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Abstract. The phase equilibrium modeling for multi-component systems is essential in process systems engineering. In 
particular, phase stability analysis, Gibbs free energy minimization and estimation of parameters in thermodynamic 
models are challenging global optimization problems involved in phase equilibrium calculations and modeling for both 
reactive and non-reactive systems. To date, many significant works have been performed in the area of global 
optimization, and several algorithms and computational contributions of global optimization have been used for solving 
these problems; global optimization methods used include both deterministic and stochastic algorithms. To the best of our 
knowledge, there is no review in the literature that focuses on the global optimization methods and their applications to 
phase equilibrium modeling and calculations. In this paper, we briefly describe selected deterministic and stochastic 
optimization algorithms, and then review their use for phase stability analysis, Gibbs free energy minimization and 
parameter estimation in phase equilibrium models. In short, we provide a general overview of global optimization for 
modeling and calculating the phase behavior of systems with and without chemical reactions including the prediction of 
azeotropes and critical points.  
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1. INTRODUCTION 

 The phase equilibrium modeling for multi-component 
systems is essential in the design, operation, optimization 
and control of separation schemes. Novel processes handle 
complex mixtures, severe operating conditions, or even 
incorporate multi-functional unit operations (e.g. reactive 
distillation and extractive distillation). Therefore, phase 
behavior of multi-component systems has significant impact 
on process design including equipment and energy costs of 
separation and purification strategies [1]. Phase equilibrium 
calculations are usually executed thousands of times in 
process simulators, and are especially important in chemical, 
petroleum, petrochemical, pharmaceutical and other process 
industries where separation units are the core of process 
performance. Hence, these calculations must be performed 
reliably and efficiently, to avoid uncertainties and errors in 
process design.  

 Global optimization problems abound in the 
mathematical modeling of phase equilibrium for both 
reactive and non-reactive systems. Specifically, several 
thermodynamic calculations can be formulated as global 
optimization problems, and they include three applications: 
a) phase stability analysis, b) Gibbs free energy minimization 
and c) estimation of parameters in thermodynamic models. 
Formally, the optimization problems of these applications 
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can be stated as follows: minimize Fobj(u) subject to hj(u) = 0 
for j = 1, 2, …, m and u   where u is a vector of n 

continuous variables in the domain   n, m is the number 
of equality constraints arising from the specific 
thermodynamic application, and Fobj(u) :    is a real-
valued function. The domain  is defined by the upper and 
lower limits of each decision variable.  

 The major challenge of solving global optimization 
problems for phase equilibrium modeling is because Fobj(u) 
is generally non-convex and highly non-linear with many 
decision variables. Thus, the objective functions involved in 
phase equilibrium modeling and calculations may have 
several local optima including trivial and non-physical 
solutions especially for multi-component and multi-phase 
systems. Therefore, traditional optimization methods are not 
suitable for solving these thermodynamic problems because 
they are prone to severe computational difficulties and may 
fail to converge to the correct solution when initial estimates 
are not suitable [1,2]. In general, finding the global optimum 
is more challenging than finding a local optimum, and the 
location of this global optimum for phase equilibrium 
problems is crucial because only it corresponds to the correct 
and desirable solution [1,3]. 

 The development and evaluation of global optimization 
methods had played and continue to play a major role  
for modeling the phase behavior of multi-component systems 
[1-3]. Until now, many deterministic and stochastic global 
optimization methods have been used for phase equilibrium 
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calculations and modeling. Studies on the use of 
deterministic methods for phase equilibrium problems have 
been focused on the application of branch and bound 
optimization, homotopy continuation method and interval-
Newton/generalized bisection algorithm. The stochastic 
optimization techniques applied for solving phase 
equilibrium problems include point-to-point, population-
based and hybrid stochastic methods.  

 There have been significant developments in global 
optimization and their applications to phase equilibrium 
problems. But, to the best of our knowledge, there is no 
review in the literature that focuses on the global 
optimization methods for phase equilibrium modeling and 
calculations. Therefore, use of both deterministic and 
stochastic global optimization methods to solve phase 
equilibrium problems in multi-component systems is 
reviewed in this paper. In particular, we focus on 
applications of global optimization for phase stability 
analysis, Gibbs free energy minimization in both reactive 
and non-reactive systems, parameter estimation in phase 
equilibrium models, and the prediction of azeotropes and 
critical points. The performance and capabilities of many 
global optimization methods for these thermodynamic 
calculations are discussed. The remainder of this review is 
organized as follows. The formulation of optimization 
problems for phase equilibrium modeling and calculations is 
presented in Section 2. In Section 3, we briefly describe the 
deterministic and stochastic optimization methods used for 
solving the optimization problems outlined in Section 2. 
Section 4 reviews the phase equilibrium modeling and 
calculations using global optimization algorithms. Finally, 
concluding remarks are given in Section 5 of this review. 

2. PHASE EQUILIBRIUM MODELING AND 

CALCULATIONS 

 This section introduces the basic concepts and 
description of phase equilibrium problems considered in this 
review. Specifically, a brief description of the global 
optimization problems including the objective function, 
decision variables and constraints, for phase stability, 
physical and chemical equilibrium, and phase equilibrium 
modeling is given in the following sections. 

2.1. Phase Stability  

 Phase stability analysis is a fundamental stage in phase 
equilibrium calculations. This analysis allows identification 
of the thermodynamic state that corresponds to the global 
minimum of Gibbs free energy (globally stable equilibrium). 
Additionally, the results of stability analysis can be used to 
begin phase-split calculations. According to the Gibbs 
criterion, a mixture at a fixed temperature T, pressure P and 
overall composition is stable if and only if the Gibbs free 
energy surface is at no point below the tangent plane to the 
surface at the given overall composition [1,4]. This statement 
is a necessary and sufficient condition for global stability. 
Generally, stability analysis is performed using the tangent 
plane distance function (TPDF). So, the phase stability of a 

non-reactive mixture with c components and overall 
composition z = z1, ..., zc{ }  in mole fraction units, at 

constant P and T, requires the global minimization of: 

TPDF = yi μi y
μi z( )

i=1

c

            (1) 

where μi y
 and μi z

 are the chemical potentials of 

component i calculated at a trial composition y and z, 
respectively. Physically, TPDF is the vertical distance 
between the Gibbs free energy surface at y and the tangent 
plane constructed to this surface at z. For more details on the 
explanation, derivation and implications of TPDF, see the 
work of Michelsen [4]. 

 To perform stability analysis, TPDF must be globally 
minimized with respect to composition of a trial composition 
y, which is subject to an equality constraint. This constrained 
global optimization problem can be written as 

min
y

TPDF  

subject to yi
i=1

c

= 1             (2) 

0 yi 1 i = 1, ..., c  

where the decision variables in phase stability problems are 
the mole fractions yi. If the global minimum of TPDF(y) < 0, 
the mixture under analysis is unstable; else, it is a globally 
stable system. Note that the constrained problem given by 
Equation (2) can be transformed into an unconstrained 
problem by using new decision variables i instead of yi as 
the decision vector [5-7]. These new decision variables 

i (0,1) are related to mole fraction variables yi as follows 

niy = i zinF    i = 1, ..., c             (3) 

yi = niy njy
j=1

c

   i = 1, ..., c            (4) 

where nF = niF
i=1

c

 is the total number of moles in the (feed) 

mixture used for stability analysis, and niy is the mole 
numbers of component i in the trial phase y, respectively. 
Note that feed mole fractions zi are given by zi = niF / nF. 
Thus, the unconstrained global optimization problem for 
phase stability analysis is: 

min TPDF

0 i 1 i = 1, ..., c
            (5) 

 Using this unconstrained approach, the number of 
decision variables is c for a non-reactive system of c 
components. 

 As an alternative to the optimization procedure, phase 
stability can be also determined by finding all solutions of 
the stationary conditions of TPDF: 

μi y
μi z

μc y
+ μc z

= 0 i = 1, ..., c 1           (6) 
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where c 1  mole fractions of trial phase y are the unknowns 

of Equation (6), assuming that yi
i=1

c

= 1 . If TPDF at any of 

the solutions obtained by this set of equations is negative, 
then the postulated mixture z is unstable and will exhibit 
phase-split. From Equation (6), note that the trivial solution 
(y = z) is always present in this thermodynamic problem, and 
it corresponds to the global minimum of TPDF for the case 
of stable mixtures.  

 As suggested by Michelsen [4], the stability criterion  
is also applicable to chemically equilibrated phases,  
and consequently almost any method proposed for stability 
analysis of non-reactive systems can be extended to reactive 
mixtures.  

2.2. Phase Equilibrium Calculations 

 After identifying an unstable system in phase stability 
analysis, the subsequent stage corresponds to phase 
equilibrium/split calculation. In these calculations, main 
objectives are to establish the correct number and types of 
phases at equilibrium as well as the composition and quantity 
of each phase [1]. At constant temperature T and pressure P, 
a c multi-component and  multi-phase non-reactive system 
achieves equilibrium when its Gibbs free energy is at the 
global minimum. There are two main approaches for 
performing phase equilibrium calculations: a) equation 
solving approach and b) Gibbs free energy minimization 
approach [2]. The former involves solving a set of non-linear 
equations arising from mass balances and equilibrium 
relationships, whereas the latter involves the direct 
minimization of Gibbs free energy function. Although the 
first approach seems to be faster and simple, the solution 
obtained may not correspond to the global minimum of free 
energy function. Moreover, it needs a priori knowledge of 
phases existing at equilibrium [2]. Therefore, minimization 
of Gibbs free energy is a natural approach for calculating the 
equilibrium state of a mixture.  

 In a non-reactive system with c components and  
phases, the thermodynamic function for phase equilibrium 
calculations is expressed as a linear combination of the 
chemical potential of each component in each phase:  

G = nijμij
i=1

c

j=1
            (7) 

where nij and μij are respectively the number of moles and 
chemical potential of component i in phase j. The expression 
for G and its mathematical properties depend on the thermo- 
dynamic equation(s) chosen to model each of the phases  
that may exist at equilibrium. For a non-reactive system,  
G must be minimized with respect to the set of nij subject  
to mass balance constraints. Thus, the constrained global 
optimization problem for Gibbs free energy minimization is: 

min
n

G  

subject to nij
j  =  1

= zinF    i = 1, ..., c            (8) 

0 nij zinF    i = 1, ..., c   j = 1, ...,   

where zi is the mole fraction of component i in the feed used 
for phase split calculations.  

 One can use new variables instead of nij as decision 
variables in the above optimization problem. Introduction of 
the new variables eliminates the restrictions imposed by 
material balances, reduces problem dimensionality and the 
optimization problem is transformed to an unconstrained 
one. For multi-phase non-reactive systems, real variables 

ij (0, 1) are defined and employed as decision variables by 
using the following expressions: 

ni1 = i1zinF    i = 1, ..., c             (9) 

nij = ij zinF nim
m=1

j 1

   i = 1, ..., c;    j = 2,..., 1        (10) 

ni = zinF nim
m=1

1

   i = 1, ..., c          (11) 

 Thus, the unconstrained global Gibbs energy minimiza- 
tion problem is defined as 

min  G

0 ij 1   i = 1, ..., c   j = 1,..., 1
        (12) 

 For Gibbs energy minimization, the number of phases 
existing at the equilibrium is usually assumed to be known  
a priori, and the number of decision variables in the 
unconstrained approach is c (  - 1) for non-reactive systems. 

