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Abstract:

Introduction:

A method for identifying significant predictors of roadway accident counts has been presented. This process is applied to real-world accident data
collected from roadways in Hamilton County, TN.

Methods:

In preprocessing, an aggregation procedure based on segmenting roadways into fixed lengths has been introduced, and then accident counts within
each segment have been observed according to predefined weather conditions. Based on the physical roadway characteristics associated with each
individual accident record, a collection of roadway features is assigned to each segment. A mixed-effects Negative Binomial regression form is
assumed to approximate the relationship between accident counts and several explanatory variables including roadway characteristics, weather
conditions, and several interactions between them. Standard diagnostics and a validation procedure show that our model form is properly specified
and suitably fits the data.

Results:

Interpreting interaction terms leads to the follow findings: 1) rural roads with cloudy conditions are associated with relative increases in accident
frequency; 2) lower/moderate AADT and rainy weather are associated with relative decreases in accident frequency, while high AADT and rain
are  associated  with  relative  increases  in  accident  frequency;  3)  higher  AADT and wider  pavements  are  associated  with  relative  increases  in
accident frequency; and 4) higher speed limits in residential areas are associated with relative increases in accident frequency.

Conclusion:

Results illustrate the complicated relationship between accident frequency and both roadway features and weather. Therefore, it is not sufficient to
observe the effects of weather and roadway features independently as these variables interact with one another.
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1. INTRODUCTION

Roadways in the United States are among the busiest in the
world, with more than 240 million vehicles registered and more
than  210  million  registered  drivers  [1].  With  such  busy
roadways,  we  naturally  see  a  high  number  of  motor  vehicle
accidents. According to the US Department of Transportation
and the National Highway Traffic Safety Administration, there
were over 7 million motor vehicle crashes in 2016 on US road-
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-ways  [2].  With  these  accidents  come  serious  costs  to
Americans. According to 2015 statistics, motor vehicle crashes
were  the  leading  cause  of  death  in  the  first  three  decades  of
Americans’  lives  [3].  Furthermore,  roadway  accidents  are
responsible  for  $77.4  billion  in  loss  of  productivity,  $76.1
billion in property damage, $31.5 billion in congestion/delay,
and $23.4 billion in medical costs [4].

While roadway crashes are an unavoidable consequence of
busy  roadways,  researchers  in  the  field  aim  to  find  ways  to
mitigate roadway accidents. To this end, we ask: “why do some
roadways  observe  more  accidents  than  others?”  If  we  can
identify the factors or conditions most closely associated with
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roadway accidents, then our findings may inform transportation
administrators  of  the  nature  of  roadway  crashes,  ultimately
helping these decision-makers to implement policy changes to
improve safety.

The primary objective of this work is to find the roadway
characteristics,  weather conditions,  and potential  interactions
between  roadway  characteristics  and  weather  conditions
associated  with  the  variability  in  observed  accident  counts.
This  will  be  achieved  via  a  Negative  Binomial  regression
model that identifies relationships between accident counts and
combinations of weather conditions and roadway features. We
feel  this  approach  is  novel  in  that  it  1)  combines  diverse
sources of data, weather and roadway characteristics, that are
critically  important  to  explaining  accident  frequency,  and  2)
uses a flexible model structure that allows us to consider both
random  effects  as  well  as  a  variety  of  interactions  between
variables  that  may  potentially  shed  light  on  the  complicated
nature of accidents. To the best of our knowledge, currently, no
work uses a mixed-model in conjunction with combinations of
weather and roadway features. As an application, we consider
real-world  accident  data  collected  from  Hamilton  County,
Tennessee.  Hamilton  County  is  an  ideal  location  for  a  case
study  as  it  contains  busy,  metropolitan  areas  surrounding
Chattanooga  (Tennessee’s  fourth  largest  city)  as  well  as  a

number of residential and rural areas. As such, the county has a
variety  of  roadway types  (from major  interstate  highways  to
rural  backroads)  and  our  results  are  likely  to  be  transfer-
able/generalized.

The  remainder  of  this  paper  is  organized  as  follows:
Section  2  (Literature  Review)  presents  previous  research
related  to  this  work;  Section  3  (Data  and  Preprocessing)
presents the available data used in the analysis, how these data
sources are merged together, and ultimately how the data are
aggregated  into  accident  counts  for  each  roadway  segment;
Section 4 (Statistical Modeling) presents the statistical model
to be used in this analysis and the theoretical justification for
the model choice; Section 5 (Model-fitting) discusses details of
the  model-fitting  procedure  and  further  justification  of  the
model;  Section  6  (Results)  presents  interpretation  of  model-
fitting results as well as diagnostic tests for the model; Section
7 (Validation) provides evidence that our model specification is
appropriate  for  the  data;  and  Section  8  (Discussion  and
Conclusion)  provides  a  summary  of  the  procedure,  potential
application, and potential refinements for future studies. As this
work involves a complicated process using multiple sources of
data  and  substantial  data  preparation,  a  workflow  of  the
analysis  is  presented  below  in  Fig.  (1)  to  assist  the  reader.

Fig. (1). Workflow of the ensuing analysis presented in this manuscript.
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2. LITERATURE REVIEW

As  stated  above,  our  work  uses  a  regression  model  to
identify  relationships  between  accident  frequency  and
combinations  of  weather  conditions  and  roadway  features.
Previous  research  has  shown  that  many  roadway  features,
particularly those available to us, are strongly associated with
roadway accidents. Specifically, AADT/DHV/ traffic volume
[5 - 7], roadway type [8], terrain/grade [9 - 11], land use /type
of road/urban versus rural roadways [12, 13], illumination [9],
posted  speed  limit  [9,  14,  15],  pavement  widths  [11,  16],
pavement type [17], presence of on-ramps/off-ramps [18 - 20],
and  number  of  lanes  [10,  12,  21],  have  all  been  linked  to
roadway accidents.

