The Scott-Magat Polymer Theory for Determining Onset of Precipitation of Dissolved Asphaltene in the Solvent + Precipitant Solution

Amir H. Mohammadi and Dominique Richon*

Mines Paris, ParisTech, CEP-TEP, CNRS FRE 2861, 35 rue Saint Honoré, 77305 Fontainebleau - France

Abstract: The Scott-Magat polymer theory, which assumes that polymers have heterogeneous structure and takes into account the polydispersity in the molecular weight of polymers, is a method to model asphaltene precipitation conditions. The traditional Scott-Magat polymer theory based models assume that the precipitated phase consists of asphaltene only. In the present work, we introduce a model based on the Scott-Magat polymer theory assuming that the precipitated phase consists of asphaltene and non-asphaltene components and the oil phase is free of asphaltene. It is shown that the latter model is similar to a previously reported thermodynamic model in the literature based on the Flory-Huggins polymer theory (R. Cimino, S. Correra, P.A. Sacomani, C. Carniani, “Thermodynamic Modelling for Prediction of Asphaltene Deposition in Live Oils”, SPE 28993, Presented at the SPE International Symposium on Oilfield Chemistry held in San Antonio, TX, USA, 14-17 February 1995), in which it is assumed that asphaltene has a homogeneous structure and the precipitated phase consists of asphaltene and non-asphaltene components and the oil phase is free of asphaltene.

Keywords: Asphaltene, maltene, Scott-Magat theory, Flory-Huggins theory, modeling, precipitation, predictive model.

INTRODUCTION

Asphaltene precipitation in oil industry can cause serious operational, safety and economical problems because it causes fouling in the reservoir, in the well, in the pipeline and in the production and processing facilities. Asphaltene phase behavior has therefore been the subject of numerous theoretical studies [1-34]. One of the fundamental difficulties encountered in describing the phase behavior of asphaltene-containing systems is the lack of suitable characterization parameters [1, 7]. In fact, asphaltenes are not well-identified components/ mixtures. They consist of several polar components of aromatic nature with high molecular weights [1, 7]. In the majority of cases, the complexity of the asphaltene fraction leads to the assumption that the asphaltenes can be regarded as one single pseudo-component (monodisperse) [1, 7]. The main drawback of the monodisperse models is that they may not take into account the aggregation phenomena of asphaltenes [1, 7]. In fact, the aggregation process produces a molecular weight distribution of aggregates, which also causes a polydispersity in asphaltene properties [1, 7]. A few models use a polydisperse concept in terms of asphaltene properties, especially molecular weight and size [21-23].

The traditional models reported in the literature normally use polymer solutions theories (Scatchard-Hildebrand [7], Flory-Huggins [7, 35], and Scott-Magat [36]) to model the phase behavior of asphaltene-containing fluids [1, 2, 5, 7, 8, 14, 20-23]. In addition to these models, there are also a few models, which are based on cubic equations of state [17, 24]. New thermodynamic models have recently been developed, which can take into account the aggregation nature of asphaltene [5, 13, 16, 26-31]. On the other hand, most of the models reported in the literature assume that the precipitated phase consists of asphaltene only and the presence of non-asphaltene components in the precipitated phase is normally ignored. Cimino et al. [2, 14] employed the Flory-Huggins polymer theory [35] and assumed that the precipitated phase contains not only asphaltene but also a fraction of non-asphaltene components. They showed that their proposed model [2, 14] can better predict phase behavior of dissolved asphaltene in mixtures of solvents and precipitants and none of the literature models is capable of predicting this behavior satisfactorily. Cimino et al. [2, 14] also reported a need to modify other polymer theory based asphaltene models in order to take into account the presence of non-asphaltene components in the precipitated phase.