2.3. Simultaneous Chemical and Physical Equilibrium 

 Reactive phase equilibrium calculations, also known as 
chemical equilibrium, are performed if a reaction is possible 
in the system under study. Note that reactions increase the 
complexity and dimensionality of phase equilibrium 
problems, and so phase split calculations in reactive systems 
are more challenging due to non-linear interactions among 
phases and reactions. The phase distribution and composition 
at equilibrium of a reactive mixture are determined by  
the global minimization of Gibbs free energy subject to  
mass balances and chemical equilibrium constraints. Based 
on the handling of material balance constraints, available 
strategies can be classified as either stoichiometric or non-
stoichiometric [8].  

 For reactive phase equilibrium, the mass balance 
restrictions and non-negativity requirements are usually 
formulated using the conservation of chemical elements in 
the components [9]. Therefore, to determine the phase 
equilibrium compositions in reactive systems using this 
approach, it is necessary to solve the following constrained 
global optimization problem:  

min
n

G   
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subject to dlinij
j=1i=1

c

= bl      l = 1, ...,me         (13) 

0 dlinij bl      i = 1,..., c;  j = 1, ..., ;   l = 1, ...,me   

where dli represents the number of gram-atoms of element l 
in component i, bl is the total number of gram-atoms of 
element l in the feed mixture and me is the number of 
elements. The constrained global minimization of G is with 
respect to c  decision variables nij.  

 For modeling reactive systems, the chemical equilibrium 
condition can be evaluated from either Gibbs free energy 
data or chemical equilibrium constants determined experi- 
mentally. Accordingly, we can use different objective 
functions for the constrained minimization of Gibbs energy 
function. In addition, this thermodynamic problem can be 
also formulated using transformed composition variables. 
For more details on different objective functions using both 
conventional and transformed composition variables as the 
decision vector for G minimization in reactive systems, see 
the recent study by Bonilla-Petriciolet et al. [10].  

 In particular, the constrained Gibbs free energy 
minimization using conventional composition variables is 
better in terms of computer time and numerical implementa- 
tion, for reactive phase equilibrium calculations [10]. For a  
c multi-component and  multi-phase system subject to  
r independent chemical reactions, the objective function  
for reactive phase equilibrium calculations can be defined, 
using reaction equilibrium constants, as 

GK = g lnKeqN
1nref , j

j=1

         (14) 

where g is the Gibbs free energy of mixing, lnKeq is a row 
vector of logarithms of chemical equilibrium constants for r 
independent reactions, N is an invertible, square matrix 
formed from the stoichiometric coefficients of a set of 
reference components chosen from the r reactions, and  
nref is a column vector of moles of each of the reference 
components. Equation (14) must be globally minimized 
subject to the mass balance restrictions. Formally, the 
constrained global minimization of GK can be stated as 

min
nij

GK   

subject to nij v iN
1nref , j( )

j=1

= niF v iN
1nref ,F

 i = 1, …, c  r   (15) 

nij > 0 i = 1,..., c j = 1, ...,  

where ni,F is the initial moles of component i in the feed, vi is 
the row vector (of dimension r) of stoichiometric coefficients 
of component i in r reactions, and nij is the number of  
moles of component i in phase j. The constrained  
global optimization problem can be solved by minimizing 
GK with respect to c (   1) + r decision variables nij. In this 
formulation, the mass balance equations are rearranged to 
reduce the number of decision variables of the optimization 

problem and to eliminate equality constraints. For more 
details on the development of Equation (15), see the recent 
study of Bonilla-Petriciolet et al. [10]. 

2.4. Phase Equilibrium Modeling 

 The estimation of parameters in thermodynamic models 
is an important requirement and a common task in many 
areas of chemical engineering because these models form the 
basis for synthesis, design, optimization and control of 
process systems. In the case of separation processes, 
thermodynamic models play a major role with respect to 
energy requirements, phase equilibrium and equipment 
sizing. The parameter estimation problem refers to 
determining values of model parameters that provide the best 
fit to a set of measured data such as vapor-liquid or liquid-
liquid equilibrium. In particular, estimation of parameters  
in non-linear thermodynamic models for vapor-liquid 
equilibrium (VLE) modeling has been of great interest in the 
chemical engineering literature. VLE data modeling using 
thermodynamic equations is generally based on classical 
least squares or maximum likelihood approaches [11]. In the 
classical least squares, it is assumed that there is a set of 
independent variables not subject to measurement error and 
only the dependent variables have errors, while errors in all 
measured variables are accounted in the maximum likelihood 
approach.  

 Consider a set of observations qij of i = 1, …, nd 
dependent/response variables from j = 1, …, ne experiments 
are available for the system, where the responses can be 
expressed by an explicit model qij = fi ( rj, ), with 
independent variables rj = (r1,j,…,rnd,j)

T and npar parameters 
 = ( 1,…, npar)

T. Measurement errors in rj can either be 
treated or neglected; depending on this choice, we can have 
either least squares (when errors in independent variable are 
neglected) or maximum likelihood formulation (when 
independent variables have measurement errors). For the 
case of classical least squares (LS) criterion, the objective 
function can be defined as: 

FLS =
qij fi rj ,( )

qiji=1

nd
2

j=1

ne
         (16) 

 This function is minimized with respect to the model 
parameters  inside specified bounds. Then, the global 
optimization problem is: 

min FLS

i,min i i,max i = 1,...,npar
         (17) 

 For modeling VLE data (i.e., x y P at constant T, or 
x y T at constant P), excess Gibbs energy equations are 
widely employed. Therefore, the objective function 
commonly used for VLE data fitting is based on activity 
coefficients, and is usually defined as 

FLS =
ij
exp

ij
calc

ij
exp

i=1

c
2

j=1

ne

          (18) 
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where 
exp
ij  is the experimental value for the activity 

coefficient of component i in j
th experiment, 

calc
ij  is the 

calculated value for the activity coefficient of component i in 
j
th experiment, and c is the number of components in the 

mixture. Experimental data of activity coefficients i
exp  can 

be calculated from VLE data as follows: 

i
exp

=
yi
expP

xi
expPi

0  i =1,…,c           (19) 

where exp
i
x  and exp

iy  are, respectively, the measured mole 

fraction of component i in the liquid and vapor phases at 

equilibrium, 0

i
P  is the vapor pressure of pure component i at 

the system temperature T, and P is the pressure of the 
system. For Eq. (19), it is assumed that, at low pressure, the 
fugacity coefficients of pure components cancel each other 
and the values of Poynting corrections are very close to one. 
Thus, the global minimization of LS objective function can 
be done as an unconstrained optimization problem using 
local composition models under these conditions. 

 On the other hand, if we assume that there are 
measurement errors in all the variables zij (which include 
both independent and response variables) for the experiments 
of the system to be modeled, the minimization problem  
to be solved is the error-in-variable (EIV) formulation  
of the form: 

FEIV =
zij
t zij( )

2

i
2

i=1

nest

j=1

ne

          (20) 

 Here, nest is the number of state variables, t

ij
z  is the 

unknown “true” value of ith state variable in jth measurement, 
and i is the standard deviation associated with the 
measurement of i

th state variable. The decision variables of 

EIV problem are the set of t

ij
z  and the model parameters . 

Formally, we have to solve a constrained global optimization 
problem, which is given by 

min
zt ,

 FEIV  

subject to g zij
t ,( ) = 0   i = 1,...,nest    j = 1,...,ne        (21) 

nejnestizzz

npari

t
ij

t
ij

t
ij

iii

,...,1   ,...,1

,...,1

max,min,

max,min,

==

=
 

where g is a vector of np model functions. In the EIV 
formulation, there is a substantial increase in the 
dimensionality of the optimization problem, which depends 
on the number of experiments. If the model functions g are 
explicit in zij, then they can be eliminated by direct 
substitution of zij in the objective function, and the above 
optimization can be solved as an unconstrained problem. For 
the case of VLE data, the state variables are x, y, P and T 

with standard deviations ( x, y, P and T ). Therefore, the 
common objective function for VLE data modeling using the 
EIV approach is 

Fobj =   
xij
t xij( )

2

xi

2 +
yij
t yij( )

2

yi

2
i=1

c

j=1

ne

+
(Tj

t Tj )
2

T
2 +

(Pj
t Pj )

2

P
2

j=1

ne

        (22) 

which is optimized with respect to npar + c ne decision 
variables.  

2.5. Calculation of Critical points and Azeotropes 

 Both critical points and azeotropes are special cases of 
phase equilibrium calculations, and are important topics 
because of their theoretical and practical implications for 
design of separation processes. They can occur in both 
reactive and nonreactive mixtures, and a mixture may have 
one, more than one or no critical points and/or azeotropes. 
Therefore, the correct prediction of phase behavior requires 
the determination of all critical points and azeotropes, or 
determining with certainty that there are none in the domain 
of interest [12, 13]. 

 For nonreactive mixtures, homogeneous azeotropes occur 
when the compositions of vapor and liquid phases at 
equilibrium are identical. The same definition applies for 
homogeneous azeotropes in reactive systems but using 
reaction-invariant composition space [14]. For a mixture  
of c components, the thermodynamic conditions that a 
homogeneous azeotrope should satisfy is based on the 
equality of chemical potentials 

0=
iViL

μμ  i =1,…,c          (23) 

 Equation (23) is a system of c non-linear equations with 

c 1 unknown compositions, xi
azeo  plus the unknown 

temperature or pressure of the azeotrope.  

 On the other hand, definition of the critical point of a 
mixture is as follows: at the critical point, the intensive 
properties of two phases in equilibrium become identical 
[15]. In particular, the Heidemann-Khalil formulation of the 
criticality conditions is the most widely used criteria in the 
literature for calculation of critical points [16]. Specifically, 
the criticality conditions for a mixture of c components are 
given by 

Q n = 0, n
T

n = 1          (24) 

Aijk ni nj nk
k=1

c

j=1

c

= 0
i=1

c

         (25) 

 In Eq. (24), the c c matrix Q has elements 

Qij = Aij =
2A

ni nj T ,V

          (26) 
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Aijk =
3A

ni nj nk T ,V

          (27) 

 In the above equations, A is the Helmholtz free energy 
and ni, nj and nk are the component mole numbers. The 
derivatives Aij and Aijk are evaluated at the given mixture 
composition n0 = (n1,0, n2,0,…, nc,0). Equations (24) and (25) 
is a system of c + 2 non-linear equations in c + 2 variables: 
T, V and n = ( n1, n2,…, nc), where each element 
represents a nonzero perturbation in the component mole 
number. Note that Equations (23), (24) and (25) can be used 
for prediction of both homogeneous azeotropes and critical 
points in reactive systems if reaction invariant composition 
variables are used [14, 17].  