In addition to roadway features, weather conditions have
been  shown  to  play  a  role  in  explaining  the  variability  of
accident counts. In an analysis of accident frequencies in Great
Britain,  Edwards  [22]  presented  temporal  trends  for  9  broad
weather categories as defined by the Department of Transport.
More  generally,  other  works  suggest  weather  conditions,
especially  precipitation  events,  are  important  components  of
accident prediction [18, 20, 23 - 29], and we know intuitively,
as drivers, that roadways become more dangerous in inclement
weather.

For  this  analysis,  we  use  a  mixed-effects  Negative
Binomial (NB) model. There is extensive literature supporting
the use of the NB form to model roadway accidents, yet these
works  vary  considerably  in  terms  of  scope.  Chengye  and
Ranjitkar  [20]  used  NB  models  and  data  collected  from  a
motorway in Auckland, NZ to link accident frequency to ‘non-
behavioral’  factors  such  as  traffic  conditions,  roadway
characteristics, and weather conditions. The authors performed
three NB analyses: one on the entire motorway, one separating
urban and rural sections, and one separating segments by on-
and off-ramps.  Shankar  et  al.  [26]  used a  NB model  on data
collected from rural highways to identify relationships between
accident  frequency  and  roadway  geometry,  weather  factors,
and  various  interactions  between  them.  Hall  and  Tarko  [30]
showed  that  the  NB  form  was  suitable  to  model  accident
frequency on low-volume, rural roads. Milton and Mannering
used  the  NB  model  and  data  collected  from  Washington
highways  to  isolated  the  effects  of  geometric  and  traffic
characteristics on annual accident frequency [31]. Abdel-Aty
and Radwan [21] used the NB form to model the frequency of
Florida  highway  accident  occurrence  based  on  roadway
geometry,  urban/rural  designations,  and  section  length  (the
authors  also  developed  NB  models  to  account  for  age  and
gender  of  the  driver).  Eisenberg [27]  used both monthly and
daily  precipitation  as  explanatory  variables,  and  found  a
negative  correlation  between  monthly  precipitation  and  fatal
accidents.  Chin  and  Quddus  [32]  used  a  random-effect  NB
model  on  data  collected  from  signalized  intersections  in
Singapore  to  identify  relationships  between  accident
occurrence  and  the  geometric,  traffic,  and  control
characteristics. Shankar et al. explored NB and random-effect

NB forms to model median crossover accident frequencies for
several routes in Washington [33]. Using roadway geometry,
traffic  volume,  and  a  random  effect  to  account  for  different
routes, they found the random-effect model to be superior [33].
In  a  related  study,  Ulfarsson  and  Shankar  used  the  same
explanatory variables to compare NB and random-effects NB
models  to  a  Negative  Multinomial  model  form  for  accident
frequency [34].

As  seen,  there  are  numerous  works  using  the  NB
regression form and/or random-effects models to approximate
roadway accidents, and there are works that consider roadway
features and/or weather conditions in their statistical models.
However,  to  our  knowledge,  no  current  work  exists  that
implements both a random-effect model and this combination
of  roadway  characteristics/features  and  weather  conditions,
including interactions between them. Herein lies the novelty of
our work.

3. DATA AND PREPROCESSING

3.1. Available Data

A hallmark of this work is the use of detailed and accurate
datasets  from  three  distinct  sources:  Hamilton  County
emergency  services,  eTRIMS,  and  DarkSky.

3.1.1. Hamilton County Emergency Services

The Hamilton County Emergency Communications Center
provides emergency dispatch service for 105 Police, Fire, and
EMS  departments  covering  42  political  jurisdictions  in  the
county.  This  service,  which  collects  reports  from  first
responders, was used to collect information for traffic accidents
in Hamilton County between January 1,  2017 and December
31,  2018  (the  collection  period).  Importantly,  each  accident
record has an associated physical location measured in terms of
route mile marker (log-mile).

Over the collection period of two years, 55,324 total accid-
ents  were  reported  in  Hamilton  County.  As  seen  in  Fig.  (2),
accidents  occurred  in  highly  populated  areas  within  the  city
limits of Chattanooga as well as in less populated, rural areas in
the county.

3.1.2. eTRIMS

Since  the  1970s,  the  Tennessee  Department  of
Transportation  (TDOT)  has  maintained  location  descriptions
and  inventory  data  on  all  local  roads.  This  information  was
integrated  into  the  Tennessee  Roadway  Information
Management  System  (TRIMS)  that  serves  as  a  referencing
database  for  State  and  local  roadway  information.  In  2007,
TDOT began developing eTRIMS, a map-centric, web-based
version of TRIMS with the purpose of encouraging wider use
of  the  TRIMS  database.  Based  on  previous  literature
(Literature Review) and the data available for Hamilton County
via eTRIMS, we consider the following roadway and pavement
characteristics for our analysis.
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Fig. (2). Locations of accidents (blue dots) collected in Hamilton County, Tennessee, between January 1, 2017, and December 31, 2018.

Average  Annual  Daily  Traffic  or  AADT  (numerical
variable)
Administrative  System  (categorical  variable
representing  road  system  designation;  i.e.,  city
highway, city road, interstate, rural highway, or rural
road)
Terrain  (categorical  variable;  i.e.,  flat,  rolling,
mountainous)
Land  Use  (categorical  variable  representing
designation of the surrounding land; i.e., commercial,
industrial, public, residential, rural, or a combination)
Illumination  (indicator  variable  designating  if  street
lamps are present)
Posted Speed Limit (numerical variable, measured in
miles per hour)
Pavement  Width  (numerical  variable,  measured  in
feet)
Pavement  Type  (categorical  variable;  i.e.,  asphalt,
cement)
Design Hour Volume or DHV (numerical variable)
Number of Lanes (numerical variable)
Presence of on- and off-ramps (indicator variable)

Since accident records have precise log-mile locations (a
designation amenable to the eTRIMS database), the roadway
characteristics listed above are easily assigned to each of these
accident records.

