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Abstract:

Background:

Historically, Indian reservations have been struggling with higher crash rates than the rest of the United States. In an effort to improve roadway
safety in these areas, different agencies are working to address this disparity. For any safety improvement program, identifying high risk crash
locations is the first step to determine contributing factors of crashes and select corresponding countermeasures.

Methods:

This study proposes an approach to determine crash-prone areas using Geographic Information System (GIS) techniques through creating crash
severity maps and Network Kernel Density Estimation (NetKDE). These two maps were assessed to determine the high-risk road segments having
a high crash rate, and high injury severity. However, since the statistical significance of the hotspots cannot be evaluated in NetKDE, this study
employed Getis-Ord Gi* (d) statistics to ascertain statistically significant crash hotspots. Finally, maps generated through these two methods were
assessed to determine statistically significant high-risk road segments. Moreover, temporal analysis of the crash pattern was performed using spider
graphs to explore the variance throughout the day.

Results:

Within the Fort Peck Indian Reservation, some parts of the US highway 13, BIA Route 1, and US highway 2 are among the many segments being
identified as high-risk road segments in this analysis. Also, although some residential roads have PDO crashes, they have been detected as high
priority areas due to high crash occurrence. The temporal analysis revealed that crash patterns were almost similar on the weekdays reaching the
peak at traffic peak hours, but during the weekend, crashes mostly occurred at midnight.

Conclusion:

The study would provide tribes with the tool to identify locations demanding immediate safety concerns. This study can be used as a template for
other tribes to perform spatial and temporal analysis of the crash patterns to identify high risk crash locations on their roadways.
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1. INTRODUCTION

Lack of roadway safety on Indian reservations is one of the
major concerns for the roadway systems in the United States.
The Centers for Disease Control (CDC) reported motor vehicle
crashes  as  one  of  the  most  prominent  causes  of  death  for
Native American/Alaska Natives (AI/AN) aged up to 44 years
[1]. Among other issues, miserable road conditions associated
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with  rural  natures  of  the  roads,  and  unsafe  driving  behavior
significantly contribute to the high crash occurrences on these
reservations. Due to limited resources, tribes are struggling to
reduce  crash  rates.  Moreover,  the  unique  nature  of  the
reservations, along with geographically isolated locations and
cross-jurisdictional  issues,  hinder  the  efforts  of  the  tribes  to
improve their roadway systems.

Identifying  high-risk  crash  locations  and  their
corresponding  safety  countermeasures  is  among  the  most
efficient and cost-effective ways to improve roadway safety on
Indian reservations [2]. To determine the contributing factors
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of crashes and select appropriate countermeasures, ascertaining
potential  or  existing  high  crash  locations  is  of  crucial
importance.  Comprehensive  knowledge  about  the  crash
hotspots  facilitates  tribes  and  other  agencies  in  allocating
resources to areas with the greatest potential to reduce fatalities
and serious injuries [3].

Numerous  studies  are  present  in  the  literature  aimed  at
identifying  high-risk  crash  locations  in  an  effort  to  improve
roadway safety. Besides the conventional approaches, recently,
geostatistical techniques have become popular in determining
high-risk  crash  locations.  This  approach  takes  into
consideration  the  spatial  autocorrelation  between  the  crash
locations  and  discerns  clusters  of  crashes  with  similar
characteristics.  However,  only  a  handful  number  of  studies
were found on determining high-risk crash locations on Indian
reservations, using geostatistical tools. To bridge this gap, this
study proposes a methodology using Network Kernel Density
Estimation (NetKDE), and other GIS tools including Getis-Ord
Gi* (d) statistics to determine statistically significant high-risk
road  segments  in  the  Fort  Peck  Indian  Reservation  (FPIR),
Montana. This methodology was geared to be implemented to
all  other  tribes,  which  will  provide  the  them  with  the
opportunity  to  prioritize  areas  in  implementing  counter
measures to reduce high crash rates. Technical assistance and
other necessary support can be provided by the local technical
assistance program centers to implement the methodology on
the reservations.