 The prediction of both azeotropes and critical points is 
reduced to locating all roots of a system of non-linear 
equations. Such systems of equations can be transformed to 
an optimization problem in order to use global optimization 
methods. Specifically, the objective function used for these 
thermodynamic calculations is given by 

Fobj = fi
2

i=1

nle

           (28) 

where fi is given by Eq. (23) for azeotrope calculations or 
Eqs. (24) and (25) for critical point determination. If Fobj (x*) 
= 0, then it implies that x* is a global minimum and 
subsequently f1(x*) = f2(x*) = … = fnle(x*) = 0, and thus x* is 
a root (i.e., azeotrope or critical point) for the corresponding 
system of equations. Finding all x* such that Fobj(x*) = 0 
corresponds to locating all roots of the system.  

3. GLOBAL OPTIMIZATION METHODS 

 As stated, global optimization problems involved in the 
modeling and calculation of phase equilibrium are very 
challenging. This is because the objective functions are 
multivariable, non-convex and highly non-linear. For 
example, global minimization of TPDF and G are difficult 
tasks and require robust numerical methods, since these 
objective functions often have unfavorable attributes such as 
discontinuity and non-differentiability (e.g., when cubic 
equations of state or asymmetric models are used for 
modeling thermodynamic properties). Additional complexities 
arise near the phase boundaries, in the vicinity of critical 
points or saturation conditions, and when the same model  
is used for determining the thermodynamic properties  
of the mixture [1, 2]. Consequently, TPDF and G may have 
several local minima including trivial and non-physical 
solutions.  

 Parameter estimation problems too can be very difficult 
to solve reliably even for simple thermodynamic models  
[18-20]. Specifically, a number of pitfalls and difficulties 
may be faced in parameter estimation for VLE modeling; 
these include convergence to a local minimum, flat objective 
function in the neighborhood of the global optimum,  
badly scaled model functions and non-differentiable terms  
in thermodynamic equations. In addition, the number of 

optimization variables can be very large, especially for EIV 
problems. Failure to find the globally optimal parameters  
for a thermodynamic model and using locally optimal 
parameters instead, can have significant consequences in 
phase equilibrium calculations and predictions, may cause 
errors and uncertainties in equipment design and erroneous 
conclusions about model performance. Recent studies have 
shown that using the locally optimal parameters may result 
in incorrect predictions of the azeotropic states with local 
composition models and in qualitative discrepancies of the 
phase behavior such as prediction of spurious phase split and 
modeling of homogeneous azeotropes as heterogeneous 
[18,19]. In summary, several studies have demonstrated the 
challenging nature of global optimization problems for phase 
equilibrium modeling and calculations, and they have 
highlighted the need for reliable numerical techniques to 
overcome these difficulties.  

 Global optimization methods can be classified into two 
broad categories: deterministic and stochastic methods [21]. 
The former methods can provide a guaranteed global 
optimum but they require certain properties of objective 
function and constraints such as continuity and convexity. In 
some cases, problem reformulation is needed depending on 
the characteristics of the model under study. The stochastic 
methods generally require little or no assumption on the 
characteristics of the optimization problem, and yet provide a 
high probabilistic convergence to the global optimum. 
Further, stochastic methods are easy to understand, implement 
and use. Although they do not guarantee global optimality, 
they can often locate the global optimum in modest 
computational time compared to deterministic methods [22]. 
This section provides the basic concepts and description of 
deterministic and stochastic methods used for global 
optimization in phase equilibrium calculations and modeling. 

3.1. Deterministic Methods 

 Deterministic optimization methods are those which 
exploit analytical properties of the problem to generate a 
deterministic sequence of points (finitely or infinitely) 
converging to a global optimum [23]. These methods include 
branch and bound global optimization, homotopy 
continuation methods, Lipschitz optimization and interval 
analysis [3]. In the following sections, we briefly summarize 
different deterministic global optimization methods applied 
to phase equilibrium calculations and modeling. 

3.1.1. Branch and Bound Global Optimization 

 Branch and bound algorithms are a variety of adaptive 
partition strategies that have been proposed to solve global 
optimization problems [3]. These methods are based upon 
partitioning, sampling, and subsequent lower and upper 
bounding procedures. These operations are iteratively 
applied to the collection of active (i.e., candidate) subsets 
within the feasible set D. Branch and bound methods are 
non-heuristic, in the sense that they maintain provable upper 
and lower bounds on the globally optimal objective value; 
they terminate with a certificate that the optimal point found 
is -suboptimal.  
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 Branch and bound methods include many specific 
approaches, and allow for a variety of implementations. 
These methods typically rely on some a priori knowledge of 
objective function characteristics and in developing proper 
structures (i.e., convex terms) of the optimization problem. 
The general branch and bound methodology is applicable to 
broad classes of global optimization problems. In general, 
these optimization algorithms are often slow and require a 
significant numerical effort that grows exponentially with 
problem size [1, 24]. 

3.1.2. Homotopy Continuation Methods 

 A continuation method is considered as a global method 
since it has the capability of finding all roots of a set  
of nonlinear equations. In brief, homotopy continuation 
methods provide a smooth transition between an 
approximate solution (often linear or nearly linear) and the 
true solution(s) of a nonlinear equation system, f (u) = 0 by 
gradually introducing the nonlinearities through the use of a 
scalar homotopy parameter t [25, 26]. These methods are 
global methods for finding the zeros of nonlinear functions. 
For global optimization, f(u) is a system of non-linear 
equations obtained from the stationary conditions of the 
optimization problem. Newton homotopy is usually used in 
the literature, and it has the form: 

H(u, t) = t f(u)  (1  t) g(u) = 0         (29) 

where f (u) is the system of equations to be solved, g(u) is a 
simple system of equations for which a solution is known or 
easily found and t is a scalar homotopy parameter, which is 
gradually varied from 0 to 1 as the path is tracked from the 
starting point to the true solution.  

 Note that starting at t = 0, H(u, 0) = 0 is trivial to solve 
given any initial vector, u0. A homotopy path is generated as 
t increases to unity, where the true solutions occur. A 
predictor-corrector method can be applied to trace the 
homotopy paths by integrating along their arc lengths. 
Beginning on the homotopy path, a tangent vector is 
computed and a step is taken along the direction of its arc 
length (Euler’s method). The algorithm calculates tangent 
vectors by solving an initial-value problem. The resulting 
homotopy paths resemble the solution diagrams obtained 
through parameterization. When a unique and continuous 
path exists for H(u, t) from t = 0 to t = 1, the Newton 
homotopy-continuation algorithm guarantees global 
convergence to a single solution; however, it does not 
guarantee global convergence to multiple solutions. Note 
that success in finding all solutions along a single path has 
only been demonstrated for simple polynomials when all 
variables are relaxed from the real to the complex domain. 
Therefore, continuation methods can be implemented in both 
real and complex search spaces [27]. 

3.1.3. Interval Analysis 

 The interval analysis method is a general-purpose 
computational method to solve nonlinear equations to find 
all solutions lying within the variable bounds [28, 29]. 
Specifically, consider the solution of a nonlinear equation 
system, f(u) = 0 where u  U

0 and the goal is to enclose, 

within very narrow intervals, all roots of the equation system 
in U

0. The algorithm is applied to a sequence of intervals, 
beginning with the initial interval vector U0 specified by the 
user. For an interval Uk in the sequence, the first step in the 
solution procedure is the function range test. The interval 
extension F(Uk) of f(u) over the current interval U

k is 
computed and tested to determine whether it contains zero. If 
not, then clearly there is no root of f(u) = 0 in this interval 
and can be discarded. If U

k passes the function range test, 
then the next step is the interval Newton test. This step 
requires an interval extension of the Jacobian matrix of f(u) 
and involves setting up and solving the interval Newton 
equation (a system of linear interval equations) for a new 
interval, which is usually referred as the image. Comparison 
of this image to the current interval being tested provides an 
existence and uniqueness test for roots of the equation 
system. Note that a reasonable initial interval should be wide 
enough so that the interval Newton method provides all the 
solutions of local minima and maxima, saddle points and 
global minimum for the optimization problem under study 
[30, 31].  

3.2. Stochastic Methods 

 Stochastic optimization methods involve probabilistic 
elements and use random sequences in the search for the 
global optimum [21]. These methods employ heuristics for 
exploring (diversification) and exploiting (intensification) 
the search space, and learning strategies are used to find 
quickly near-optimal solutions [22]. The balance between 
diversification and intensification is important to equilibrate 
between reliability and computational efficiency (i.e., 
improve the effectiveness) of finding the global optimum by 
the stochastic algorithm. Stochastic optimization methods 
manipulate a single (i.e., point-to-point methods) or a 
collection of solutions (i.e., population-based methods) at 
each iteration or objective function evaluation. They include 
random search, simulated annealing, particle swarm 
optimization, tabu search, genetic algorithms, differential 
evolution, ant colony optimization and harmony search. In 
the following sections, we describe the general characteristics 
of several stochastic methods used in phase equilibrium 
modeling and calculations. 

3.2.1. Random Search 

 The original random search method is pure random 
search (PRS) which was first defined by Brooks [32]. It is 
the simplest algorithm among the random search methods, 
and consists of generating a sequence of uniformly 
distributed points in the feasible region, while keeping track 
of the best point that was already found. PRS offers a 
probabilistic asymptotic guarantee that the global minimum 
will be found with probability one as the sample size grows 
to infinity. Among the random search methods, a direct 
search algorithm (also called adaptive random search, ARS) 
proposed by Luus and Jaakola has found many applications 
in chemical engineering; it uses random search points and 
systematic region reduction for locating the global optimum 
[33].  
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 The ARS algorithm begins with a feasible initial point 
and region size vector r. Then, it generates a number of 
random points R around the initial point. The feasibility of 
each randomly chosen point is checked. The objective 
function values of such feasible points are found, and the 
best point is recorded. In the next iteration, R random points 
are generated around the best point found so far and the same 
procedure is repeated. After each iteration, the region size is 
reduced by a certain factor. Iterations are continued until the 
termination criterion is satisfied. Pseudo-code of ARS is 
shown in Algorithm 1, and details of this optimization 
procedure can be found in [34, 35]. There are several 
versions of ARS, which have been applied to different 
chemical engineering application problems [36-39]. 

 
Algorithm 1 Pseudo-code of Adaptive Random Search 

Set region size vector r and xbest = Ø 

Give a feasible initial point x0 within the search space 

While the stopping criterion is not satisfied 

Randomly generate R points, xi around x0 

Check the feasibility of each xi 

For i = 1 to R 

If xi is feasible then 

Evaluate xi 

End if 

End for 

Update xbest based on the objective function value and let 
x0 = xbest 

Reduce the region size by a certain factor 

End while 

 

3.2.2. Simulated Annealing 

 Simulated annealing (SA), which was developed by 
Kirkpatrick et al. [40], is a stochastic method inspired by the 
analogy to annealing of metals. In the physical process of 
annealing, a metal is first heated to its molten state and then 
slowly cooled to solid state in order to reach thermal 
equilibrium with minimum energy. This process of slow, 
controlled cooling scheme of the melted metal to obtain the 
desired crystalline structure is simulated in SA. It starts from 
an initial point in the search space and a given high 
temperature T. A new point is randomly created in the 
neighborhood of the initial point, and its energy (objective 
function) is evaluated. If this new point has lower energy 
than the previous one, it is accepted; otherwise, the new 
point is accepted with probability, P = exp(- E/KBT) where 

E is the difference in the energy of these two points, KB is 
the Boltzmann constant. Generation of new points and their 
evaluation/acceptance are repeated N time at the same 
temperature to ensure the system is in thermal equilibrium at 
this T. After that, T is reduced according to the cooling 
schedule and the same procedure is repeated until the 
termination criterion is satisfied. The probability of 

acceptance, P decreases as the search progresses because of 
lower T.  