3.1.3. DarkSky Weather

DarkSky [35]  is  an  API for  Python that  collects  weather

data  from  several  weather  resources  and  makes  available
information associated with specified locations at precise time
periods.  Since  our  accident  records  have  both  a  time  and
latitude/longitude  designation  (designations  amenable  to  the
DarkSky data), Darksky weather conditions are easily assigned
to each.

For our analysis, to assist the model-fitting procedure and
make  results  more  interpretable,  we  simplify  the  available
weather  information.  Specifically,  we  consider  a  continuous
variable  for  visibility  (measured  in  miles)  and  a  categorical
variable  that  distinguishes  between  the  following  broad
weather  categories.

Clear - no precipitation, no clouds
Start rain  -  currently raining, no rain in the previous
time step
Continue rain - currently raining, raining in previous
time step
Start cloudy - currently cloudy, not raining/cloudy in
previous time step
Continue cloudy - currently cloudy, raining in previous
time step
Fog

In  their  study  of  the  effects  of  weather  on  accident  risk,
Malin  et  al.  [23]  used  similar,  discretized  categories  for
weather  conditions.
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3.2. Descriptive/Summary Statistics of Data

Table  1.  Summary  of  weather  conditions  (as  defined  in
section  3.1.3  above)  for  accidents  observed  during
collection  period.

Weather Condition No. Accidents % Total
Start cloudy 34,447 62%

Clear 10,667 19%
Start rain 4,355 8%

Continued cloudy 2,707 5%
Continued rain 1,842 3%

Fog 1,283 2%
Other (including missing) 23 .04%

Table 2. Summary of roadway type (Administrative System
designation)  for  accidents  observed  during  collection
period.

Rd. Type (Admin. Sys.) No. Accidents % Total
City road 33,120 60%

City highway 11,515 21%
Interstate highway 8,073 15%

Rural road 1,958 4%
Other (including missing) 490 1%

Rural highway 168 .3%

3.3. Combining Data/Creating Roadway Aggregates

3.3.1. Defining Roadway Segments

We observe roadways in terms of short, non-overlapping
segments.  This  serves  two  purposes.  First,  segments  act  as
interval in which to collect counts, since it is unlikely that more
than  one  accident  would  occur  at  any  one  precise  location.
Second, by setting the segments to some short, fixed lengths,
we  are  defining  a  fine  gradient  over  which  we  view  our
roadways.  Then,  by  observing  roadway  features  associated
with accidents within these short segments, we aim to capture
the heterogeneity/variability of roadways (Table 1).

Our  choice  of  segment  length  is  based  on  the  level  of
precision used by traffic engineers when observing roadways.
Traditionally,  actual  locations  on  a  roadway,  or  ‘spots,’  are
lengths  greater  than  0.1  miles  as  this  is  believed  to  be  a
minimum  threshold  to  discern  differences  in  locations  [36].
Others have suggested spot lengths to be at least 0.3 miles long
[37] or between 0.3 and 0.5 miles [36]. Segments, then, should
be  longer  than  spot  distances.  With  the  aim  of  capturing  as
much variability in roadway characteristics as possible, we set
our segment length at the upper limit for spot length, and we
thus define segments as half-mile sections of roadways. Note:
subsequent  results  varied  little  when  choosing  segments  of
slightly shorter (0.3 and 0.4 miles) or longer length (0.6 miles).

For simplicity, our segment length is held constant (fixed-
length  segmentation)  for  all  roadways  in  the  collection  area.
Certainly,  there  are  more  complicated  approaches  to
identifying roadway segments (many of which are beyond the
scope of this analysis); such as those defining segments based

on changes in AADT [38], curvature and roadside danger [39],
or  a  variety  of  roadway  geometries  [40];  but  there  is  no
universally agreed-upon approach. In their comparison of the
effect of roadway segmentation criteria on the performance of
safety performance functions, Cafiso et al. [7] found that fixed-
length  segmentation  (such  as  we  have)  was  a  flexible  and
statistically consistent technique. Also, in their study focusing
on  the  relationship  between  crashes,  road  geometry,  and
segmentation,  Cenek  et  al.  [41]  used  fixed-length  segments
(Table 2).

3.3.2. Creating Aggregates

Aggregation, in our case, involves combing accident data,
roadway characteristics, and weather conditions for each of the
half-mile segments across the county. This task is conceptually
straight-forward  since  all  accident  records  have  been
previously linked to corresponding roadway characteristics and
weather conditions, and each has a log-mile designation.

Note:  As  we  do  not  want  to  average  weather  within
segments (and potentially wash away any weather signal), for
each  segment  we  create  an  accident  count  for  each  weather
category.  This  allows  us  to  introduce  the  weather  as  an
explanatory  variable  in  our  regression  model.

Note:  For  continuous  roadway  features  (AADT,  for
example),  each  segment  is  assigned  the  average  of  values
associated  with  accidents  in  that  segment.  For  categorical
features (terrain,  for example),  the most commonly observed
value  is  assigned  to  each  segment.  Lastly,  two  features  are
measured  in  terms  of  presence/absence:  illumination  and
change  in  a  number  of  lanes.  Since  most  segments  were
homogenous in terms of illumination, we identify a segment as
having illumination if most observations had that designation.
For the presence of a change in the number of lanes, since we
believe the effects of exiting/entering/merging/weaving extend
beyond  the  locations  where  change  occurs,  we  designate  a
segment  as  having  this  feature  if  any  of  the  records  in  the
segment had this feature (Table 3).