2. BACKGROUND
The  background  section  would  first  highlight  the  study

motivation, and then it would provide some literature review
about the related issues.

2.1. Study Motivation
Indian reservations possess the highest motor vehicle crash

fatality  rate  amongst  all  ethnicities.  The  crash  scenario  of
Indian  reservations  in  Montana  could  be  used  as  a
representative  case  of  other  reservations.  According  to  the
“Montana Indian Fatality Crash Information” prepared by the
Traffic Safety Bureau, Montana Department of Transportation
(MDT),  traffic  fatalities  among  the  Native  Americans  in
Montana  are  nearly  three  times  higher  than  that  of  the  non-
Native  Americans.  This  report  also  stated  that  the  death  toll
among  Native  Americans  was  about  15.6%  of  the  statewide
fatalities, while the average Native American population of the
state was only 6.1% during 1991-1999 [4].

Tribes,  US Department  of  Transportation (USDOT),  and
state and local governments have recognized the importance of
addressing  the  challenges  and  difficulties  in  improving
roadway  safety  in  these  areas.  However,  each  reservation  is
unique in terms of cultural and physical aspects. Issues, such as
variation in crash reporting,  data analysis  practices,  and data
handling capabilities in different reservation areas, contribute
to the difficulty of  ascertaining high-risk crash locations [2].
Geospatial analysis of crash locations provides tribes with the
opportunity of  identifying the high-risk crash locations in an
identical  manner  in  taking  necessary  measures  to  reduce
crashes  on  their  roadways.

2.2. Literature Review
Various  geostatistical  techniques  have  been  employed to

determine  the  crash  hotspots  through  the  spatial  analysis  of
crash  patterns.  The  spatial  analysis  considers  spatial
autocorrelation between the crash locations. It determines the
spatial  autocorrelation  by  observing  clusters  of  areas  with
similar  attribute  values.  Moran’s  I  Index,  Getis-Ord  Gi*(d)
statistics,  Kernel  Density  Estimation  (KDE),  Nearest
Neighborhood  Hierarchical  (NNH)  clustering,  and  K  –mean
clustering tools have been widely used in determining the crash
hotspots.

Khan  et  al.  (2008)  analyzed  the  weather-related  crash
pattern  with  Getis-Ord  Gi*  (d)  statistics  and  discovered  the
cluster pattern of crashes for various weather conditions (snow,
rain, and fog). This study suggested that the treatment should
be prioritized based on different weather conditions [5]. Also,
Songchitruksa  and  Zeng  (2010)  used  Getis-Ord  Gi*  (d)
statistics to determine the crash hotspots on freeways from the
Incident  Management  (IM)  data.  This  study  used  crash
duration as an impact factor and was able to determine the high
impact  crashes  from  more  than  30,000  crash  records  [6].
Anderson  (2009)  employed  the  KDE  method  in  Turkey  and
found  that  crashes  were  highly  concentrated  in  road
intersections [7]. Pulgurtha et al. (2007) used the KDE method
to  assess  the  spatial  variation  of  pedestrian  crashes  and
hazardous  bus  stops  to  address  the  pedestrian  and  passenger
safety  issues  [8].  Truong  and  Somenahalli  (2011)  also
investigated pedestrian-vehicle crash data to rank unsafe bus
stops  using  Moran’s  I  and  Getis-Ord  Gi*  (d)  statistic  [9].
Moran’s  I  was employed to assess  the spatial  patterns of  the
pedestrian-vehicle crash data, and Getis-Ord Gi* (d) statistics
was employed to produce a pedestrian crash vehicle hotspots
with clustering of high and low index values.

In another study, Prasannakumar et al. (2011) investigated
the spatial clustering of accidents and hotspots spatial densities
by  Moran’s  I,  Getis-Ord  Gi*  (d)  statistics,  and  point  Kernel
Density functions in a south Indian city [9,10]. Moreover, Xia
and  Yan  implemented  Network  Kernel  Density  Estimation
(NetKDE) at an area in Kentucky to test this new method. This
study found that new NetKDE outperformed the Planer KDE
for  density  estimation of  traffic  crashes  [11,  12].  NetKDE is
also used by Beckstrom (2014) to determine pedestrian priority
locations [13].

