have been determined in this 
study, and then randomly swapped the miRNA targets 
among the metabolic reactions (nodes). In each swap, we 
recalculated the fraction of the miRNA targets in each path-
way and compared to that of each pathway. The P values 
were corrected by FDR. FDR corrected P values (<0.25) 
were considered as significant. To examine the pathways 
that are regulated by miRNA in a network context, we con-
sidered: (a) if a DSN of a pathway is the target of miRNA, 
we classified that pathway as miRNA-regulated; (b) when a 
miRNA targets a CP which is a parent of a DSN of a path-
way, we also classified that pathway as miRNA-regulated. 

RESULTS AND DISCUSSIONS 

 In this study, we systematically analyzed the human 
metabolic network by integrating miRNA target genes onto 
the network. In general, miRNAs could have two ways to 
regulate cellular metabolism: miRNAs could regulate tran-
scription factors or signaling proteins, which in turn regulate 
metabolic enzymes. For example, Krutzfeldt and colleagues 
showed that miR-122 in mouse liver negatively regulate 
some transcriptional repressors which control plasma choles-
terol concentration through modulating a cluster of choles-
terol-biosynthesis genes, including HMG-CoA reductase, the 
rate-limiting step of cholesterol synthesis [11]. Alternatively, 
miRNAs could regulate the production of certain metabolites 
by directly regulating the genes that encode metabolic en-
zymes. In this study, we mainly focused on this latter type of 
regulation. 

 In general, biochemical characterizations of enzymes and 
reactions of metabolic pathways have been documented ex-
tensively. Comparing to gene regulatory and cellular signal-
ing networks, metabolic networks are relatively more com-
prehensive and well characterized. Furthermore, analyses of 
various cellular networks including metabolic networks 
through integrating high-throughput datasets have resulted in 
a series of interesting discoveries [12-16]. Therefore, a 
global analysis of metabolic networks through integrating 
miRNA target genes would result in a comprehensive under-
standing how miRNA regulates metabolic networks. Since 
miRNAs are natural negative regulators that could reduce the 
enzyme concentration and then regulate certain metabolite 
production, we expect that the principles of miRNA regula-
tion of the networks would help us learning nature’s tricks 
for metabolic controlling, which in turn helps designing 
drugs to perturb metabolic networks and control production 
of particular metabolites in living organisms. 

 To understand the principles of miRNA regulation of 
metabolic networks from a systems-wide perspective, we 
systematically analyzed the relationships between miRNA 
targets and the network nodes having different network 

structural features. To do so, we first constructed a human 
metabolic network using KEGG pathway database [17]. Us-
ing the database, we identified all chemical reactions and 
their associated enzymes, genes and metabolites within hu-
man metabolism and then constructed a reaction-centric net-
work, in which we joined the reactions that share a common 
metabolite as either a product or reactant. In the network one 
node represents one or a set of genes that encode the en-
zymes that catalyze one reaction. The outgoing or incoming 
connections from a node indicate that a metabolic reaction is 
producing metabolites for other reactions or consuming me-
tabolites produced by other reactions. In the network, a giant, 
connected component (subgraph) was found. The largest 
subgraph of human metabolic network contains 1,099 nodes, 
4,169 links and represents over 70% of the nodes, nearly 
90% of the links of the human network and most metabolic 
pathways including all the central pathways (Supplementary 
Data 2). Therefore, we took this largest subgraph as the net-
work in the study. 

 To analyze miRNA regulation of the networks, we 
mapped the computationally predicted miRNA target genes 
onto the network. The current miRNA target prediction 
methods are mainly based on the principle of miRNA-target 
interactions [9, 18]. Although several miRNA-target predic-
tion algorithms have been developed, TargetScan seems to 
be the best among these algorithms based on a recent pro-
teomic survey of miRNA targets [19]. Among the 246 miR-
NAs which have been predicted for targets by TargetScan, 
234 (95%) of miRNAs have at least one metabolic gene as 
targets. In the network, each node is associated with one or 
more genes, therefore, we grouped the network nodes into 
two groups: one group (single-gene-node group) contains the 
nodes such that each node is encoded by only one gene, 
while the other group (multiple-gene-node group) contains 
the nodes such that each node is encoded by multiple genes. 
Finally, 558 single-gene-nodes and 541 multiple-gene-nodes 
of the network were mapped with miRNA targets. For the 
single-gene-nodes, we considered a node as a miRNA target 
as long as the gene that is associated with that node is a 
miRNA target. Because each multiple-gene-node is associ-
ated with more than one genes, it could have higher chance 
to be associated with miRNA targets by random. Therefore, 
we performed randomization tests to determine whether a 
multiple-gene-node is significantly regulated by miRNAs 
(see Methodology). By doing so, we defined 79 multiple-
gene-nodes as miRNA targets. We merged the miRNA tar-
gets of single-gene-nodes with the multiple-gene-nodes, and 
found that 238 (22%) nodes are miRNA targets (Supplemen-
tary Data 3). 