3.3.3. Final Comments Regarding Segments/Aggregates

After some data cleansing to remove incomplete records,
we  were  left  with  5,505  aggregated  segments,  which  will
provide the basis for our model-fitting procedure. For each of
these, we retain the original route identification to be used as a
random effect,  or  to  account  for  potential  roadway  variation
(literature  supports  the  need  for  such  a  designation;  see,  for
example,  [15,  42,  43].  Lastly,  we  note  that  the  segment/
aggregate  will  not  be  used  in  our  modeling  procedure  as
accident count variability between aggregates is believed to be
attributable  to  segment/aggregate  characteristics,  weather,  or
some  combination  of  the  two.  Also,  in  an  initial  data
investigation,  no  autocorrelation  was  found  to  exist  between
counts from adjacent segments/aggregates.

4. Statistical Modeling

For  our  data,  we  initially  pursued  a  Poisson  regression
model  to  approximate  our  accident  counts  by  roadway
segment.  Such  models  are  theoretically  justified  as  they  are
designed  to  model  count  data.  A  somewhat  restrictive
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drawback of this model, however, is the Poisson assumption of
equi-dispersion (equality of mean and variance). In our case, an
initial investigation of the data revealed our count data is over-
dispersed (thus, not equi-dispersed) and thus does not follow a
Poisson distribution. For such cases, to model count data that
does not necessarily follow a Poisson distribution, the Negative
Binomial regression model form is typically recommended as a
remedial  measure.  The  Negative  Binomial  model  form  is
considered  a  variant  of  the  Poisson  form  and  includes  an
additional  parameter  to account  for  over-dispersion.  Also,  as
there is likely a roadway-specific effect on the accident counts,
or  rather  a  natural  heterogeneity  between  accident  counts
collected  at  different  routes,  we  introduce  a  random  effect
component  for  the  roadway.  As  stated  by  Ulfarsson  and
Shankar [34], in the case of accident frequency, it is likely that
section-specific effects will be important. Our model is:

Table 3. Summary of selected roadway characteristics for
accidents observed during the collection period.

Roadway Characteristic No. Accidents % Total
Land Use

Commercial 21,455 39%
Residential 14,306 26%

Rural 12,298 22%
Industrial 1,472 3%

Other 5,793 10%
AADT

<50,000 43,034 78%
≥50,000 12,290 22%

Posted Speed Limit
≥60 2,494 5%

[50, 60) 9,111 16%
[40, 50) 14,722 27%
[30, 40) 15,840 29%

<30 2,948 5%
missing 10,209 18%

Pavement Width
<8 ft. 27,469 50%
≥8 ft. 27,769 50%

with α the NB dispersion parameter, and

where yij is the accident count from the ith segment of the jth

roadway, uj is the random effect for the jth roadway, β is the
vector  of  fixed-effects  model  parameters,  xi,j  is  the  design-
vector for the ith segment of the jth roadway, and u~N(0,σ2).

Very  often,  count-based  regression  models  like  the
Negative Binomial include an ‘offset variable’ to account for
disparate ‘exposures’ in the data. A common source of varying
exposures is  changes in collection periods.  This,  however,  is
not  the  case  with  our  data.  That  is,  our  data  consist  of  all
roadway accidents reported in the county for a two-year period,
so  each  record  represents  the  total  number  of  accidents

occurring  in  that  segment  over  that  two-year  period.  On  the
other hand, our data does consist of very diverse roadways that
experience varying degrees (exposures) of travel and volume.
Thus, an argument could be made to use AADT, a measure of
traffic  volume,  as  an  offset.  We  have  decided  against  using
AADT (or any other measure of traffic volume, demand, etc.),
however,  as  we  wish  to  directly  quantify  the  relationship
between AADT and accident totals, an analysis that would not
be possible if we use it as an offset. In their analysis of crashes
caused  by  the  running  of  red  lights  using  Poisson  and  NB
models, Mohamedshah et al. [44] similarly omitted AADT as
an exposure/offset variable. In the end, no offset was used in
our model.

5. MODEL-FITTING

All model-fitting and statistical analyses were performed
using the R statistical software system [45]. In addition to the
base packages in R, the ‘lme4’ and ‘MASS’ packages [46, 47]
were  used  extensively.  Model-fitting  was  performed  via
maximum  likelihood  estimation.

5.1. Independent/Dependent Variables

For our model, we define the response/dependent variable
to  be  the  accident  count.  For  the  independent  variables,  we
consider fixed-effect terms for average AADT, average speed
limit,  average  pavement  width,  average  DHV,  average
visibility,  average  number  of  lanes,  most  occurring
administrative system, most occurring terrain, most occurring
land use, most occurring pavement type, the presence/absence
of illumination, and the presence/absence of change in number
of lanes; a fixed-effect, categorical term to distinguish accident
counts  observed  under  different  weather  conditions;  and  a
random-effect term for the different roadways (routes). Also,
since  we  assume  that  the  relationship  between  roadway
features/weather  and  accident  frequency  is  potentially
complicated,  several  logical  interactions  will  be  considered.
Related  to  this,  in  their  analysis  of  safety  performance
functions,  Islam  et  al.  [48]  identified  the  importance  of
incorporating  interactions  between  variables  (in  particular,
those  between  speed  limit  and  geometric  variables)  for
estimation  of  crash  prediction  models.

5.2.  Justification  for  Model  Specification/Preliminary
Analyses

Since  the  Poisson  model  form  is  nested  within  the  NB
model  form  (the  NB  model  has  one  additional  parameter  to
account  for  the  over-dispersion),  we  performed  a  likelihood
ratio  test  to  assess  whether  or  not  the  use  of  the  more
complicated model, the NB model, is justified. As suspected,
we  found  that  the  NB  model  form  provided  a  statistically
significant  improvement  over  a  comparable  Poisson  model
(Likelihood ratio X2= 27002, df = 1, p-value < 0.0001). Thus,
the NB model form was has pursued for this analysis.