Thakali et al. (2016) compared the results of the KDE and
kriging method in determining crash hotspots in a road network
located in the Hennepin County of Minnesota State [14]. This
study revealed that the kriging method outperformed the KDE
based  on  the  Predicted  Accuracy  Index  (PAI).  Similarly,
Manepalli et al. (2011) conducted a comparative analysis of the
KDE and Getis-Ord Gi* (d) statistics to determine the hotspots
using  crash  data  for  seven  years  in  a  road  in  Arkansas  State
[15]. The study found that both the KDE and Getis-Ord Gi* (d)
statistics  identified  similar  hotspots.  Plug  et  al.  employed
spatial, temporal, and spatio-temporal techniques to investigate
the  single  vehicle  crashes  in  Australia.  In  that  paper,  spider
graphs  were  used  to  identify  temporal  patterns  of  crashes  at
two different levels with respect to the crash causes, whereas
KDE was employed for spatial analysis of the crashes [16].



176   The Open Transportation Journal, 2020, Volume 14 Nazneen et al.

The  abovementioned  literature  review  revealed  that  no
comprehensive study had been conducted to address the high
crash  severity  on  Indian  reservation  roads  by  employing
various  crash  hotspots  techniques.  Therefore,  this  study  was
conducted to bridge this gap.

The objective of this study is to determine high-risk crash
locations on Indian reservation roadways. A methodology was
developed to this end, using Getis-Ord Gi* (d) statistics, and
NetKDE to identify the statistically significant crash hotspots
within the FPIR. The temporal analysis was performed as well
to  investigate  the  crash  pattern  over  time.  The  methodology
used  here  can  be  followed  by  other  tribes  considering  its
effectiveness  and  simplicity.

3. CASE STUDY AND DATA DESCRIPTION
The Fort Peck Reservation is home to two separate Indian

nations,  each  composed  of  numerous  bands  and  divisions.
There  are  an  estimated  10,000  enrolled  tribal  members,  of
whom approximately 6,000 reside on or near the Reservation
[17]. The reservation is located in the extreme northeast corner
of Montana, 40 miles west of the North Dakota border and 50
miles  south  of  the  Canadian  border,  with  the  Missouri  river
bordering its  southern perimeter [17].  The reservation is  110
miles long and 40 miles wide, encompassing 2,093,318 acres
(approximately  3,200  square  miles).  Of  this,  approximately
378,000  acres  are  tribally  owned,  and  548,000  acres  are
individually allotted Indian lands.  The total  of  Indian owned
lands is about 926,000 acres [18]. Fig. (1) presents the location
of the FPIR. The shapefile of the road network was collected
from MDT.

The  Fort  Peck  Tribes  operate  their  own  transportation
program and have a contract with the Bureau of Indian Affairs
(BIA)  for  some  transportation  functions.  Like  many  other
Tribal  governments,  they  work  with  limited  resources  to
manage and maintain their roadway system. On the FPIR, there
are roughly 1,500 miles of roads, of which 375 miles are BIA
system  and  Tribally-owned  roads  [19].  Of  the  211  miles  of
BIA-owned  roads,  over  half  of  the  roads  are  gravel  and  dirt
roads.  Thus,  the  majority  of  the  transportation  infrastructure
under  BIA  is  outdated  and  in  need  of  an  upgrade  (paving)
while the rest of the infrastructure is owned and maintained by
the State and county governments [19].

The  MDT  maintains  a  crash  analysis  database  for  all
roadways  in  Montana.  The database  includes  information on
every  recorded  crash  within  the  state.  Crash  data  within  the
FPIR was requested from MDT. There were 940 crashes in the
FPIR  during  the  years  2005-2014.  These  include  crashes
occurring on the state, county, city, and tribally owned roads
(Fig. 2).