In this work, we use a more comprehensive polymer theory than the Flory-Huggins model [35], namely the Scott-Magat polymer theory [36] for modeling asphaltene phase behavior. Different from the Flory-Huggins polymer theory [35] based asphaltene models (which assume that asphaltenes have homogeneous structure and properties), the Scott-Magat polymer theory [36] based asphaltene models assume that asphaltenes have heterogeneous structure and the polydispersity can be taken into account in the molecular weight of asphaltene. Kawanaka et al. [21, 22] and Park [23] used this theory for modeling asphaltene phase behavior. However, they assumed that the precipitated phase consists of asphaltene only. Using this theory [36], and assuming that the precipitated phase consists of both asphaltene and non-asphaltene components, we propose a thermodynamic model. It is shown that the new model is similar to a previously reported model based on the Flory-Huggins polymer theory [35], namely Cimino et al. [2, 14] model, in which the precipitated phase consist of asphaltene and non-asphaltene components.

*Address correspondence to this author at the Mines Paris, ParisTech, CEP-TEP, CNRS FRE 2861, 35 rue Saint Honoré, 77305 Fontainebleau – France; Tel.: +33 (1) 164 69 49 65. Fax: +33 (1) 164 69 49 68; E-mail: richon@ensmp.fr
THERMODYNAMIC MODEL BASED ON FLORY-HUGGINS POLYMER THEORY

Following the Flory-Huggins polymer theory [20], the chemical potential change of the maltene (asphaltene free oil) relative to a reference value, $\Delta \mu_m$, and the chemical potential change of the asphaltene relative to a reference value, $\Delta \mu_a$, are given, respectively by [8]:

$$\Delta \mu_m = RT \ln \Phi_m + \frac{V}{V_a} (1-\Phi_m) + \chi (1-\Phi_m)^2$$ (1)

$$\Delta \mu_a = RT \ln \Phi_a + \left(\frac{V}{V_m} \right) \frac{1}{\Phi_a} + \left(\frac{V}{V_m} \right)^2 \frac{\rho_a}{\rho_m}$$ (2)

where R, T, Φ_m, V_m, Φ_a and V_a are universal gas constant, temperature, volume fraction of maltene, molar volume of maltene, volume fraction of asphaltene and molar volume of asphaltene, respectively. χ stands for interaction parameter between asphaltene and maltene and is given by the following equation [2, 8, 14]:

$$\chi = \frac{V_m [(\delta_m - \delta_a)^2]}{RT}$$ (3)

where δ_m and δ_a are solubility parameters (the square root of the internal energy of vaporization per molecular volume) for the maltene and asphaltene, respectively. In the above equation [37, 38]:

$$\Phi_a = 1 - \Phi_m = \frac{x_a V_a}{x_a V_a + x_m V_m}$$ (4)

or

$$\Phi_a = \frac{w_a / \rho_a}{w_a / \rho_a + w_m / \rho_m}$$ (5)

where x_a and x_m are the mole fractions of asphaltene and maltene, respectively. w_a and w_m are the weight fractions of asphaltene and maltene, respectively and ρ_a and ρ_m represent the mass densities of asphaltene and maltene, respectively.

Cimino et al. [2, 14] performed some tests to estimate onset of precipitation of dissolved asphaltene in different ratios of solvent and precipitant. The results showed that the precipitated asphaltene does dissolve in appropriate solvent and the ratio of “solvent mass per asphaltene mass” and “precipitant mass per asphaltene mass” is linear and independent of the asphaltene concentration at onset of asphaltene precipitation conditions [2, 14]. Their experiments showed poor capability of colloidal model [25] and traditional Flory-Huggins polymer theory [35] based models [21, 22] in reproducing the observed behavior, where the latter models assume pure asphaltene for the precipitated phase. Cimino et al. [2, 14] employed a more correct application of the Flory-Huggins polymer theory [35] to better represent asphaltene phase behavior. They assumed that not a pure asphaltene phase but a phase containing concentrated asphaltene and a fraction of solvent nucleates on phase separation.