Next,  to  assess  if  the  inclusion  of  a  random  effect  is
necessary,  we  compared  our  NB  model  form  with  a  simpler
NB  form  with  only  the  fixed  effects.  As  above,  the  models
were compared via likelihood ratio test, and it was found that
the  NB  model  with  a  random  effect  for  the  route  was  a

 

𝑌𝑖,𝑗|𝐮𝑗~𝑁𝑒𝑔𝐵𝑖𝑛(𝛼, 𝜇𝑖,𝑗) 

𝜇𝑖,𝑗 = 𝐸(𝑦𝑖,𝑗|𝐮𝑗) = exp{𝒙𝑖,𝑗
′ 𝜷 + 𝐮𝑗} 
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statistically  significant  improvement  over  the  NB  model
without the random effect (Likelihood ratio X2= 1198, df = 1,
p-value  <  0.0001)..  Thus,  the  random  intercept  term  was
retained  for  all  future  analyses.

Finally, we investigated potential multicollinearity between
the  explanatory  variables  since  severe  multicollinearity  can
result in coefficient estimates that are unstable and difficult to
interpret. Using the ‘car’ package in R [49], because we have a
combination  of  continuous  and  categorical  variables,  we
calculated the Generalized Variance Inflation Factors (GVIFs)
for our NB model with only main effects and a random-effect
for the route. None of the squared GVIF  quantities [50]
are  larger  than  4,  suggesting  that  multicollinearity  is  not  an
issue  with  this  set  of  explanatory  variables.  Although  we
expected average AADT and an average number of lanes to be
related,  for  example,  the  correlation  between  them  does  not
appear  to  be  troublesome.  Also,  for  these  two  variables
specifically, a likelihood ratio test indicated that both variables
should be included in the model (Likelihood ratio X2= 116.36,
df = 1, p-value < 0.0001).

6. RESULTS

6.1. Initial Results

Using  the  ‘MuMIn’  package  in  R  [51],  we  calculate  the
conditional pseudo-R-squared or an estimate of the percentage
of  the  observed  variance  in  the  response  explained  by  the
mixed-effects model. For our best model, we have a pseudo-R-
squared of about 0.80 (0.7959), an indication that our model is
highly successful in explaining the variability observed in our
accident  frequencies.  In  their  NB  analysis  of  accidents  on
roadway segments with on-ramps, Chengwe and Ranjitkar [20]
achieved a likelihood ratio index (somewhat comparable to R-
squared)  of  about  0.19.  In  their  analysis  of  the  frequency  of
accidents at intersection approaches, Poch and Mannering [52]
used several  NB models  on  different  types  of  accidents,  and
their best model achieved a likelihood ratio index around 0.54.

6.2. Interpretation of Parameter Estimates

For  several  reasons,  interpreting  the  results  of  our  fitted
model  is  not  straight-forward.  First,  since  we assume an NB
form, our explanatory variables have a log-linear relationship
with  our  response  variable.  This  means  that  our  estimated
parameters  must  be  ‘exponentiated’  to  assess  their  relative
effect on the response variable (that is, calculate an ‘incidence
rate ratio’). Second, as recommended by Bates et al. [46], our
continuous explanatory variables were scaled to facilitate the
convergence of our model. Thus, these variables are converted
to standard deviation units from their mean values (this means
continuous  variables  can  have  negative  values  which
correspond to values less than the average). Third, we consider
a variety of interactions, so relationships between explanatory
variables  and  the  response  become  more  complicated  and
nuanced.  Fourth,  we have a  number  of  categorical  variables,
and results for those variables are presented as changes from
the  ‘base  case’  category.  Lastly,  we  have  a  large  number  of
variables  and  interactions  and  it  is  not  reasonable  to  present
and  interpret  all  parameter  estimates.  However,  in  the
following sub-sections, we will discuss several estimates that

are statistically significant and noteworthy.

Note: a beneficial byproduct of centering variables is that,
for  some  cases,  it  allows  for  interpretation  of  main  effects
when an interaction is present. Typically, the main effects are
not  interpreted  in  the  presence  of  interaction  since,  in  such
cases,  the  main  effect  represents  the  effect  of  one  variable
when  the  other  is  set  at  a  value  of  zero.  This  is  often  an
unrealistic  scenario  as  it  would  be  unlikely  to  observe  a
variable  at  a  value  of  zero.  However,  for  centered  variables,
zero now represents the average, which is realistic.

6.2.1. Administrative System (Roadway Type) and Weather

From the analysis of variance of our best-fitted model, we
find  that  the  interaction  between  administrative  system  and
weather  condition  (both  categorical  variables)  to  be  very
significant (Type II Wald Chi-square test, X2 = 91.2118, d.f. =
22, p-value = 2.130e-10). Among the specific levels of these
two variables, we find the parameter estimate associated with
the interaction between “rural road” type and the “start cloudy”
weather condition to be significant.

Table  (4)  below  gives  the  regression  model  output
associated  with  these  variables.

Table 4. Regression estimates associated with rural roads
and the start of cloudy weather conditions.

Variable Regression
coefficient

Tests statistic
(Wald Z value) p-value

Rural road 0.278 0.341 0.733
Start cloudy 0.77 10.625 ~ 0

(Rural road)*(Start
cloudy)

-0.53 -3.586 0.000335

Table 5. Regression estimates associated with rural roads
and the start of rainy weather conditions.

