On the Reduction of Atmospheric Carbon Dioxide Levels

J.C. Jones *

Department of Engineering, University of Aberdeen, Bedford Road, Aberdeen AB24 3UE, UK; E-mail: j.c.jones@eng.abdn.ac.uk

My understanding of the procedures in place to reduce atmospheric levels of carbon dioxide is that the concentration will reach a plateau by probably the year 2100. Meanwhile the quantity of carbon dioxide continues to increase. Recently, when putting these ideas across to some final-year students here at Aberdeen, I had the following idea.

Before a plateau can be attained the graph of carbon dioxide concentration against time will display a point of inflection where the second derivative is zero, that is:

$$\frac{d^2[CO_2]}{dt^2} = 0$$

Received: February 22, 2008

Revised: February 27, 2008

Accepted: February 27, 2008

It ought to be fairly elementary to fit the current graph, ob-

tained from measurements, for carbon dioxide rise to a func-

tional form and obtain from that the time into the future at

which the point of inflection will occur. This will surely be a

major step in achieving reductions as the first derivative has

for a long period been positive. Therefore the awaited plateau cannot occur without there being a point of inflection. So

when will 'point of inflection day' be? April 4th, 2052 will be

the centenary of the birth of the author of this piece. Will the

point of inflection be occurred by then?