 From mathematical point of view, SA can be viewed as a 
randomization device that allows wrong-way movements 
during the search for the optimum through an adaptive 
acceptance/rejection criterion. Based on this concept, SA not 
only accepts the point with better value but also accepts a 
point with worse value with some probability, which 
decreases as search progresses. The main control parameter 
in the cooling schedule is the temperature, T. The main role 
of T is to let the probability of accepting a new move be 
close to 1 in the earlier stage of the search and to make it 
almost zero in the final stage of the search. Convergence to 
an optimal solution can theoretically be guaranteed after an 
infinite number of iterations controlled by the procedure of 
cooling schedule. Pseudo-code of SA is shown in Algorithm 
2, and more details of this optimization method are available 
in Chibante [41]. Various versions of SA have been proposed 
and applied to chemical engineering problems [42-45].  

 
Algorithm 2 Pseudo-code of Simulated Annealing 

Choose an initial point xo  

While the stopping criterion is not satisfied 

For i = 1 to N  

Randomly generate xnew around x0 

E = f (xnew) – f (xo) 

If E < 0 then 

xo = xnew 

Else 

If random(0,1) < exp (- E/KBT) then 

x0 = xnew 

End if 

End if 

End for 

Reduce T according to cooling schedule  

End While 

 

3.2.3. Genetic Algorithm 

 Genetic algorithm (GA), developed by Holland [46], is 
inspired by the evolutionary process occurring in nature. The 
main ideas of this algorithm are the ‘survival of the fittest’, 
and crossover and mutation operations for generating a new 
solution. GA starts with initializing a population of 
individuals or trial solutions, which are generated randomly 
within the feasible region. Objective function value of these 
individuals is evaluated. The individuals undergo three main 
operations, namely, reproduction, crossover and mutation. 
Reproduction creates a mating pool in which the individuals 
with good fitness will have more copies than the ones with 
lower fitness value. Crossover is an operation which allows 
the algorithm to explore the entire search space and to escape 
from the local minima. In this operation, new strings 
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(individuals) are formed by exchanging the information 
among parents of the mating pool. Mutation operation 
involves making changes in each individual directly. 
Mutation is exploitative; it can create random small 
diversions, thereby staying near the parent. After the 
mutation, the new population is created.  

 The new population enters into the next generation and 
the same process of reproduction, crossover and mutation is 
repeated until the stopping criteria are satisfied. Since the 
selection of the population for the mating pool is based on 
the survival of the fittest, the solutions will converge towards 
its optimal point. GA is probably the most widely known 
stochastic algorithm, and has found many applications in 
chemical engineering [5, 10, 47, 48]. Pseudo-code of GA is 
shown in Algorithm 3, and more details of this stochastic 
method can be found in Younes et al. [49]. 

 

Algorithm 3 Pseudo-code of Genetic Algorithm 

Initialization:  

Randomly generate NP individuals within the search 
space 

Evaluate objective function of each of the individuals 
generated 

While the termination criterion is not satisfied 

Reproduction: Create a mating pool of parents 

Crossover: New individuals formed from parents 

Mutation: Randomly modify the new individuals  

Selection: Offspring created by crossover and mutation 
replaces the original parent population based on its 
fitness  

End While 

 

3.2.4. Tabu Search 

 Tabu (or taboo) Search (TS) was developed by Glover in 
1989 [50]. Tabu means that the things must be left alone and 
should not be visited or touched. Accordingly, the main idea 
of TS is that the points searched by the algorithm should not 
be re-visited. This procedure enhances the searching 
capability of the solution space economically and effectively. 
Initially, a set of candidate solutions is evaluated and then 
stored in a taboo list. Then, each new solution generated is 
compared with the solutions in the taboo list. If the new 
solution is near to any point in the taboo list, then it will not 
be evaluated and discarded right away. The length of taboo 
list is defined by the user. If a new solution enters into the 
taboo list, the oldest solution in the taboo list will be 
removed to keep the specified length of the taboo list. After a 
number of iterations, several promising areas containing the 
global optimum solution will be found. Then the intensive 
search is carried out from these areas to find the global 
optimum. See the pseudo-code of TS is given in Algorithm 
4. For more details on this stochastic optimization method, 
see the book by Glover and Laguna [50] and the book 
chapter by Sim et al. [51]. TS has been successfully applied 
to a wide range of optimization problems [6, 52-55]. 

Algorithm 4 Pseudo-code of Tabu Search 

Randomly generate N initial points, Xi within the search 
space 

Evaluate objective function of all these points, and send 
them to tabu list 

While the termination criterion is not satisfied 

For i =1 to N 

Generate a new point Xi,new  

If Xi,new is near any point in the tabu list then 

Discard Xi,new 

End if 

End for 

Evaluate the objective function at all the remaining 
points Xi,new 

Update tabu list 

End while 

 
3.2.5. Differential Evolution 

 Differential evolution (DE) was proposed by Storn and 
Price in 1997 [56]. The main idea behind it is taking the 
difference between two individuals and adding it to another 
individual to produce a new individual. It contains four steps 
similar to GA, namely, initialization of population, mutation, 
crossover and selection (see the pseudo-code in Algorithm 
5). The main difference between DE and GA is that the 
search is guided by mutation in the former whereas it is 
governed by the crossover in the latter. DE algorithm starts 
with a randomly generated initial population within the 
search region. For each (target) individual in the population, 
three other individuals are randomly selected, and the 
weighted difference between two of them is added to the 
third individual in order to produce a mutant individual. This 
operation is called as mutation. Elements of the mutant 
individual thus obtained are copied to the target individual 
using crossover constant/probability to produce a trial 
individual, in the crossover operation. In the selection 
operation, the better one between the trial and target 
individuals is selected based on the objective function 
values, for the next generation. This selection of the fittest 
individual causes the individuals to improve over the 
generations, finally converging to an optimum. DE has been 
successfully applied to a wide range of optimization problems 
[6, 57]. More details of DE can be found in Price et al. [58]. 

 
Algorithm 5 Pseudo-code of Differential Evolution 

Initialization:  

Randomly generated N individuals (xi) within the search 
space 

Evaluate the objective function of all these individuals, 
and find the best, XBest 

While the termination criterion is not satisfied 

For i =1 to N 



80    The Open Thermodynamics Journal, 2011, Volume 5 Zhang et al. 

Randomly choose 3 individuals (xr1  xr2  xr3 ) from the 
current population 

Mutation to find mutant individual: vi=xr1 + F (xr2  xr3) 
Crossover: For j = 1 to D 

If rand(0,1)  Cr then 

ui,j = vi,j 

Else  

ui,j = xi,j  

End If 

End For 

Find the objective function of the new (trial) individual 

Between ui and xi, the better one goes to next generation  

Update XBest 

End For 

End While 

 

3.2.6. Particle Swarm Optimization 

 Particle swarm optimization (PSO), developed by 
Eberhart and Kennedy in 1995 [59], exploits swarm intelli- 
gence (i.e., the behavior of a biological social system like a 
flock of birds or a school of fish) for finding the global 
optimum. This search algorithm is also a population-based 
stochastic optimization technique. The swarm in PSO 
consists of a number of particles, each of which represents a 
potential solution in the search space. Each particle moves to 
a new position according to certain velocity and the previous 
position of the particle.  

 PSO algorithm starts with a randomly generated initial 
population of particles in the search space. Unlike other 
evolutionary optimization methods, particles in PSO do not 
recombine genetic material directly between individuals 
during the search, but work according to the social behavior 
of swarms instead. Therefore, PSO finds the global best 
solution by simply adjusting the moving vector of each 
individual according to the personal best and the global best 
positions of particles in the entire swarm at each time step 
(generation). In other words, the search process allows 
particles to stochastically return toward previously 
successful regions in the search space. Recent developments 
and applications of PSO can be found in [60-63]. Pseudo-
code PSO is presented in Algorithm 6, and more details of 
this method can be found in Kennedy et al. [64]. 

 
Algorithm 6 Pseudo-code of Particle Swarm Optimization 

Initialization:  

Randomly generate N particles (xi), velocities (vi) and 
positions (pbesti) 

Evaluate objective function of all the particles 

Set global best particle to gbest 

While the termination criterion is not satisfied 

For i = 1 to N 

vi =wvi + c1rand(0,1)(pbesti – xi)+c2rand(0,1)(gbest – xi)  

xi = xi + vi 

Evaluate the objective function of the new particle 

If xi better than pbesti 

pbesti = xi 

End if  

If xi better than gbest 

gbest = xi 

End if  

End for 

End While 

 

3.2.7. Random Tunneling Algorithm 

 The tunneling method was first introduced by Levy and 
Montalvo [65]. It is composed of a sequence of cycles, 
where each cycle has two phases: a local minimization phase 
and a tunneling phase. In the first phase, a minimization 
algorithm such as gradient descent or Newton’s method is 
used to minimize the given objective function, f(x)  to 
locate the first local minimum, x*. In the second phase,  
the method searches for the zeros of the tunneling function 
such that x0  x* but 

 
f(x0 ) = f(x )  Then, the zero point  

is used as the starting point of the next cycle, and the  
two phases are repeated sequentially until a stopping 
criterion such as failure to find a zero within the prescribed 
CPU time is met. 

 One of the tunneling algorithms, namely, random 
tunneling algorithm (RTA) was developed by Jiang et al. 
[66]. It is a stochastic algorithm based on the concepts of 
sub-energy transformation and terminal repeller in the 
terminal repeller and unconstrained sub-energy tunneling 
(TRUST) algorithm of Cetin et al. [67]. RTA consists of two 
phases: a global search phase and a local optimization phase. 
The global phase perturbs the system randomly from the last 
local minimum and solves a system of differential equations 
from the perturbed point to explore new regions of attraction. 
Then, the local phase employs a local optimization method 
(e.g., Quasi-Newton method) to find an improved point in 
the new region.  

