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Abstract: In this Note a mathematical formulation of a monotonically decreasing functional with respect to time (the H-

functional) is derived for physical systems described by the diffusion equation. This returns a condition which is equiva-

lent to the second law of thermodynamics. 

 The H-theorem is certainly the most debated (and proba-

bly the most important) part of Boltzmann’s scientific heri-

tage [1,2]. As it is well known, this theorem states that, given 

a function f(t,x,v) which is a solution of Boltzmann’s equa-

tion, one can define a functional which is monotonically de-

creasing in time (the H-functional): 
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 The importance of this theorem consists in the fact that it 

was the first attempt to give an analytical proof of the second 

law of thermodynamics for some specific model of statistical 

mechanics. In fact, if one reads the term on the left hand side 

of Eq. (2) as a negative entropy, the theorem is equivalent to 

the statement that the physical entropy of an isolated system 

should not decrease in time.  

 Since its first formulation, the H-theorem raised some 

negative criticism, most of which addressed the inconsis-

tency of the irreversibility with respect to time implied by 

the theorem, because the assumptions appear to be intrinsi-

cally time-reversible. This point is the essence, for instance, 

of Loschmidt’s paradox [1], and the debate is still going on, 

even with attacks to the foundations of Boltzmann’s kinetic 

theory itself [3]. 

 Recently, an active trend of research is represented by the 

attempt to extend the H-theorem to physical systems other 

than the ideal gas, for which it was originally derived. These 

include, for instance, systems described by Fokker-Planck 

type equations [4-6], or simple models for granular media 

[7,8]. Roughly speaking, from the physicist’s point of view 

the problem reduces to giving a formulation of Boltzmann’s 

H-functional, and of its rate of decrease, in terms of the rele-

vant physical quantities. 
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 As a matter of fact, a feature of many collisional kinetic 

systems is their tendency to converge to an equilibrium dis-

tribution as time becomes large, and very often convergence 

is driven by a thermodynamic principle: there is a distin-

guished Lyapunov functional, called entropy, which attains a 

stationary point as the system goes towards the equilibrium 

distribution, under constraints imposed by physical laws.  

 Here, a formulation of the H-theorem for the conduction 

of heat is proposed. Starting from the Cauchy problem for 

the heat equation, and assuming that the initial value T0(x) = 

T(x,0) is a probability density in 
n

, one can write: 
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where the initial value T0(x) satisfies the following condi-

tions: 
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 Given any smooth convex function  = (r), with r  0, 

one can multiply both sides of the heat equation by ’ = 

’(Tt), where Tt is the solution of Eq. (3) at any instant t, and 

integrate over 
n

: 
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 Finally, one can introduce the vanishing condition at in-

finity as follows: 
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and a bounding integral condition: 
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where C is a suitably large constant. 

 Now, integration by parts of the right hand side of Eq. (8) 

is possible, which allows the exchange of integral and de-

rivative on the left hand side of the same equation: 
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 Eq. (11) is the analogous of Boltzmann’s H-theorem for 

the heat equation. This can be shown in few steps by taking: 
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so that Eq. (11) becomes: 
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 Introducing Fisher’s functional ( )=
n
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 [9], 

Eq. (13) can be re-written in the following compact form: 
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 The Fisher functional  plays the role of entropy pro-

duction rate during heat conduction. Thus, Eq. (14) repre-

sents Boltzmann’s H-theorem for systems described by the 

heat equation. 
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