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Abstract: The Hamiltonian formulation of heat conduction is derived using the integral transform method approach, in 
comparison with the conventional Hamiltonian formulation in the physical space of the variables temperature and heat 
flux. An analogy with the relativistic motion of a particle is briefly discussed.  

INTRODUCTION 

 The mathematical description of physical systems makes 
often use of the Hamiltonian formalism, which from its 
original application to derive the so-called Hamilton’s equa-
tions of motion in classical mechanics quickly spread on 
many other physical phenomena, ranging from statistical 
physics to quantum mechanics [1]. Although the Hamilto-
nian formulation of a problem of mathematical physics in 
general does not simplify the search for a solution, very of-
ten it provides a better insight of physical phenomena and 
reveals analogies which may remain hidden when using 
other formulations.  
 The description of heat conduction in a material of con-
stant thermophysical properties using the Hamiltonian for-
malism was first proposed by Magyari and Keller [2] in the 
case of one-dimensional, boundary value problems, for 
which the energy conservation equation and Fourier’s law 
are:  
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where ( )txT ,  is temperature, ( )txJ ,  the heat flux, ! , c, and 
k are respectively the density, the heat capacity and the ther-
mal conductivity of the material. 
 Separation of variables allows one to write the tempera-
ture and the heat flux in the form ( ) ( ) ( )!txAtxT "= exp,  
and J x, t( ) = !B x( )exp !t "( ) , where τ is the separation con-
stant, so that Eq. (1) can be re-written as: 
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 This can be immediately converted to the Hamiltonian 
form ( ) BHxA !!=&  and ( ) AHxB !!"=& , where H is the 
Hamiltonian function defined as: 
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 In this approach, a problem of heat conduction becomes 
equivalent to the motion of a fictitious particle of mass k, 
position A, momentum B, and total energy H, where time is 
represented by the spatial coordinate. Besides the invariance 
of the quantity defined in Eq. (3), an immediate practical 
consequence of the Hamiltonian formulation is the inter-
changeability of the temperature and heat flux variables, 
which allows one to transform a problem in the variable T 
(temperature) with Neumann boundary conditions into a 
problem in the variable J (heat flux) with Dirichlet boundary 
conditions. Another benefit is the generalized use of the so-
called propagator method, where the solution of a heat con-
duction problem can be obtained by solving a simple matrix 
equation [2], which has significant computational advantages 
in comparison with conventional methods. 

 The aim of this note is to show how a general Hamilto-
nian formulation of heat conduction can be obtained straight-
forward by using an integral transform method approach. In 
fact, in the Laplace space problems are always solved using 
the propagator method, and thus the properties of the Hamil-
tonian function (including its invariance) are strictly related 
to those of the transformation matrix. 

ANALYSIS 

 The integral transform method is an elegant and powerful 
technique to solve various problems of mathematical phys-
ics, which has a number of advantages in comparison with 
classical methods when they are applied to the solution of 
partial differential equations [3]. In the case of heat conduc-
tion problems [4], the common practice is replacing tempera-

ture with its Laplace transform, ( ) ( )!
"+
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dtetTsT
st , so 

that the heat equation in the direction normal to isothermal 
surfaces, ! , becomes: 
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 This second-order equation is equivalent to the following 
system of first-order equations: 



Hamiltonian Formulation of Heat Conduction The Open Thermodynamics Journal, 2008, Volume 2    23 

!
!
"

!!
#

$

%=

%=

Tcs
d

Jd

k

J

d

Td

~
~

~~

&
'

'             (5) 

which can be re-written in matrix form as: 
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A  is the matrix of 

the material properties.  
 Equation (6) represents the evolution (propagation) in 
space of the transformed quantities along a path that is lo-
cally perpendicular to isothermal surfaces, and its solution is 
given by: 

( ) 0exp XAX !=             (7) 

where the vector rotation with respect to the initial condition 
0
X  is determined by the matrix: 

exp A!( ) =
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and !  is the thermal diffusivity.  

 The problem must be obviously completed with appro-
priate boundary conditions. For example, given an infinite 
slab of thickness L that separates two fluids with periodically 
fluctuating temperatures ( )taTf 000, cos !=  and 

( )taT LLLf !cos, = , one finds the following Neumann 
boundary conditions: 
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where 
0
h  and 

L
h  are the convective heat transfer coeffi-

cients between the slab and the two fluids, respectively. Af-
ter Laplace transformation these boundary conditions be-
come: 
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 Thus, the propagator vectors on the boundaries are, re-
spectively: 
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and 
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 From Eqs. (7), (8) and (11) one finds that the solution is 
given by: 
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where 
0

~
T  is unknown, and must be determined using the 

second boundary condition, Eq. (12): 
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 Equation (7) shows that the solution of heat conduction 
problems by the propagator method is possible by using the 
integral transform method: therefore the application of the 
propagator method to the solution of heat conduction prob-
lems cannot be considered a consequence of the Hamiltonian 
formulation [2]. 

 If the Laplace transform of temperature is rescaled by 
introducing the new variable cksT !"

~~
= , the spatial evo-

lution of the variables is expressed by the following trans-
formation: 
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 Equation (15) is formally identical to a Lorentz transfor-
mation (hyperbolic rotation of coordinates) in the space de-

fined by !
~

 and J
~

 [5]. In particular, it describes the motion 
of a fictitious, relativistic particle along the spatial coordi-
nate J~ , according to a time variable defined as *~

ct != , 

where *
c  is a constant representing the maximum speed 

attainable by the particle (i.e., the speed of light in this coor-
dinates system). In this analogy, the dimensionless particle 
velocity is given by: 
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 According to a well-known result of special relativity the 
quantity 22 ~~

!"J , which corresponds to the spacetime in-
terval in Minkowski’s space, is an invariant [6], and there-
fore it can be used to define a Hamiltonian function for heat 
conduction in Lapalce’s space: 
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 It must be remarked that while in the traditional approach 
the definition of a Hamiltonian invariant relies on the separa-
tion of variables ansatz [2], in the present work the con-
stancy of the quantity defined by Eq. (17) descends uniquely 
from the properties of the transformation matrix in Eq. (15). 

 One can easily verify that 0
~

=!! "H , so that the Hamil-
tonian does not depend explicitly on the direction of the heat 

flux, and takes the form ( ) ( )( )!! qpHH ,
~~

= , where 

( ) Jp
~

!="  and ( ) Tq
~

=! . Thus, the Laplace transforms of 
temperature and heat flux play the role of conjugate variables 
in the Hamiltonian formulation. 

CONCLUSIONS 

 The integral transform method allows one to derive a 
Hamiltonian formulation of the phenomenon of heat conduc-
tion. It can be shown that in the Laplace space heat conduc-
tion is analogous to the relativistic motion of a fictitious par-
ticle moving at a smaller speed than light, and the existence 
of a Hamiltonian invariant is ensured by a theorem of special 
relativity. 
 An important issue arising with Hamiltonian systems, 
which is generally neglected when solving heat conduction 
problems, is their numerical integration [7]. In fact most nu-
merical methods (including, for instance, of all Runge-Kutta 
methods) do not ensure the conservation of the Hamiltonian, 
especially in complex problems with long integration trajec-
tories. This suggests that numerical integration methods 
which keep the Hamiltonian constant (i.e., symplectic meth-
ods) may be better suitable to solve heat conduction prob-
lems. 
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