 Srinivas and Rangaiah [68] implemented RTA 
differently, as in Algorithm 7; it starts with setting parameter 
values and randomly generating an initial point within the 
search space. A local optimization is performed from this 
point to find the local optimum in this area. Then, tunneling 
phase is started from this local minimum which comprises of 
three steps. The first step is random perturbation from the 
current local minimum, and the second step involves 
tunneling from the perturbed point in a random direction 
using uniform grid search until it hits the boundary. The third 
step consists of 1D tunneling from the perturbed point along each  
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Algorithm 7 Pseudo-code of Random Tunneling Algorithm 

Initialization:  

Randomly generate a point, x, within the search space 

While termination criterion is not satisfied 

Local phase: Local search starts from x and optimum 
found is x* 

Tunneling: Do  

Random perturbation from the best 
local minimum x*  

Perform tunneling from perturbed 
point along a random direction 

1D tunneling from perturbed point 
along each coordinate axis 

If any point is better than x* then 

Exit Do and go to Local phase 

End if 

Until maximum number of perturbations 
exceed 

Set last perturbed point as new initial 
guess x  

End while 

Local search starts from x and optimum found is x*  

 
coordinate axis. The three steps of tunneling phase are 
repeated until the number of perturbations reaches the 
maximum number or a better point is found. If any better 
point is found, the tunneling phase will be terminated, and 
this better point will be the new initial guess for the local 
minimization phase; else, the last perturbed point will be the 
new initial guess. In the local minimization step, a new local 
minimum is found and compared with the previous local 
minima, and the best minimum is taken as the current local 
minimum for the subsequent tunneling phase. The cycle of 
local minimization and tunneling is repeated until the 
number of tunneling phases reaches the maximum specified 
number. The algorithm then terminates declaring the 
last/best local minimum as the global minimum. More details 
about this RTA algorithm can be founded in Srinivas and 
Rangaiah [68]. 

3.2.8. Ant Colony Optimization 

 Ant colony optimization (ACO) is a novel meta-heuristic 
that mimics foraging behavior of real ant colonies. The first 
ant algorithm was developed by Dorigo et al. in 1996 [69], 
and since then several improvements of the ant system have 
been proposed [70]. It is an evolutionary approach where 
several generations of artificial ants search for good 
solutions in a co-operative way. These ants deposit 
pheromone on the ground for making some favorable paths 
that should be followed by other members of the colony. 
Note that the indirect communication between the ants is 
performed by means of pheromone trails which enable them 
to find short paths between their nest and food sources. This 
characteristic of real ant colonies is exploited in ACO 

algorithms in order to solve optimization problems. On the 
other hand, pheromone evaporation is a process of 
decreasing the intensities of pheromone trails over time. This 
process is used to avoid local convergence and to explore 
more in the search space. The meta-heuristic of classical 
ACO consists of three basic components, and its pseudo-
code is given by:  

 While termination conditions not met, do 

      Schedule activities 

    Ants generation and activity 

    Pheromone evaporation 

    Daemon actions 

         end Schedule activities 

 End while 

 Ants find solutions, starting from an initial value and 
moving to feasible neighbor regions, in the step of Ants 
generation and activity. During this step, information 
collected by ants is stored in the so-called pheromone trails. 
An agent-decision rule, made up of the pheromone and 
heuristic information, guides the ant’s search toward 
neighbor regions stochastically. Objective function values of 
candidate solutions are usually used to modify the 
pheromone values in a way that is deemed to bias future 
sampling towards high quality solutions. However, due to 
pheromone evaporation, later generations of ants have 
smaller influence of the pheromone values than earlier or 
more recent ones. Ants use this information and make their 
decisions according to the probability distribution 
determined by the relative size of the pheromone values 
corresponding to the possible outcomes of the decision 
variables. Finally, Daemon actions are optional for ACO, 
and they can be used to implement centralized actions which 
cannot be performed by single ants. Examples are the 
application of local search methods to the constructed 
solutions, or the collection of global information that can be 
used to decide whether it is useful or not to deposit 
additional pheromone to bias the search process from a non-
local perspective. Details of this stochastic optimization 
method can be found in [70]. 

3.2.9. Harmony Search 

 Harmony search (HS) is a music-inspired meta-heuristic 
algorithm, which has been introduced by Geem et al. in 2001 
[71]. This stochastic optimization method was developed in 
an analogy with music improvisation process where music 
players improvise the pitches of their instruments to obtain 
better harmony. Specifically, when musicians improvise they 
may perform the following steps: playing an existing score 
from memory, performing variations on an existing piece, or 
creating an entirely new composition. In the optimization 
context, each musician is replaced with a decision variable, 
and the possible notes in the musical instruments correspond 
to the possible values for the decision variables. So, the 
harmony in music is analogous to the vector of decision 
variables, and the musician’s improvisations are analogous 
to local and global search schemes in optimization 
techniques. HS combines heuristic rules and randomness to 
imitate this music improvisation process.  
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 Briefly, HS involves three stochastic operators to 
perform both diversification and intensification stages: a) 
memory consideration, b) pitch adjustment, and c) random 
selection. Pseudo-code of HS is given by:  

 While termination conditions not met, do 

       Perform Improvisation (i.e., generate a new solution) 

     Memory consideration 

     Pitch adjustment 

    Random selection 

  end Improvisation 

 End while 

 The diversification is controlled by the pitch adjustment 
and random selection operators, while memory consideration 
is generally associated with the intensification. The proper 
combination of these operators is important to favor the 
performance of HS in global optimization. This iterative 
procedure is repeated until a proper convergence criterion is 
satisfied. Recently, some modifications have been proposed 
in the literature to improve the convergence performance of 
the original HS. According to Geem [72], variations 
proposed for HS may involve: a) mechanisms for the proper 
initialization of HS parameters, b) mechanisms for the 
dynamic adaptation of HS parameters during optimization, 
and c) the application of new or modified HS operators that 
include hybrid methods using other meta-heuristics such as 
simulated annealing or differential evolution. For example, 
two typical and promising variants of HS are the Improved 
HS and the Global-Best HS. For more details on this meta-
heuristic, consult the book by Geem [72]. 

3.2.10. Hybrid Methods 

 In recent years, many hybrid methods have been 
proposed and studied. A judicious combination of effective 
concepts of different meta-heuristics can provide a better 
algorithm for dealing with real world and large scale 
problems [73]. The hybrid algorithm usually provides several 
advantages such as better solution using less computational 
time and handle large or difficult problems [7, 74-77]. We 
focus here on hybrid algorithms that have been applied to 
phase equilibrium modeling and calculations.  

 Srinivas and Rangaiah [7] proposed a hybrid method 
which combines DE and tabu list of TS. The tabu list used in 
DE can avoid re-visiting the same area, increase the diversity 
of the population, avoid unnecessary function evolutions, 
enhance global exploration and prevent premature conver- 
gence. The proposed method was shown to be more reliable 
and efficient compare to many other stochastic algorithms 
[10, 20]. Chaikunchuensakun et al. [78] presented a combined 
algorithm based on nonlinear parametric optimization 
(NLQPB) routines. It solves the Kuhn-Tucker conditions by 
minimizing a quadratic sub-problem with linearized equality 
and inequality constraints. The solution vector of the 
quadratic sub-problem is used as a search direction until 
sufficient decrease of a merit function is found. The 
approximate Hessian matrix is updated for each quadratic 
sub-problem by the quasi-Newton algorithm. Mitsos and 
Barton [79] proposed a hybrid method which combines 
CPLEX and BARON solvers in GAMS. The upper bound of 

the problem is solved with CPLEX, and lower bound of the 
problem is solved through BARON in order to enhance its 
reliability. Pereira et al. [80] combined three solvers in 
GAMS, where BARON is used for global optimization, 
MINOS is used as a nonlinear solver and CPLEX is used for 
linear problems. The proposed algorithm can solve 
challenging optimization problems.  

 Srinivas and Rangaiah [81] proposed two versions of DE 
with tabu list, referred as DETL-G (wherein the tabu list is 
implemented in the generation step) and DETL-E (wherein 
the tabu list is implemented in the evaluation step). These 
two algorithms combine the good reliability of DE with the 
computational efficiency of TS. Recently, Zhang et al. [63] 
proposed a novel bare-bones particle swarm optimization for 
parameter estimation of vapor-liquid data modeling 
problems. The proposed method combines the mutation 
strategy of differential evolution with bare-bones particle 
swarm optimization for a good balance between the 
exploration and exploitation to enhance the global search 
ability. 

 Besides the above hybrid methods, one common 
approach is to use stochastic algorithm for global search 
followed by a local optimizer for intensifying search. 
Accordingly, a local optimizer has been combined with 
stochastic optimization algorithms such as GA, SA, PSO, 
DE and HS [5, 6, 45, 62, 82-86].  

4. APPLICATIONS OF GLOBAL OPTIMIZATION 
METHODS TO PHASE EQUILIBRIUM MODELING 

AND CALCULATIONS 

 The following sections summarize studies, mainly from 
the year 2000, on application and evaluation of deterministic 
and/or stochastic global optimization methods to phase 
equilibrium modeling (in Section 4.1), phase stability analysis 
(in Section 4.2) and/or phase equilibrium calculations (in 
Section 4.3), and prediction of critical points and azeotropes 
(in Section 4.4). 

4.1. Applications to Phase Equilibrium Modeling 

 Deterministic and stochastic global optimization methods 
have been applied to parameter estimation in VLE modeling, 
which are summarized in Table 1. In comparison to phase 
equilibrium calculations, there are fewer studies on the 
solution of parameter estimation problems for phase 
equilibrium modeling using global optimization methods. 
Specifically, Esposito and Floudas [87] have reformulated 
the optimization problem in terms of convex under-
estimating functions and then used a branch-and-bound 
procedure to solve parameter estimation problems using 
vapor-liquid equilibrium equations. This method provides a 
mathematical guarantee of global optimality but, in general, 
it may be necessary to perform problem reformulation and 
develop convex under-estimators specific to each new 
application. Gau et al. [18] and Dominguez et al. [88] have 
used an interval analysis approach and classical least square 
formulation for modeling vapor-liquid equilibrium data. 
These studies indicated that several sets of parameter values 
of local composition models published in the DECHEMA 
VLE Data Collection correspond to local optima. These 
authors also showed that these locally optimal parameters 
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affect the predictive capability of thermodynamic models for 
phase equilibrium modeling. Later, Gau and Stadtherr [89] 
applied an interval-Newton approach for the reliable solution 
of EIV parameter estimation problems in vapor-liquid 
equilibrium modeling of binary systems. Note that this 
approach can be used for both parameter estimation and data 
reconciliation.  