Some simplifications are made by considering the physics of phase splitting. Considering the typically low volume fraction of asphaltene in the oil phase (Φ_m, which is about 10^{-2} to 10^{-3} when the asphaltene weight percent ranges from 1 to 10) the oil can safely be assumed to be pure maltene, that is $\Phi_m = 0$ [2, 14]. Such an assumption leads to the following final equation [2, 14]:

$$\ln[1 - \Phi_a] + \left(1 - \frac{V_m}{V_a} \right) \Phi_a + \chi \Phi_m^2 = 0$$ (6)

where the prime represents the asphaltene-rich phase, and Φ_a is the volume fraction of asphaltene in asphaltene-rich phase.

According to this model [2, 14], δ_a is assumed to be independent of pressure, and Φ_a is assumed to be constant. The parameters Φ_a and δ_a are regressed from experimental data on onset of asphaltene precipitation. V_a is calculated from density and molecular weight of asphaltene. For given δ_a, Φ_a and temperature, equation (6) only varies with V_a and δ_a. Cimino et al. [1, 2] successfully examined the capability of this model [2, 14] against their own experimental data.

THERMODYNAMIC MODEL BASED ON SCOTT-MAGAT POLYMER THEORY

A more comprehensive approach for predicting asphaltene precipitation conditions can be developed by using the Scott-Magat polymer theory [36], in which a distribution of asphaltene molecular weight is taken into account, as mentioned earlier. Based on the Scott-Magat polymer theory [36], the chemical potential change of the maltene relative to a reference value, and the chemical potential change of the ith asphaltene fraction relative to a reference value ($\Delta \mu_i$) are calculated using the following equations [36]:

$$\Delta \mu_m = RT \ln \Phi_m + \left(1 - \frac{1}{M} \right) + \chi (1-\Phi_m)^2$$ (7)

$$\Delta \mu_i = RT \ln \Phi_i + \left(1 - \frac{1}{M} \right) - M_i \Phi_m + \chi M_i \Phi_m^2$$ (8)

where Φ_i is volume fraction of the ith asphaltene fraction. M_i and M_i represent the average molecular weight of asphaltene and the molecular weight of the ith asphaltene fraction, respectively. χ is given by equation (3).

To determine the solubility/precipitation conditions based on the assumption made by Cimino et al. [2, 14], one must utilize the equilibrium conditions between the two-phases:

$$\Delta \mu_m = \Delta \mu_m^*$$ (9)

where $\Delta \mu_m$ is the chemical potential change of the maltene relative to a reference value, as mentioned earlier. The prime represents the asphaltene-rich phase, as pointed out earlier. Therefore:

$$\ln \Phi_m + (1-\Phi_m) \left(1 - \frac{1}{M} \right) + \chi (1-\Phi_m)^2 = 0$$

$$\ln \Phi_m + (1-\Phi_m) \left(1 - \frac{1}{M} \right) + \chi (1-\Phi_m)^2$$ (10)
According to Scott-Magat polymer theory [36], for values of χ sufficiently high (>>0.5), one may take $\Phi_0 = 1$ and $\Xi = \infty$, so that Φ_a is a function of χ alone:

$$\ln[1+\Phi_b \cdot \Phi_a] + \chi \Phi_a^2 = 0$$

(11)

Equation (11) is similar to equation (6) considering the ratio V_m/V_a in equation (6) is negligibly small compared to unity. The result indicates that taking into account the polydispersity in asphaltene molecular weight is insignificant for the phase behavior modeling of dissolved asphaltene in solvent + precipitant solutions.

CONCLUSIONS

A phase equilibrium model (equation 11) was developed from the Scott-Magat polymer theory [36], which assumes that the precipitated phase consists of an asphaltene fraction and a non-asphaltene fraction, and the oil phase is free of asphaltene (due to low concentrations of asphaltene in the oil phase). It was shown that the new model is similar to a previously reported model (equation 6) based on the Flory-Huggins polymer theory [35], which assumes that the precipitated phase consists of asphaltene and non-asphaltene components. The study showed that taking into account the polydispersity in asphaltenes molecular weight does not have important effect on phase behavior modeling of dissolved asphaltene in different ratios of solvent and precipitant.

REFERENCES

Received: January 22, 2008
Revised: March 06, 2008
Accepted: March 10, 2008