4. METHODOLOGY

This  study  used  two  methods:  NetKDE  and  Getis-Ord
Gi*(d) statistics to determine high risk crash locations in the
FPIR.  Fig.  (3)  shows  the  flowchart  of  the  methodology
followed to determine statistically significant  crash hotspots.

This study also performs temporal analysis to assess the crash
pattern.  The  following  paragraphs  discuss  the  theoretical
background  and  application  of  methods.
4.1. Kernel Density Estimation (KDE)

KDE  has  widely  been  used  for  crash  hot  spots  analysis
[12]. This method calculates the density of an observed point-
event  distribution  in  two-dimensional  Euclidean  spaces.  In
other  words,  the  KDE  approach  calculates  the  density  of
neighboring  point  features  around  a  given  point  within  a
circular  distance.  When  represented  in  three  dimensions,  the
KDE neighborhood bandwidth looks like a bell-shaped curve,
symmetrical around the central point feature. The Kernel (or K)
function determines the steepness of the curve. A sharper curve
generates a more detailed result where a flatter curve yields a
smoother density gradient. Adjacent features are provided with
a  density  score  based  on  their  distance  to  the  central  point.
Therefore,  the  density  score  declines  with  the  increase  of
distance. This process is repeated for each point in the dataset.
After  calculating  all  the  density  score  neighborhoods
surrounding each point, the density scores of the overlapping
neighborhoods are added to generate distinct peaks and valleys
[20].  Visualized  in  two  dimensions,  the  result  provides  a
smooth gradient with high and low-density values, which are
known  as  hotspots.  The  kernel  function  is  presented  in
Equation  1.

(Eq 1)

Where,  λ  (s)  is  the  density  at  location  s,  r  is  the  search
radius (bandwidth) of the KDE, and k is the weight of a point i
at a distance dis to location s. k is usually modeled as a function
(called kernel function) of the ratio between dis and r.

4.2. Network Kernel Density Estimation (NetKDE)

Conceptually,  Network  Kernel  Density  Estimation
(NetKDE)  is  an  extension  of  the  KDE  process.  Planar  KDE
methodology computes density, considering that point events
are  randomly  distributed  throughout  the  Euclidean  space.
However,  traffic  crashes  do  not  take  place  in  an  open  space
rather  than  in  roadway  networks  upon  which  traffic  flows.
Therefore, each event has a much stronger influence on their
neighbors  on  the  network  rather  than  on  a  2-D  plane  with  a
constant  search  radius  r.  This  discrepancy  leads  to  an
overestimation bias of up to 20% in planar KDE results when
used in  a  network context  [11].  To address  this  issue,  recent
researches have focused on the development and use of a KDE
in which the neighborhood bandwidth is calculated through a
network instead of over Euclidean space. This tool is known as
the  NetKDE.  Instead  of  computing  the  density  over  an  area
unit, the equation estimates the density of a linear unit. It was
first developed by Okabe et al. in 2006 [21] and used in many
cases  to  address  the  limitation  of  planar  KDE and  provide  a
more  accurate  interpretation  of  the  distribution  of  network-
bound  point  events  [12].  Fig.  (4)  presents  the  difference
between  the  two  KDE  methods.
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Fig. (1). Location of the FPIR, Montana.

Fig. (2). Crash locations in the FPIR.
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Fig. (3). Methodological steps.