 With respect to stochastic methods, several meta-
heuristics have been used to solve the parameter estimation 
problems in phase equilibrium modeling, and they include: 
simulated annealing (SA), genetic algorithm (GA), random 
tunneling algorithm (RTA), differential evolution (DE), 
differential evolution with tabu list (DETL), particle swarm 
optimization (PSO), harmony search (HS), bare-bones 
particle swarm optimization (BBPSO) and ant colony 
optimization (ACO). Specifically, Costa et al. [90] reported 
the application of SA for parameter estimation in the 
modeling of vapor-solid equilibrium with supercritical 
carbon dioxide as the solvent. Results of data fitting using 
SA were compared with those obtained using the Powell 
method, and the authors concluded that SA may offer a 
better performance. Steyer and Sundmacher [91] used an 
evolutionary optimization strategy for the simultaneous 
fitting of VLE and liquid-liquid equilibrium (LLE) data for 
ternary systems. Bonilla-Petriciolet et al. [45] also studied 
the performance of SA for parameter estimation in  
VLE modeling using both least squares and maximum 
likelihood formulations. This study concluded that SA is a  
robust method for non-linear parameter estimation in 
thermodynamic models. However, in difficult problems (e.g., 
EIV problems with several decision variables), it still can 
converge to a local optimum of the objective function. 
Srinivas and Rangaiah [68] used a RTA for VLE modeling 
using the error-in-variable approach. This method was able 
to solve reliably the two modeling problems having 18 and 
34 decision variables, and with a global minimum not 
comparable to a local minimum. Alvarez et al. [47] applied 
and compared two versions of GA for VLE modeling using 

local composition models and equations of state and LS 
approach. DE was successfully applied to modeling the 
equilibrium solubility of CO2 in aqueous alkanolamines [92].  

 Recently, the performance of SA, GA, DE, DETL and 
PSO has been compared for VLE modeling using 
experimental data for binary systems and both least squares 
and maximum likelihood criteria [20]. This comparison 
shows that DE and DETL perform better than other 
algorithms tested in terms of reliability for parameter 
estimation in VLE data modeling. Further, DETL offers a 
significant reduction in the computational time. Lazzus [93] 
also reported the application of PSO to modeling vapor-
liquid equilibrium in binary systems using UNIQUAC and 
NRTL local composition models. Zhang et al. [63] studied 
the performance of PSO and variants of BBPSO algorithms 
for parameter estimation in VLE modeling problems based 
on LS and EIV approaches. The reliability of BBPSO 
proposed by Zhang et al. [63] is shown to be better than or 
comparable to other stochastic global optimization methods 
tested; in addition, it has less parameters to be tuned. 
Preliminary studies have also been performed for parameter 
estimation in VLE modeling using both HS and ACO [85, 
86]. In particular, HS is reliable for solving parameter 
estimation problems using LS approach but its performance 
is poor for finding the global optimum using EIV 
formulation. On the other hand, ACO appears to be a 
competitive stochastic method for VLE modeling especially 
using EIV formulation. 

 The above review indicates that several researchers  
have studied the parameter estimation in VLE modeling 
problems using stochastic optimization methods instead of 
deterministic methods. In particular, stochastic optimization 
methods may offer reduced computational time and easier 
numerical implementation than the deterministic approaches. 
The former methods usually show robust performance for 
solving parameter estimation problems but, in some 
challenging problems, they may fail to locate the global 
optimum especially using fewer function evaluations and for 

Table 1.  Application of Global Optimization Methods to Modeling Vapor-Liquid Equilibrium Data 

Method (Reference) Problem Formulation Thermodynamic Models 

Branch and Bound (Esposito and Floudas, 1998) [87] Error-in-variable Local composition model and ideal gas 

Interval Analysis (Gau et al., 2000; Dominguez et al., 2002) [18,88] Least squares Local composition models and ideal gas 

Interval Analysis (Gau and Stadtherr, 2002) [89] Error-in-variable Local composition model and ideal gas 

Simulated Annealing (Costa et al., 2000) [90] Least squares Equation of state 

Simulated Annealing (Bonilla-Petriciolet et al., 2007) [45] Least squares and Error-in-variable Local composition model and ideal gas 

Random Tunneling (Srinivas and Rangaiah, 2006) [68] Error-in-variable Local composition model and ideal gas 

Genetic Algorithm (Alvarez et al., 2008) [47] Least squares Local composition and EoS models 

Differential Evolution (Kundu et al., 2008) [92] Least squares Equation of state 

Particle Swarm Optimization, Differential evolution, Simulated 
Annealing, Genetic Algorithm, Differential Evolution with tabu list 
(Bonilla-Petriciolet et al., 2010) [20] 

Least squares and Error-in-variable Local composition model and ideal gas 

Particle Swarm Optimization (Lazzus, 2010) [93] Least squares Local composition model and ideal gas 

Bare bone particle swarm optimization (Zhang et al., 2011) [63] Least squares and Error-in-variable Local composition model and ideal gas 

Harmony Search (Bonilla-Petriciolet et al., 2010) [85] Least squares Local composition model and ideal gas 

Ant Colony Optimization (Fernandez-Vargas, 2011) [86] Least squares and Error-in-variable Local composition model and ideal gas 
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optimization problems with many decision variables (e.g., 
EIV problems). In addition, the performance of many 
stochastic methods is significantly dependent on the stopping 
condition used.  

4.2. Applications to Phase Stability Analysis  

 With the introduction of the tangent plane criterion for 
phase stability analysis, many researchers have studied the 

solution of this optimization problem using different 
computational methods. These studies using deterministic 
and stochastic optimization methods are summarized  
in Tables 2a and 2b respectively. Sun and Seider [94] 
introduced homotopy continuation method for phase stability 
problem, in order to locate all stationary points of the tangent 
plane distance function (TPDF). However, their technique 
requires several initial estimations for finding all stationary 
points of TPDF. Harding and Floudas [95] studied the  

Table 2a.  Application of Deterministic Optimization Methods to Phase Stability Analysis 

Method (Reference) Problem Formulation Thermodynamic Models 

Homotopy Continuation (Sun and Seider, 1995) [94] Tangent plane distance function SRK and PR 

Branch and Bound (Harding and Floudas, 2000) [95] Tangent plane distance function SRK, PR and van der Waals 

Interval Newton/Generalized Bisection (Tessier et al., 2000)[96] Excess Gibbs energy NRTL and UNIQUAC 

Branch and Bound (Zhu and Inoue, 2001) [97] Tangent plane distance function NRTL activity coefficient equation 

Interval Newton/Generalized Bisection (Xu et al., 2002) [98] Volume-based formulation using 
the Helmholtz energy 

Statistical associating fluid theory  

Tunneling Method (Nichita et al., 2002) [99] Tangent plane distance function SRK and PR 

Terrain Method (Lucia et al., 2005) [100] Projected Gibbs energy and the 
norm of chemical potentials 

PR 

Interval Newton method (Gecegormez and Demirel, 2005) [101] Tangent plane distance function NRTL 

Tunneling Method (Nichita et al., 2008) [102] Tangent plane distance function 
in terms of Helmholtz free energy 

SRK and PR 

CPLEX and BARON (Mitsos and Barton, 2007) [79] Tangent plane distance function NRTL and UNIQUAC  

Homotopy Continuation (Jalali et al., 2008) [26] Michelsen criteria [92] NRTL 

Tunneling Method (Nichita et al., 2008) [103] Tangent plane distance function Perturbed-chain statistical association fluid 
theory 

Dividing Rectangles (Saber and Shaw, 2008) [104] Tangent plane distance function PR and SRK 

Tunneling Method (Nichita and Gomez, 2009) [105] Tangent plane distance function PR and SRK 

 

Table 2b.  Application of Stochastic Optimization Methods to Phase Stability Analysis 

Method (Reference) Problem Formulation Thermodynamic Models 

Genetic Algorithm and Simulated Annealing (Rangaiah, 2001) [5] Tangent plane distance function NRTL, UNIQUAC and SRK  

Stochastic Sampling and Clustering Method (Balogh et al., 2003) [106] Modified tangent plane distance function SRK 

Simulated Annealing (Henderson et al., 2004) [107] Modified tangent plane distance function SRK and PR 

Simulated Annealing, very fast SA, a modified direct search SA and 
stochastic differential equations (Bonilla-Petriciolet et al., 2006) [82] 

Tangent plane distance function SRK 

Differential Evolution and Tabu Search (Srinivas and Rangaiah, 2007a) [6] Tangent plane distance function NRTL, UNIQUAC and SRK 

Adaptive Random Search (Junior et al., 2009) [108] Tangent plane distance function SRK, PR and Perturbed Chain – 
Statistical associating fluid theory 

Repulsive Particle Swarm Optimization (Rahman et al., 2009) [109] Tangent plane distance function NRTL and UNIQUAC 

Particle Swarm Optimization and its Variants (Bonilla-Petriciolet and 
Segovia-Hernandez, 2010) [62] 

Tangent plane distance function NRTL, SRK, Wilson, UNIQUAC, 
ideal solution and gas 

Differential Evolution, Simulated Annealing and Tabu Search (Bonilla-
Petriciolet et al. 2010) [111] 

Tangent plane distance function with 
reaction 

NRTL, Wilson and UNIQUAC 
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phase stability of three cubic equations of state: SRK,  
Peng-Robinson and van der Waals, based on analytical 
findings and the principles of the BB (branch and bound) 
global optimization framework. In this study, stability 
problems with several decision variables (i.e.,  8) have been 
analyzed. 

 Tessier et al. [96] introduced an interval Newton/ 
generalized bisection technique for solving phase stability 
problems involving excess Gibbs energy models. The 
proposed technique is independent of initialization, immune 
to rounding errors, and provides both mathematical and 
computational guarantees that all stationary points of TPDF 
are enclosed. Zhu and Inoue [97] developed a general 
quadratic under-estimating function based on branch and 
bound algorithm by the construction of a rigorous under-
estimator for TPDF involving NRTL model, and showed its 
effectiveness for phase stability analysis of three ternary 
mixtures with up to 2-3 phases. Xu et al. [98] studied the 
phase stability criterion involving the statistical associating 
fluid theory equation of state model. They introduced an 
interval Newton/generalized bisection algorithm and a 
volume-based formulation for the Helmholtz energy, and 
then applied them successfully to non-associating, self-
associating, and cross-associating systems.  

 Nichita et al. [99] proposed the tunneling method for 
phase stability analysis with cubic equations of state by 
minimization of the TPDF on a variety of representative 
systems. Their results show that the proposed method is very 
robust even for the very difficult systems. Lucia et al. [100] 
incorporated some new ideas within the terrain methods and 
applied them to phase stability and equilibrium of n-alkanes 
mixtures. This method provides global knowledge for 
understanding the solution structure, saddle points and other 
information. Gecegormez and Demirel [101] introduced 
interval Newton method for phase stability analysis of binary 
systems and ternary systems modeled by NRTL, to locate all 
the stationary points. Their results confirm that the interval 
Newton method is able to locate all the stationary points of 
TPDF. Nichita et al. [102] used the tunneling method to 
solve the non-convex optimization problem that results from 
the TPDF in terms of the Helmholtz free energy. Mitsos and 
Barton [79] reinterpreted the Gibbs tangent plane stability 
criterion via a Lagrangian duality approach, as the solution 
of the dual problem of a primal problem that minimizes 
Gibbs free energy subject to material balances. Then, this 
optimization problem was solved using CPLEX and 
BARON in GAMS.  