miRNAs Preferentially Regulate Hubs and Cut Point 
Nodes But Avoid Regulating Intermediate Nodes 

 To further explore miRNA regulatory principles, we 
asked if miRNA targets are enriched in certain node types, 
i.e. hubs, UPNs, DSNs CPs and ITNs. To address this ques-
tion, we calculated the fractions of miRNA targets for each 
node type and performed randomization tests. To perform 
the randomization tests, we randomly assigned 238 targets 
onto the network nodes and examined the statistical signifi-
cance of the miRNA targets in each node type (see Method-
ology). As shown in Table 2, miRNA targets are less en-
riched in ITNs in the network (P=0.032, Table 2, Supple-
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mentary Data 4), suggesting that miRNAs avoid regulating 
ITNs. On the other hand, miRNA targets are significantly 
enriched in the hubs and CPs of the network (P=0.015 and 
P=0.006, respectively, Table 2, Supplementary Data 4). 
These results suggest that miRNAs could regulate metabo-
lism globally by preferentially regulating hubs, and control 
the downstream metabolic flux of the CPs with a local regu-
lation strategy by preferentially regulating CPs. Hubs are the 
reactions that are shared by many pathways. miRNA regula-
tion of hubs would affect many pathways and therefore such 
a regulation has a global effect on metabolism. For example, 
citrate synthase gene, encoding a major enzyme in citrate 
cycle (TCA cycle), could be regulated by a set of miRNAs: 
miR-152, miR-148a, miR-148b, miR-299-5p, miR-19b, 
miR-122a, miR-421, miR-494 and miR-19a. When these 
miRNAs regulate the citrate synthase gene, 78 pathways 
such as purine metabolism, pentose phosphate pathway, fatty 
acid biosynthesis, which represent lipid, carbon, nucleotide 
and amino acid metabolism, could be affected (Supplemen-
tary Data 5). This example illustrates that miRNA could 
regulate metabolism globally. On the other hand, GANAB, 
encoding glucosidase, a cut point in the network, could be 
regulated by miR-133a, miR-133b, miR-199a and miR-199b. 
Once GANAB is regulated by these miRNAs, the ouputs of 
three pathways, biosynthesis of steroids, pyrimidine metabo-
lism and glycine, serine and threonine metabolism could be 
affected at the same time. In this way, a miRNA could regu-
late a few pathways in a coordinated manner. 

 Taken together, miRNAs preferentially regulate network 
hubs and cut point nodes but avoid regulating the intermedi-
ate nodes. These results suggest that miRNAs have strategies 
to regulate metabolism by preferentially regulating certain 
types of nodes. In cellular signaling networks, we found that 
miRNAs avoid regulating the upstream nodes, i.e., ligands 
and receptors [5], while in metabolic networks, miRNAs 
avoid regulating intermediate nodes. In this study, we found 
that miRNAs preferentially regulate metabolic network hubs, 
which is in agreement with the previous studies that miR-
NAs preferentially regulate hubs in protein interaction net-
works and gene regulatory networks [6, 7]. It becomes a gen-
eral principle that except in signaling networks, miRNAs 
preferentially regulate hubs of the cellular networks. In addi-
tion, miRNA preferentially regulates CPs for targeted tuning 
metabolic flows, while a similar local regulatory strategy of 
miRNA has been found in signaling networks, i.e., miRNA 
preferentially regulating the downstream components of 
adaptors in signaling networks [5]. 