Variable Regression
coefficient

Tests statistic
(Wald Z value) p-value

Rural road 0.278 0.341 0.733
Start rain -1.15 -14.596 ~ 0

(Rural road)*(Start
rain)

0.515 2.145 0.0319

Analyzing  the  main  effect  for  rural  roads,  we  set  start
cloudy  to  zero  (or  for  ‘clear  conditions,’  the  base  case  for
weather)  and  find  rural  roads  affect  the  number  of  roadway
accidents by a factor of e0.278+0.770-0.53(0) = 1.32, or are associated
with  a  32%  increase  in  accident  frequency  as  compared  to
being on a ‘city highways’ (base cases for the administrative
system).  Now,  considering  the  interaction  term,  rural  roads
combined  with  the  onset  of  cloudy  conditions  affect  the
number of roadway accidents by a factor of e0.278+0.77-0.53 = e0.518 =
1.69,  or  are  associated  with  a  69%  increase  in  accident
frequency when compared to clear conditions on city highway
roads.  This  highlights  the  effect  of  cloudiness  on  the  rural
roads, especially when compared to the effect of rural roads in
clear  conditions,  and  makes  intuitive  sense  as  the  onset  of
cloudy weather is commonly associated with more dangerous

1
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driving conditions. Hermans et al.  [53] studied the effects of
weather variables on accidents at different locations, and they
found  that  for  the  majority  of  cases,  cloudiness  had  a
significant  effect  on  accident  frequency,  yet  they  did  not
distinguish  between  roadway  types.

Additionally,  we  find  the  parameter  estimate  associated
with the interaction between “rural road” and the “start rain”
weather condition to be significant. Table (5) above gives the
regression model output associated with these variables.

Analyzing  the  main  effect  for  start  rain  conditions,  the
onset of rainy conditions on city highways (base case for road
type) affects the number of roadway accidents by a factor of
e0.278(0)-1.15+0.515(0)= 0.317, or is associated with a 68% decrease in
accident frequency as compared to clear weather. Along these
lines, Chengye and Ranjitkar [20] found a similar decrease in
city highway accidents with the onset of rainy weather. Now,
considering  the  interaction  term,  the  onset  of  rainy  weather
combined  with  rural  roads  affects  the  number  of  roadway
accidents  by  a  factor  of  e0.278-1.15+0.515  =  e-0.357  =  0.70,  or  is
associated  with  a  30%  decrease  in  accident  frequency  as
compared  to  city  highways  and  clear  conditions.

Generally, in summary, we find 1) the effect of rural roads
on accident frequency changes depending on clear or  cloudy
weather  conditions,  and  2)  the  effect  of  the  onset  of  rain  on
accident frequency changes depending on rural or city highway
designations.  This  illustrates  the  complicated  relationship
between  weather  and  road  type.  Other  works  found  both
positive associations between accidents and precipitation [27]
or  no  significant  association  [54]  but  most  did  not  consider
interactions.  As  stated  by  Edwards  [22],  “…the  relationship
between  adverse  weather  and  road  accidents  is  far  from
straight-forward,” but investigating interactions between rain
and other variables is likely a step closer to understanding this
relationship.

6.2.2. AADT and Weather

We  find  the  interaction  between  AADT  and  weather
conditions (respectively, a continuous and categorical variable)
to  be  very  significant  (Type  II  Wald  Chi-square  tests,  X2  =
44.3169, d.f. = 6, p-value = 6.396e-08). Similarly, in a study of
relative accident risks across locations in Iowa, Tamerius [55]
attributed  variations  to  an  interaction  effect  between  traffic
volume/density and precipitation. Among the levels of weather
conditions, we find the parameter estimate associated with the
interaction  between  AADT  and  “continued  rain”  to  be
significant. Table (6) below gives the regression model output
associated with these variables.

Table  6.  Regression  estimates  associated  with  AADT and
continued (sustained) rainy conditions.

Variable Regression
coefficient

Tests statistic
(Wald Z
value)

p-value

AADT 1.31 13.252 ~ 0
Continued rain -1.72 -17.114 ~ 0

(AADT)*(Continued rain) -0.297 -4.031 ~ 0

Analyzing  the  main  effect  for  continued  rain,  we  set

AADT to zero (average AADT setting) and find continued rain
affects  the  number  of  roadway  accidents  by  a  factor  of
e131(0)-1.72-0.297(0) = 0.179, or is associated with an 82% decrease in
accident frequency relative to clear weather (base case). When
considering the interaction term, for AADT of -1 (one standard
deviation below average AADT), the continued rain affects the
number of roadway accidents by a factor of e1.31(-1)-1.72-0.297(-1)  =
e-2.733 = 0.065, or is associated with a 94% decrease in accident
frequency relative to average AADT in clear conditions; and
for  AADT of  1,  the  continued rain  is  associated  with  a  50%
decrease  in  accident  frequency  relative  to  average  AADT in
clear  conditions.  However,  for  AADT  of  2,  continued  rain
affects  the  number  of  roadway  accidents  by  a  factor  of
e1.31(2)-1.72-0.297(2)  =  e0.306  =  1.36,  or  is  associated  with  a  36%
increase  in  accident  frequency  relative  to  average  AADT  in
clear conditions. In summary: for low, average, and moderately
high AADT, continued rain is associated with lower accident
frequency; for high AADT, continued rain is associated with
higher accident frequency. This result is somewhat similar to
that of Black et al.  [56] who concluded that most significant
increases in accident risk occur in areas with major highways
(locations with higher average AADT). Also, from their study
of  major  roads  in  Finland,  Malin  et  al.  [23]  concluded  that
accident  risk  in  poor  weather  conditions  was  higher  on
motorways  than  on  lower  volume  roads.

6.2.3. AADT and Pavement Width

We  find  the  interaction  between  AADT  and  pavement
width (both continuous variables) to be very significant (Type
II  Wald  Chi-square  tests,  X2  =  61.5266,  d.f.  =  1,  p-value  =
4.368e-15).  Table  (7)  below gives  relevant  regression  model
output associated with AADT and pavement width.

Table  7.  Regression  estimates  associated  with  AADT and
pavement width.