 Jalali et al. [26] studied homotopy continuation method 
for phase stability analysis in the complex domain using 
Michelsen criteria [4]. However, this approach is not 
possible if the equations cannot be converted into complex 
variables. Nichita et al. [103] applied the tunneling method 
to solve the phase stability problem for more complex 
equation of state like perturbed-chain statistical association 
fluid theory. Calculations were performed for several 
benchmark problems and for (binary and multi-component) 
mixtures of non-associating molecules. Saber and  
Shaw [104] tested dividing rectangles (DIRECT) global 
optimization algorithm for optimizing TPDF with SRK 
equation of state for multi-component mixtures and near 

critical points systems, and showed that this algorithm has 
better robustness and efficiency compared to Lipschitz 
method, interval Newton method, tunneling method, very 
fast simulated annealing, stochastic differential equations 
and/or modified direct search annealing. Nichita and Gomez 
[105] applied the tunneling method to perform stability 
analysis of various systems modeled by PR and SRK 
equation of state. 
 Besides the application of deterministic methods outlined 
in the above paragraphs, stochastic methods have been 
studied by many researchers for phase stability problems. 
Rangaiah [5] applied genetic algorithm and simulated 
annealing to phase stability problems of various systems. 
The results show that the former is more efficient and 
reliable than the latter. Balogh et al. [106] introduced  
a stochastic sampling and clustering method, and applied  
it to a modified TPDF with an equation of state as the 
thermodynamic model. This method was able to solve  
small to moderate size problems efficiently and reliably. 
Henderson et al. [107] formulated the phase stability 
optimization problem with a slight modification of the  
Gibbs tangent plane criterion, and used simulated  
annealing to solve it. Bonilla-Petriciolet et al. [82] compared  
four algorithms: simulated annealing, very fast simulated 
annealing, a modified direct search simulated annealing and 
stochastic differential equations, on several phase stability 
problems. Their results show that simulated annealing is the 
most reliable among the methods tested for minimization of 
TPDF for both reactive and non-reactive mixtures.  

 Srinivas and Rangaiah [6] investigated solution of phase 
stability problems with differential evolution and tabu 
search, and reported that the former has better reliability but 
less computational efficiency compared to the latter. Junior 
et al. [108] applied a hybrid adaptive random search method 
to solve the phase stability problems for three different 
equation of state model. Their results show that the proposed 
method outperforms the classical adaptive random search, 
quasi-Newton and DIRECT methods. Rahman et al. [109] 
tested a repulsive particle swarm optimization for phase 
stability problems. This optimization algorithm uses the 
propagation mechanism to determine new velocity for  
a particle. Consequently, it can prevent the swarm from 
being trapped in a local minimum. Ferrari et al. [110] used 
simulated annealing and particle swarm optimization for 
modeling liquid-liquid phase equilibrium data of binary  
and multi-component systems. They concluded that both 
algorithms are robust for estimating the model parameters  
in these applications. Bonilla-Petriciolet and Segovia-
Hernandez [62] performed a comparative study of different 
variants of particle swarm optimization algorithms for phase 
stability of multi-component mixtures. Their results indicate 
that the classical particle swarm optimization with constant 
cognitive and social parameters is reliable and offers the best 
performance for global minimization of TPDF in both 
reactive and non-reactive systems.  

 Srinivas and Rangaiah [81] proposed two versions of DE 
with tabu list, referred as DETL-G and DETL-D, and applied 
to phase stability problems. The results show that the overall 
performance of DETL-G and DETL-D is better than that of 
DE and TS. Bonilla-Petriciolet et al. [111] studied phase 
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stability and equilibrium calculations in reactive systems 
using differential evolution, simulated annealing and tabu 
search, and showed that differential evolution and tabu 
search are better than simulated annealing in terms  
of efficiency but not so in terms of reliability. In these  
and our other studies [5, 6, 62, 81], a local optimization 
technique was used after the global search for efficiently and 
accurately finding the (global) minimum. And, among the 
many stochastic methods tested and compared for solving 
the phase stability problems, DETL has shown better 
performance. 

 It is clear that both stochastic and deterministic methods 
can be used for reliably solving phase stability problems in 
multi-component system. Overall, finding all stationary 
points of TPDF is not an easy task because a search over the 
entire composition space is required and the number of these 
stationary points is also an unknown. Hence, it is better to 
find the global optimum of TPDF during phase stability 
analysis. Several studies indicate that optimization methods 
tested may fail to find the global optimum in phase stability 
analysis when there are comparable minima (i.e., the 
difference in function values at the global minimum and at a 
local minimum is very small). The reduction of CPU time of 
global optimization methods is one of the major challenges 
in phase stability analysis of multi-component systems. This 
improvement would allow us to extend the application of 
these strategies for performing phase equilibrium 
calculations in more complex systems.  

4.3. Applications to Phase Equilibrium Calculations  

 Both deterministic and stochastic global optimization 
methods have been applied for phase equilibrium 
calculations of different systems with and without chemical 
reactions; these investigations are summarized in Tables  
3a and 3b. For example, Lucia et al. [112] introduced  
unique initialization strategies and successive quadratic 
programming for phase equilibrium calculations. The overall 
algorithmic framework is based on using a combination of 
binary tangent plane analyses, bubble point calculations and 
dimensionless Gibbs free energy minimization approach for 
solving a sequence of sub problems (i.e., VLE, LLE, and 
VLLE). Chaikunchuensakun et al. [78] applied a combined 
algorithm, NLQPB stated in Section 3.2.10, for the 
calculation of multi-phase equilibrium conditions at fixed 
temperature, pressure and overall composition. Although 
global solutions cannot be guaranteed, NLQPB can find 
equilibrium compositions accurately for multi-phase mixtures 
by the minimization of the Gibbs free energy of the system. 
Cheung et al. [113] developed a branch-and-bound algorithm, 
which incorporates tight convex under-estimators and 
bounds on the dependent variables approach, and applied it 
to determine the global minimum potential energy for the 
solvent-solute interactions in phase equilibrium. Nichita  
et al. [24] tested the tunneling method for multi-phase 
equilibrium calculation by direct minimization of Gibbs free 
energy of a variety of multi-component systems. Their 
results suggest that tunneling method is a robust and efficient 
tool for solving phase equilibrium problems even for 
extremely difficult cases. However, it requires feasible and 
improved initial estimates for reliability and computational 
efficiency respectively. Scurto et al. [114] applied interval 

analysis methodology to predict the behavior of high-
pressure solid-multiphase equilibrium systems using cubic 
equations of state with cosolvents, where the likelihood of 
formation of more than two phases is great. Nichita et al. 
[115] too used the tunneling method to directly minimize the 
Gibbs free energy in multi-phase equilibrium calculations. 
Rossi et al. [116] applied convex analysis method to 
chemical and phase equilibrium of closed multi-component 
reactive systems. This method employs the CONOPT  
solver in GAMS (General Algebraic Modeling System). The 
optimization is by minimizing the Gibbs free energy of 
systems at constant pressure and temperature, and constant 
pressure and enthalpy. The proposed method can solve  
the phase equilibrium problems with high efficiency  
and reliability but it requires the convexity of the model. 
Pereira et al. [80] proposed a duality based optimization for  
phase equilibrium where the volume-composition space is 
converted from the Gibbs free energy to the Helmholtz free 
energy. They used BARON for global optimization, MINOS 
as the nonlinear local solver and CPLEX for linear problems. 
The method is applicable to the calculation of any kind of 
fluid phase behavior (e.g., VLE, LLE and VLLE). The 
method proposed by Pereira et al. [80] can guarantee the 
global optimum but it requires a differentiable objective 
function. 

 Beside deterministic methods for solving the phase 
equilibrium problems reviewed above, many stochastic 
methods have been used to solve this thermodynamic 
problem. Specifically, Zhu et al. [44] introduced enhanced 
simulated annealing for phase equilibrium calculations of 
multi-component systems at high pressure, which include 
ternary, quaternary and five component mixtures. Although 
the proposed algorithm requires slightly more computational 
time compared to two algorithms in the literature (MULPRG 
and HOMPEQ), it provides comparable reliability, is self-
starting and simple. Rangaiah [5] evaluated the performance 
of genetic algorithm, simulated annealing and hybrid genetic 
algorithm for phase equilibrium problems of several mixtures. 
The results show that genetic algorithm is more efficient and 
reliable than simulated annealing, and that hybrid genetic 
algorithm outperforms both genetic algorithm and simulated 
annealing in terms of reliability but its main limitation is  
the significant increase in the CPU time. Teh and Rangaiah 
[52] tested enhanced continuous tabu search for phase 
equilibrium calculations via Gibbs free energy minimization, 
of VLE, LLE and VLLE systems. The results indicate that 
tabu search is more efficient than genetic algorithm but both 
require further improvement for 100% reliability. 

 Srinivas and Rangaiah [68] evaluated the random 
tunneling algorithm on a number of medium sized problems 
including VL, LL and VLL equilibrium problems. The 
random tunneling algorithm can locate the global optimum 
for most of the examples tested but its reliability is low for 
problems having a local minimum comparable to the global 
minimum. Srinivas and Rangaiah [6] compared differential 
evolution and tabu search algorithms for phase equilibrium 
calculations of various VLE, LLE and VLLE systems. 
Subsequently, Srinivas and Rangaiah [7] introduced 
differential evolution with tabu list algorithm to phase 
equilibrium calculation. The results show that this hybrid 
algorithm performs better than both differential evolution 



A Review on Global Optimization Methods for Phase Equilibrium The Open Thermodynamics Journal, 2011, Volume 5    87 

and tabu search. Lin and Chen [83] proposed a hybrid 
method for chemical reaction and phase equilibrium 
calculation. The hybrid method was constructed by making 
use of the advantages of artificial immune system and 
sequential quadratic programming. The results show that the 
hybrid method is better than the artificial immune system 
method alone.  

 Staudt and Soares [84] proposed a hybrid global 
optimization method for the minimization of Gibbs free 
energy for multi-phase equilibrium calculation. The 
proposed method uses genetic algorithm for the global 
search and interior point method for refinement after the 
global search. Bonilla-Petriciolet et al. [10] applied GA and 
DETL for phase equilibrium calculations in reactive systems 
by Gibbs free energy minimization; two approaches – 
constrained and unconstrained, were tried for solving these 
problems. The results show that unconstrained free energy 
minimization involving transformed composition variables 
requires more computational time compared to constrained 

minimization, and that DETL has generally better 
performance for free energy minimization in reactive 
systems. Among the stochastic methods, hybrid methods 
often provide better performance in terms of reliability and 
efficiency. 