Patterns of miRNA Regulating Metabolic Flows 

 Metabolic flows are arranged as linear or branching reac-
tions. We first examined whether 2 and more consecutive lin-
ear reactions are enriched with miRNA targets. We found that 
307 and 218 cases of the 2 and 3 consecutive linear reactions 
are all miRNA-targeted, respectively. Randomization tests 
showed that these cases are statistically significant (P<0.0002 
and P<0.01, respectively, see Methodology). When perform-
ing the same analysis using the targets of individual miRNAs, 
no such statistically significant results were obtained. These 
results suggest that certain reaction regions (i.e., two or more 
consecutive linear reactions) are preferentially regulated by 
miRNA. For example, in N-Glycan biosynthetic pathway, 
fucosyltransferase 8 (FUT8), mannosyl (alpha-1,6-)-glyco-
protein beta-1,2-N-acetylglucosaminyltransferase (MGAT2) 
and mannosidase (MAN2A1) are three enzymes that catalyze 
3 consecutive  reactions for N-Glycan biosynthesis. Their 
genes could be regulated by (miR-34c, miR-342, miR-449, 
miR-449b, miR-122a, miR-34a, miR-494 and miR-377), 
(miR-200b, miR-200c, miR-429, miR-181b, miR-181a, miR-
495, miR-181c and miR-181d) and (miR-128b, miR-92b, 
miR-128a, miR-27a, miR-490, miR-32, miR-363, miR-500, 
miR-26b, miR-367, miR-25, miR-218, miR-92, miR-26a, 
miR-135b, miR-27b, miR-135a), respectively. 

 Branching metabolic flows could be convergent or diver-
gent. To understand how miRNA regulate the branching meta-
bolic flows, we extracted all the convergent or divergent units 
which are associated with three distinct reactions from the net-
work. Convergent units could integrate metabolic flows while 
divergent units could allow a metabolic flow to diverge in two 
directions. We enumerated and extracted all the possible 
miRNA targeting patterns for the convergent or divergent units 
from the network and examined the statistical significance for 
each pattern. We found that both the convergent and divergent 
units without any miRNA targets are significantly enriched 
(Patterns 6 and 12 in Table 1, P<1.0 x 10

-4
, randomization tests, 

see Methodology). In agreement with these observations, both 
the convergent and divergent units containing at least 2 
miRNA-targeted nodes are significantly less-enriched (Patterns 
1, 2, 5, 7, 8 and 11 in Table 1, randomization tests, see Meth-
odology). Collectively, these results suggest that miRNAs 
preferentially regulate two or more consecutive linear meta-
bolic reactions but avoid regulating metabolic branches. 

Functional Associations of miRNA Regulation 

 To discover which metabolic pathways are regulated by 
miRNAs, we queried the KEGG human metabolic pathways  
 

Table 2. Fractions of miRNA Targets of Different Node Types 

 

Node  

Type 

Number in the  

Network 

Average of  

In-Degree 

Average of  

Out-Degree 

Number of  

miRNA Targets 

Fraction  

(%) 
P-Value 

Upstream Node 59 0 4.5 8 13.6 - 

Downstream Node 110 2.7 0 20 18.2 - 

Cut Point 163 2.4 2.3 48 29.4 0.006* 

Hub 55 19.8 22.4 19 34.5 0.015* 

Intermediate Node 715 4.8 4.7 140 19.6 0.032** 

Note: - represents no significant; * and ** represent the P-values for miRNA target enrichment and less-enrichment, respectively. 
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Table 3. miRNA Regulated Metabolic Pathways 

 