Variable Regression
coefficient

Tests statistic
(Wald Z
value)

p-value

AADT 1.31 13.252 ~ 0
Pavement width -0.113 4.937 ~ 0

(AADT)*(Pavement width) 0.16 7.844 ~ 0

Analyzing  the  main  effect  for  pavement  width,  we  set
AADT to zero (average AADT setting) and find a one standard
deviation  increase  in  pavement  width  affects  the  number  of
roadway accidents by a factor of e-0.113 = 0.893, or is associated
with an 11% decrease in accident frequency. This agrees with
the findings of Zegeer et al. [11], for example, who found that
certain types of accident rates decreased with increasing lane
width. However, considering the interaction term, when both
pavement width and AADT are set to 1, we observe an increase
in accident frequency by a factor of e1.31(1)-.113(1)+0.16(1)(1) = e1.357 =
3.88. This result seems to be counterintuitive, and it seems to
contradict  traditional  findings ([11],  for  example),  but  recent
work supports our result and generally that pavement/roadway
width has a more complicated relationship with accident rates.
In  the  very  comprehensive  analysis  of  crash  data  collected
from both Tokyo and Toronto, Karim [57] found wider lanes
both  adversely  affect  overall  side-impact  collisions  and  are
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associated with higher crash rates on busy, high AADT roads.
As stated by the author, “given…the empirical evidence…, the
'wider  is  safer'  approach  based  on  personal  or  intuitional
opinion  should  be  discarded  once  and  for  all.”  The  author
further  suggests  a  logical  reason  for  this  finding:  narrower
lanes result in less aggressive driving and more ability to slow
or stop a vehicle to avoid collision.

6.2.4. Land Use and Speed Limit

Lastly, we find the interaction between land use and posted
speed  limit  (respectively,  a  categorical  and  a  continuous
variable) to be very significant (Type II Wald Chi-square tests,
X2 = 95.9517, d.f. = 5, p-value = 2e-16). Among the levels of
land use,  we find  the  parameter  estimate  associated  with  the
interaction  between  speed  limit  and  “residential  area”  to  be
significant. Table (8) below gives the regression model output
associated with these variables.

Table  8.  Regression  estimates  associated  with  residential
area and posted speed limit.

Variable Regression
coefficient

Tests statistic
(Wald Z
value)

p-value

Residential area -0.04 -0.895 0.371
Speed limit -0.083 -2.246 0.025

(Sp. limit)*(Residential
area)

0.41 8.662 ~ 0

Analyzing the main effect  for speed limit,  for residential
area  set  to  0  (or  ‘commercial  area,’  the  base  case),  a  one
standard deviation increase in speed limit affects the number of
roadway accidents by a factor of e-0.083 = 0.92, or is associated
with an 8% decrease in accident frequency. Now, considering
the interaction term, a one standard deviation increase in speed
limit in residential areas affects the frequency of accidents by a
factor of e-.04-.083+0.41 = 1.34, or is associated with a 34% increase
in accident frequency compared to commercial locations. In a
study  of  residential  areas  in  Switzerland,  Lindenmann  [58]
found  that  higher  posted  speed  limits  were  associated  with
considerably  higher  accident  occurrence,  a  result  that  agrees
with  our  findings.  Many  other  works  give  opposing  results,
either  positive  associations  between  speed  and  accident
frequency  [59  -  61],  or  negative  associations,  [62,  63].  As
stated by Quddus [42], “…the relationship between the change
in traffic  speed and the probability  of  accident  occurrence is
not as straightforward as one may think.” In response to one
such contradictory  result,  Aarts  and  van  Schagen [64]  stated
that  the  “discrepancy  may  be  explained  by  the  fact  that  the
factors  that  were  examined…do not  stand alone,  but  [rather]
interact with each other.” Our findings support this claim, that
the  relationship  between  speed/speed  limit  and  accident
frequency  is  not  absolute,  but  rather  conditional  on  other
factors.  Furthermore,  if  we  consider  land  use  as  a  proxy  for
general differences in roadway structure, our result highlights
the  dependency  between  geometry  and  speed  and  their
combined  influence  on  accident  frequency.

6.3. Model Diagnostics

The  key  assumptions  for  NB  models,  and  GLMs  in
general, are homogenous, Normal, and independent deviations
centered on zero [65]. For our case, these assumptions are met
and we present diagnostic plots for support (see Fig. (3)). From
the histogram (left) and Normal quantile-quantile plot (center)
of  the model  residuals,  we have evidence that  deviations are
both  Normal  and  centered  at  zero.  From  the  autocorrelation
plot of residuals, we find no evidence of dependence. Thus, our
model form is valid.

7. VALIDATION

To  validate  our  procedure  and  model  specification,  we
perform a Cross-Validation (CV) procedure. Specifically, the
CV  technique  used  here  is  a  repeated  stratified  random
subsampling procedure where the data is tested against  itself
via training and testing subsets. Simple random sub-sampling
to  create  training  and  test  sets  is  not  appropriate  in  our
particular case since our model is estimating a random effect
for route location. Thus, we need to ensure both training and
testing  sets  contain  the  same routes,  the  random effect.  This
also means that some data are ‘lost’ since we have to omit data
corresponding to routes with only one aggregate (only 7 routes
had  one  aggregate).  For  each  of  the  remaining  routes  (242),
half of the associated aggregates were randomly assigned to a
training  set  and  the  other  half  were  assigned  to  a  testing  set
(50% split).

Next, our NB model is fitted to the training set. The fitted
regression  parameters  (based  on  the  training  set)  and  the
observed values of the variables in the testing set are then used
to  predict  the  number  of  accidents  in  the  testing  set.  This
process  was  repeated  100  times,  and  for  each  repetition,  for
each  route,  50% of  the  aggregates  are  randomly selected  for
training and testing sets.