 In summary, the literature indicates that the major 
difficulties of Gibbs free energy minimization using both 
deterministic and stochastic methods arise in phase 
equilibrium calculations for highly non-ideal mixtures and, 
particularly, in the vicinity of critical points and phase 
boundaries. At these conditions, the difference of function 
value at the global minimum and at a local optimum (i.e., at 
trivial solutions and unstable phase equilibria) is also very 
small. In fact, trivial solutions present a significant region  
of attraction for numerical strategies that may cause 
convergence problems. Note that many of the studies and 
tests assume that the correct number of phases at equilibrium 
is known a priori. However, the number and type of phases, 
at which Gibbs free energy function achieves the global 

Table 3a.  Application of Deterministic Optimization Methods to Phase Equilibrium Calculation 

Method (Reference) Problem Formulation Thermodynamic Models 

Successive Quadratic Programming (Lucia et al. 2000) [112] Gibbs free energy NRTL, UNIQUAC, UNIFAC, RK, 
PolyNRTL, HOC, SRK and PolySRK 

Nonlinear parametric optimization (NLQPB) (Chaikunchuensakun et al., 2000) [78] Gibbs free energy UNIQUAC, PR and van der Waals 

Branch and Bound (Cheung et al., 2002) [113] Potential energy  van der Waals and Coulombic  

Tunneling Method (Nichita et al., 2002) [24] Gibbs free energy SRK and PR 

Interval Analysis (Scurto et al., 2003) [114] Gibbs energy surface  PR and van der Waals 

Tunneling method (Nichina et al., 2004) [115] Gibbs free energy SRK and PR 

CONOPT in GAMS (Rossi et al., 2010) [116] Gibbs free energy NRTL and Wilson 

Duality based optimization (BARON, MINOS and CPLEX) (Pereira et al., 2010) [80] Helmholtz free energy Augmented van der Waals 

 

Table 3b.  Application of Stochastic Optimization Methods to Phase Equilibrium Calculations 

Method (Reference) Problem Formulation Thermodynamic Models 

Enhanced Simulated Annealing (Zhu et al. 2000) [44] Gibbs free energy PR and SRK 

Genetic Algorithm, Simulated Annealing and hybrid GA (Teh and Rangaiah, 2001) [5] Gibbs free energy SRK, PR, NRTL and UNIFAC 

Enhanced Tabu Search (Teh and Rangaiah, 2003) [52] Gibbs free energy SRK, PR, NRTL and UNIFAC 

Random Tunneling Algorithm (Srinivas and Rangaiah, 2006) [68] Gibbs free energy SRK, PR, NRTL and ideal gas 

Differential Evolution and Tabu Search (Srinivas and Rangaiah, 2007a) [6] Gibbs free energy SRK, PR, NRTL and UNIFAC 

Differential Evolution with Tabu List (Srinivas and Rangaiah, 2007b) [7] Gibbs free energy SRK, PR, NRTL and UNIFAC 

Hybrid Artificial Immune System (Lin and Chen, 2007) [83] Gibbs free energy with reaction NRTL and UNIQUAC 

Simulated Annealing (Bonilla-Petriciolet et al, 2009) [14] Gibbs free energy with its 

orthogonal derivatives 

NRTL, Wilson and ideal gas 

Hybrid Genetic Algorithm with Interior Point Method (Staudt and Soares, 2009) [84] Gibbs free energy NRTL, SRK and PR 

Genetic Algorithm and Differential Evolution with Tabu List (Bonilla-Petriciolet et al, 
2011) [10] 

Gibbs free energy with reaction NRTL, Wilson, UNIQUAC and 
Margules solution 
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minimum, are unknown in phase equilibrium problems and, 
as a consequence, several calculations must be performed 
using different phase configurations (adding or removing 
phases) to identify the stable equilibrium state. Hence, it  
is desirable to develop more effective deterministic  
and stochastic methods for the global Gibbs free energy 
minimization in both reactive and non-reactive systems. 

4.4. Applications to Critical Points and Azeotropes 

Calculations  

 In contrast to other phase equilibrium calculations, fewer 
stochastic and deterministic global optimization methods 
have been applied to critical points and azeotrope calcula- 
tions (see Table 4). Specifically, homotopy continuation 
methods have been used to locate all the homogeneous 
azeotropes [117], to study the sensitivity of azeotropic states 
to operating conditions using both local composition and 
(equation of state) EoS models [118,119], to locate reactive 
and kinetic azeotropes [120, 121], and to calculate critical 
loci of binary mixtures [122]. Branch and bound global 
optimization has been used for the calculation of all reactive 
and non-reactive homogeneous azeotropes of multicomponent 
systems [123, 124]. This method offers a theoretical 
guarantee for finding all azeotropes; but, depending on the 
thermodynamic model, it is necessary to reformulate the 
problem and the success of this technique depends upon 
proper construction of the convex functions for the 
thermodynamic equations to perform a global minimization. 

 Interval analysis has also been used to calculate both 
azeotropes and critical points. For example, Maier et al. 
[125] used an interval-Newton/generalized-bisection (IN/ 
GB) algorithm to locate all solutions of the thermodynamic 
conditions for homogeneous azeotropy using solution 

models and ideal gas behavior. Later, Salomone and 
Espinosa [126] combined this IN/GB algorithm with Zharov-
Serafimov topological index theory to reduce the total 
computation time for the calculation of homogeneous 
azeotropes. In another study, Maier et al. [127] extended 
their IN/GB algorithm to locate all homogeneous reactive 
azeotropes using solution models and ideal gas behavior. 
Stradi et al. [128] employed interval analysis for locating  
all the critical points of a given mixture using cubic  
EoS models; they claim a computational guarantee for the 
convergence of interval analysis method. Finally, Nichita et 
al. [129] reported application of the tunneling method for 
finding all critical points of several mixtures from binaries to 
multi-component petroleum reservoir fluids using cubic EoS 
models.  

 With respect to stochastic optimization methods, 
simulated annealing (SA) and differential evolution (DE) 
have been applied in the calculation of critical points and 
azeotropes. Freitas et al. [130, 131] introduced the application 
of stochastic global optimization using SA for the calculation 
of critical points and criticality conditions obtained from a 
slight modification of the Gibbs tangent plane criterion. 
Sanchez-Mares and Bonilla-Petriciolet [132] tested SA for 
solving the Heidemann and Khalil’s formulation for the 
prediction of critical point in multi-component systems. 
These authors concluded that SA is generally robust for these 
calculations, but the computational time is still significant for 
multi-component systems. Later, Justo-García et al. [133] 
have also applied SA for the calculation of critical points of 
multi-component systems; here, criticality conditions were 
evaluated using a formulation based on the tangent plane 
distance in terms of the Helmholtz energy where temperature 
and volume are the independent variables. 

Table 4.  Application of Global Optimization Methods to the Calculation of Critical Points and Azeotropes 

Method (Reference) Problem Formulation Thermodynamic Models 

Homotopy continuation method (Fidkowski et al., 1993; Aslam and Sunol, 2006; 

Aslam and Sunol, 2004) [117, 118,119] 

Homogeneous azeotropy Local composition and EoS models 

Homotopy continuation method (Okasinski and Doherty, 1997; Qi and Sundmacher, 

2005) [120, 121] 

Homogeneous reactive 

azeotropy 

Local composition models 

Homotopy continuation method (Wang et al., 1999) [122] Critical point EoS 

Branch and bound method (Harding et al., 1997; Harding and Floudas, 124) [123, 124] Homogeneous azeotropy 
and reactive azeotropy 

Local composition models 

Interval analysis (Maier et al., 1998 ; Salomone and Espinosa, 2001 ; Maier et al., 
2000) [125, 126, 127] 

Homogeneous azeotropy 
and reactive azeotropy 

Local composition models 

Interval analysis (Stradi et al., 2001) [128] Critical point EoS 

Tunneling algorithm (Nichita et al., 2010) [129] Critical point EoS 

Simulated annealing (Henderson et al., 2004; Freitas et al., 2004; Sanchez-Mares and 

Bonilla-Petriciolet, 2006; Justo-García et al., 2008) [130, 131, 132, 133] 

Critical point EoS 

Simulated annealing (Bonilla-Petriciolet et al., 2009) [14] Homogeneous azeotropy 
and reactive azeotropy 

Local composition models 

Differential evolution (Henderson et al., 2010) [134] Critical point EoS 
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 Recently, Henderson et al. [134] reported the prediction 
of critical points of thermodynamic mixture using four 
different versions of DE. They tested the performance of DE 
algorithms in multi-component petroleum fluids. Finally, 
Bonilla-Petriciolet et al. [14] studied the calculations of 
homogeneous azeotropes in reactive and nonreactive 
mixtures where SA is used to robustly solve the system of 
non-linear equations that results from the equalities of the 
orthogonal derivatives of the Gibbs energy and the Gibbs 
energy of mixing in the vapor and the liquid phases. To best 
of our knowledge, this study is the first and unique 
application of a stochastic optimization method for the 
prediction of both reactive and non-reactive homogeneous 
azeotropes.  

CONCLUDING REMARKS 

 Optimization problems involved in phase equilibrium 
modeling and calculations are complex and difficult to solve 
using traditional local optimization methods due to (a) the 
presence of several local minima, (b) the objective function 
may be flat and/or with discontinuities in some regions of 
solution domain, (c) wide range of decision variables in 
modeling problems, and (d) presence of trivial solutions in 
some problems. In fact, these optimization problems are 
generally non-convex, constrained, and highly non-linear 
with many decision variables. Hence, solution of these 
important and common problems requires reliable and 
efficient global optimization methods able to handle different 
problem characteristics. To date, a number of deterministic 
and stochastic global optimization methods have been 
developed and evaluated for solving phase equilibrium 
modeling and calculation problems. In particular, deterministic 
and stochastic global methods have been widely applied to 
solve phase stability and Gibbs free energy minimization 
problems in non-reactive systems including the prediction of 
critical points and azeotropes; however, fewer attempts have 
been made in the application of these methods to reactive 
phase equilibrium calculations and modeling, compared to 
those reported for non-reactive systems.  

 Even though research in the application of global 
optimization methods for phase equilibrium modeling and 
calculations has grown significantly over the last decade, 
results reported in the literature indicate that both 
deterministic and stochastic global optimization methods 
require further improvement for solving, robustly and 
efficiently, these application problems. One of the major 
limitations of deterministic global optimization methods is 
the significant computational time required for solving high 
dimensional problems, which grows exponentially with the 
number of decision variables. This aspect limits the 
application of these strategies to model multi-component and 
multi-phase systems and the use of complex thermodynamic 
models for predicting mixture properties. Therefore, further 
research should be performed to improve the performance of 
available optimization algorithms and to develop general 
purpose and effective deterministic methods for solving 
phase equilibrium problems in multi-component systems.  

 Compared to deterministic optimization methods, stochastic 
optimization techniques involve simple concepts, do not 
require any assumptions and can be used for any type of 

problem. Hybridization to synergize selected features of 
different stochastic algorithms is a promising approach for 
developing highly effective algorithms since reported results 
show that the performance of pure algorithms is almost 
always inferior to that of hybrid algorithms. In particular, 
further studies should be focused on the development of 
hybrid strategies to improve the reliability of stochastic 
optimization methods using fewer NFE. In addition, 
alternative termination criteria should be studied and tested 
for reliably determining the global convergence of stochastic 
optimization methods for phase equilibrium modeling and 
calculations. It is also desirable that these methods should 
have no or fewer tuning parameters. We believe these 
research directions for stochastic methods offer many 
possibilities for developing robust and efficient optimization 
strategies. 

 Despite the many advances in this area, research in  
global optimization for phase equilibrium modeling and 
calculations will continue to be an active field in chemical 
engineering, in order to develop and evaluate effective global 
optimization methods, in the foreseeable future. Further, 
promising deterministic and stochastic methods need to be 
compared carefully and comprehensively for solving phase 
equilibrium modeling and calculation problems.  
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