Pathway Name Downstream Node Cut Point Reaction Enrichment 

Carbohydrate Metabolism    

Fructose and mannose metabolism    

Starch and sucrose metabolism    

Nucleotide sugars metabolism    

Butanoate metabolism    

Inositol phosphate metabolism    

Energy Metabolism    

Methane metabolism    

Lipid Metabolism    

Biosynthesis of steroids    

Bile acid biosynthesis    

Glycerophospholipid metabolism    

Sphingolipid metabolism    

Amino Acid Metabolism    

Cysteine metabolism    

Valine; leucine and isoleucine degradation    

Valine; leucine and isoleucine biosynthesis    

Lysine degradation    

Arginine and proline metabolism    

Histidine metabolism    

Tryptophan metabolism    

Glycine; serine and threonine metabolism    

Methionine metabolism    

Glutamate metabolism    

Urea cycle and metabolism of amino groups    

Metabolism of Other Amino Acids    

Taurine and hypotaurine metabolism    

Selenoamino acid metabolism    

D-Glutamine and D-glutamate metabolism    

Glycan Biosynthesis and Metabolism    

N-Glycan biosynthesis    

Glycosaminoglycan degradation    

Metabolism of Cofactors and Vitamins    

Pantothenate and CoA biosynthesis    

Folate biosynthesis    

Porphyrin and chlorophyll metabolism    

Xenobiotics Biodegradation and Metabolism    

1- and 2-Methylnaphthalene degradation    

Biosynthesis of Secondary Metabolites    

Terpenoid biosynthesis    
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using the reactions (nodes in the network), which are the 
miRNA targets, and conducted two types of analyses for 
determining the pathways that are significantly regulated by 
miRNA. We first performed an enrichment analysis for 
miRNA-targeted pathways using randomization tests. Using 
this method, we found that six pathways such as N-Glycan 
biosynthesis are enriched with miRNA targets (Supplemen-
tary Data 6, see Methodology). In the second type of analy-
sis, we considered a pathway as miRNA-regulated pathway, 
if the pathway contains a miRNA-targeted reaction, which is 
a DSN or a CP that is the parent of the DSN in the network. 
Using this approach, we found that thirty pathways such as 
amino acid synthesis or degradation and other central me-
tabolisms are extensively regulated by miRNA through tar-
geting DSNs or CPs. Theses results suggest that miRNAs 
prefer to regulate DSNs or their parent-CPs. We merged the 
results from the two approaches, and found that in total 32 
pathways are regulated by miRNAs (Table 3). 

 As shown in Table 3, many biosynthetic pathways such 
as amino acid synthesis are extensively regulated by miR-
NAs. Glycan biosynthesis, pantothenate and CoA biosynthe-
sis are also regulated by miRNAs. miRNAs also regulate 
certain lipid metabolism such as sphingolipid metabolism 
and glycerophospholipid metabolism. Similarly, miRNA 
regulation of central metabolic enzymes has been reported in 
Drosophila, i.e., miR-277 seems to be a regulatory switch 
for amino acid metabolism [20]. Amino acids are the build-
ing elements of proteins. Lipids are components of the 
plasma membrane or involved in cell signaling, while glycan 
and CoA are the major metabolic substrates for cell energy. 
These examples showed that miRNAs are predominantly 
involved in central metabolic pathways and thus play an im-
portant role in cell metabolism. 

CONCLUSIONS 

 Our analysis provides a systems-level understanding of 
miRNA post-transcriptional regulation of metabolic net-
works by exploring the relationships between the miRNA 
targets and the network nodes with distinct network struc-
tural properties. We found that miRNAs avoid regulating 
ITNs but preferentially regulate highly linked nodes and cut 
points. Furthermore, miRNAs preferentially regulate two or 
three consecutive linear metabolic reactions but avoid regu-
lating metabolic branches. By regulating network hubs, 
miRNA could regulate the metabolism globally, while by 
regulating CPs and certain consecutive linear reactions, 
miRNA could control the production of certain metabolites 
via a local regulatory strategy. Functional association analy-
sis of miRNAs and metabolic pathways showed that miR-
NAs predominantly regulate basic metabolic pathways such 
as amino acid biosynthesis/degradation and certain lipid me-
tabolisms, suggesting that miRNAs exert their functions in 
central metabolic activities of cells. These results imply that 
miRNA is extensively involved in many biological processes 
and modulating metabolic flux alterations. As we mentioned 
earlier, miRNA could regulate transcription factors and sig-
naling proteins, which in turn regulate metabolic enzymes. 
Furthermore, miRNAs could regulate mRNAs through 
chromatin remodeling [21]. At this stage, it is unclear how to  
 

define the miRNA targets when miRNA acts on chromatin 
remodeling. In this study, our analysis is focusing on the 
direct regulation of enzymes by miRNA. Nevertheless, this 
analysis enhances our understanding of how miRNA post-
transcriptionally regulates metabolic networks, and reveals 
molecular strategies for controlling metabolic flux by miR-
NAs in living organisms. 

ACKNOWLEDGEMENTS 

 We thank Dr. Tyler MacKenzie for his comments on the 
manuscript. This work is partially supported by Genome and 
Health Initiatives.  