To  assess  our  model,  we  observe  the  root  mean  squared
error, or RMSE, given by

where  is the predicted response (number of accidents), yi

is  the  observed  response  (number  of  accidents),  and  n  is  the
sample  size.  When  we  compare  the  RMSE  from  both  the
training and test sets, a good model will yield similar results.
Otherwise, if the RMSE calculated from the training and test
sets differ, we have evidence that our model is over-fitting or
under-fitting  the  data.  Since  we  produce  an  RMSE  for  the
training and test  set  for each of the 100 iterations of our CV
procedure, we have paired RMSEs and we used a paired test to
identify  potential  differences.  Assuming  Normality  in  the
differences, we have no evidence to suggest that the training
and testing sets yield different RMSEs (t = 0.542, df = 99, p-
value = 0.5887).  We can conclude that  our model is  suitable
and neither over- nor under-fitting the data.
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Fig. (3). Model diagnostics for NB with random effect: histogram of residuals (left), Normal quantile-quantile plot of residuals (center), and auto-
correlation (ACF) plot of residuals. These plots provide evidence that the assumptions of our GLM have been appropriately met.

8. DISCUSSION

We  acknowledge  that  ‘human  error’  plays  an  important
role in roadway accidents [66, 67]. While we cannot detect this
effect directly, we can quantify it indirectly. That is, we assume
that  human  error  will  ‘emerge’  in  the  presence  of  certain
roadway features, weather conditions, etc., and consequently,
accidents  will  occur  more  frequently.  Thus,  we can consider
our variables as catalysts, in some way, for human error.

In this work, we present a procedure aimed at identifying
the  relationships  between  roadway  accident  frequency  and  a
variety  of  variables,  and  in  so  doing,  we  introduce  several
novel  approaches.  We  present  a  segmentation/aggregation
procedure  that  first  breaks  roadways  into  half-mile  sections,
then for accidents within each segment, a variety of roadway
characteristics and features are identified. Next, we introduce a
weather  variable into our analysis  by distinguishing accident
totals  by  broad  weather  condition  categories.  Finally,  we
introduce a Negative Binomial (NB) regression model, a form
that  is  theoretically  justified,  to  identify  the  log-linear
relationship  between  accident  counts  and  roadway  features,
weather conditions, several interactions between weather and
roadway  features,  and  a  random  effect  for  the  particular
roadway.

Our  procedure  described  above  is  applied  to  real-world
data  collected  in  Hamilton  County,  TN.  Based  on  variation
explained, model diagnostics, and a validation procedure, our
methodology  and  model  specification  is  justified.  A  novel
result  from  our  fitted  model  is  the  significance  of  several
interactions between variables that are traditionally associated
with  accident  frequency.  Interpretations  of  coefficient
estimates associated with these interactions are often logical or
agree with current literature and the work of researchers in the
field. Furthermore, statistically significant interactions suggest
that the relationships between variables and accident frequency
are  nuanced,  complicated,  and  cannot  be  described  via  main
effects  only.  Understanding  such  relationships  is  critical  to
understanding  the  conditions  associated  with  roadway
accidents so that, ultimately, these conditions can be corrected
[52].

Interpreting  interaction  terms  from  our  fitted  regression
model, though sometimes complicated by categorical variables
with several levels, leads to several interesting findings. First,
when observing rural roads, cloudy conditions are associated
with  relative  increases  in  accident  frequency;  and  when
observing  the  onset  of  rainy  conditions,  rural  roads  are
associated  with  relative  increases  in  accident  frequency.
Second, we find an interesting result related to the combined
effect  of  AADT  and  continued,  sustained  rain.  For  low,
average,  and  moderately  high  AADT,  continued  rain  is
associated with relative decreases in accident frequency; and
for  high  AADT,  continued  rain  is  associated  with  relative
increases  in  accident  frequency.  Third,  considering  the
interaction  between  pavement  width  and  AADT,  we  find
higher AADT and wider pavements are associated with relative
increases in accident frequency, whereas average AADT and
wider pavements width are associated with relative decreases
in accident frequency. Fourth, for higher speed limits, being in
a  residential  area  is  associated  with  relative  increases  in
accident  frequency.  These  results  illustrate  the  complicated
relationship  between  accident  frequency  and  both  roadway
features  and  weather.  Furthermore,  it  is  not  sufficient  to
observe  the  effects  of  weather  and  roadway  features
independently  as  these  variables  interact  with  one  another.

Like any work, there are a number of refinements that can
be made to this work. First, our accident records have precise
date  and  time  designations,  and  it  would  be  feasible  to
introduce a time-of-day, day-of-week, or season variable to our
work. Related to this, Clarke et al. [68] showed how time-of-
day (along with other variables) affects the crash frequency of
young  drivers,  Qin  et  al.  [69]  revealed  how  the  relationship
between crashes and hourly traffic varies by time of day, and
Laflamme and Ossebruggen [70] provided evidence of time-of-
day  and  day-of-week  effects  on  highway  congestion  which
itself  has  been  linked  to  accident  occurrence  [71].  We,
however, opted for a more parsimonious approach, focusing on
roadway  characteristics  and  weather  conditions.  Second,  our
procedure does not consider the severity of accidents. Although
severity information (such as fatality, etc.) was not available at
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the time of this analysis, including such information in the data
aggregation  procedure  would  be  straight-forward.  Numerous
published  works  have  performed  analyses  distinguishing
between accidents of varying severity [12, 15]. Lastly, it  has
been  shown  that  additional  factors  such  as  vehicle  type  [72,
73]; driver demographics such as age, gender, etc. [21, 74]; and
driver  state  [75]  play  important  roles  in  accident
frequency/severity.  Future  work  will  pursue  these  variables.

CONCLUSION

Lastly, we acknowledge that our procedure makes several
simplifications  that  could  overlook  important  features.  For
example,  among  our  weather  variable  categories,  we  do  not
distinguish between rain events of different intensity. Such data
is  available,  and  future  work  could  introduce  additional  rain
categories, or possibly create a continuous variable for the rain
to  account  for  varying  intensity.  Several  works  have
investigated the effect of rain intensity on roadway accidents
[23, 76].
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