SUPPLEMENTARY MATERIAL 

 This article also contain supplementary data and it can be 
viewed at www.bentham.org/open/tosysbj 

REFERENCES 

[1]  Ambros V. microRNAs: tiny regulators with great potential. Cell 
2001; 107: 823-26. 

[2]  Krutzfeldt J, and Stoffel M. MicroRNAs: a new class of regulatory 
genes affecting metabolism. Cell Metab 2006; 4: 9-12. 

[3]  Cakir T, Patil KR, Onsan Z, et al. Integration of metabolome data 
with metabolic networks reveals reporter reactions. Mol Syst Biol 

2006; 2: 50. 
[4]  Ihmels J, Levy R and Barkai N. Principles of transcriptional control 

in the metabolic network of Saccharomyces cerevisiae. Nat Bio-
technol 2004; 22: 86-92. 

[5]  Cui Q, Yu Z, Purisima EO and Wang E. Principles of microRNA 
regulation of a human cellular signaling network. Mol Syst Biol 

2006; 2: 46. 
[6]  Cui Q, Yu Z, Pan Y, Purisima EO and Wang E. MicroRNAs pref-

erentially target the genes with high transcriptional regulation com-
plexity. Biochem Biophys Res Commun 2007; 352: 733-38. 

[7]  Liang H, and Li WH. MicroRNA regulation of human protein 
protein interaction network. RNA 2007; 13: 1402-08. 

[8]  Gusev Y, Schmittgen TD, Lerner M, Postier R, and Brackett D. 
Computational analysis of biological functions and pathways col-

lectively targeted by co-expressed microRNAs in cancer. BMC 
Bioinformatics 2007; 8: 7, S16. 

[9]  Lewis BP, Burge CB, and Bartel DP. Conserved seed pairing, often 
flanked by adenosines, indicates that thousands of human genes are 

microRNA targets. Cell 2005; 120: 15-20. 
[10]  Wang E and Purisima E. Network motifs are enriched with tran-

scription factors whose transcripts have short half-lives. Trends 
Genet 2005; 21: 492-95. 

[11]  Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs 
in vivo with 'antagomirs'. Nature 2005; 438: 685-89. 

[12]  Awan A, Bari H, Yan F, et al. Regulatory network motifs and 
hotspots of cancer genes in a mammalian cellular signaling net-

work. IET Syst Biol 2007; 1: 292-297. 
 [13] Babu MM, Luscombe NM, Aravind L, Gerstein M. and Teichmann 

SA. Structure and evolution of transcriptional regulatory networks. 
Curr Opin Struct Biol 2004; 14: 283-291. 

[14]  Cui Q, Ma Y, Jaramillo M, Bari H, et al. A map of human cancer 
signaling. Mol Syst Biol 2007; 3: 152. 

[15]  Luscombe NM, Babu MM, Yu H. Genomic analysis of regulatory 
network dynamics reveals large topological changes. Nature 2004; 

431: 308-12. 
[16]  Wang E, Lenferink A, and O'Connor-McCourt M. Cancer systems 

biology: exploring cancer-associated genes on cellular networks. 
Cell Mol Life Sci 2007; 64: 1752-62. 

[17]  Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for 
deciphering the genome. Nucleic Acids Res 2004; 32: D277-80. 

[18]  Krek A, Grun D, Poy MN, Wolf R, et al. Combinatorial microRNA 
target predictions. Nat. Genet 2005; 37: 495-500. 

[19]  Baek D, Villen J, Shin C, Camargo FD, Gygi SP and Bartel DP. 
The impact of microRNAs on protein output. Nature 2008; 455: 

64-71. 
 

 
 



8    The Open Systems Biology Journal, 2008, Volume 1 Tibiche and Wang 

[20]  Stark A, Brennecke J, Russell RB, and Cohen SM. Identification of 

Drosophila MicroRNA targets. PLoS Biol 2003; 1: E60. 

[21]  Gonzalez S, Pisano DG and Serrano M. Mechanistic principles of 

chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 
2008; 7: 2601-08. 

 

 

Received: October 9, 2008 Revised: October 17, 2008 Accepted: October 22, 2008 

 

© Tibiche and Wang; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: //creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 

 
 

 