4.3. SANET- Spatial Analysis along Networks and NetKDE
Analysis

Japanese  researcher  Dr.  Atsuyuki  Okabe  and  his  team
developed  Spatial  Analysis  along  Networks  (SANET),  an
ArcGIS toolbox extension  for  analyzing spatial  events  along
with network space [21]. In this study, the NetKDE analysis of
this toolbox extension was performed on the FPIR crash data
layer  using  the  road  network  database  as  the  network  layer.
Equal split  continuous kernel function was performed as this
kernel  function  minimalizes  computation  time,  particularly
when applied on a complex network [12]. Search bandwidth is
a critical parameter determining the smoothness of the density
results [12]. An optimal search bandwidth in NetKDE should
consider both the distribution characteristics of the study area
and  the  road  network.  In  this  study,  density  results  were
calculated with six different bandwidths of 500 m, 200 m, 100
m,  50  m,  20m,  and  10  m.  The  resulted  density  values  were
maximum at 500 bandwidths. The densities vary significantly
on different roads and distributed unevenly on the same road,
presenting an unbalanced distribution in the entire study area.
With  the  increasing  bandwidth,  the  resultant  density  values
decrease as the denominator “r” increases. As a result, densities
change more gently both on different  roads and on the same
road,  and  the  overall  density  results  get  smoother.  However,
the density values change very little with a 200m, 100m, 50m,
20m  bandwidth,  which  is  also  undesirable  in  NetKDE.
Therefore, in order to reflect the density distribution variation
both  on  different  roads  and  on  the  same road,  and  to  keep  a
balanced  distribution  at  the  same  time,  10  m  of  bandwidth
length is considered optimal within the study area. Selection of
bandwidth 10m was also supported by Xie & Yan (2008) [11],
who  stated  in  their  study  that  narrow  bandwidths  might  be
suitable for presenting crash hot spots at  smaller scales.  Cell
width  was  set  to  1m,  as  recommended  by  the  SANET  team
[21].

4.4. Crash Severity Analysis

Crash injury severity levels include Critical injury, Serious
injury,  and  Property  damage  only  (PDO).  Critical  injury
comprises  of  fatal  and  incapacitating  injuries  while  serious
injury  includes  non-incapacitating  and  evident  injuries.  To
perform  crash  severity  analysis,  each  crash  was  assigned  a

weight  based  on  the  ratios  of  different  injury  severity  level
crash costs relative to the PDO crashes. Crash costs collected
from  the  Highway  Safety  Manual  (HSM)  [22]  were  used  to
determine the weight of each injury level. Table 1 presents the
weight assigned to every severity level based on crash cost.

After providing weights to each crash according to Table 1,
crash shapefile was converted to a raster file with a cell size of
1  m.  Then,  the  polygon  shapefile  and  road  shapefile  was
merged by using spatial join tools to obtain the road segments
with  crash  severity.  Afterwards,  the  road  segments  were
categorized  into  three  classes.  The  first  category  comprised
low-risk  roads  relative  to  other  roads  as  these  roads  had  no
disabling  injury  or  fatality.  In  the  second  category,  medium
risk road segments were made up of more crashes with severe
injuries and non-severe injuries than the first category. The last
group included road segments with fatal injury associated with
other crashes.

To determine street segments and areas of high priority for
roadway safety improvements, the results of the NetKDE crash
location  analysis  and  crash  severity  map  were  compared.  In
practice, this method was carried out by first dividing the street
segments  in  the  NetKDE  map  into  high,  medium,  and  low
designations,  relative  to  the  values  generated  through  the
analysis,  similarly  as  crash  severity  map.  Once  this
categorization  was  completed,  each  respective  designation
class  (high,  medium,  low)  was  selected  and  exported  as  its
layer  in  ArcGIS.  After  the  six  new  layers  were  created,  the
overlapping  segments  were  highlighted  using  “select  by
location” with a 250ft search buffer to include adjacent high-
value segments. These highlighted portions were used to create
the final map of high risk street segments with a high crash rate
and  severity.  This  selection  process  is  similar  to  the  method
used by Beckstrom et al. [13].

4.5. Getis–Ord Gi * (d) Spatial Statistic

The  Gi*(d)  spatial  statistics  method  was  introduced  by
Getis and Ord [23] to distinguish between the locations of high
and  low  spatial  associations.  This  tool  works  by  looking  at
each feature within the context of neighboring features [24]. A
feature with a high value may not be statistically significant if
it is surrounded by low attribute features. To be a statistically
significant  hot  spot,  a  feature  will  have  a  high  value  and  be
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surrounded by other features with high values as well [9].

(Eq 2)

Where,  Xj  is  the  attribute  value  for  feature  j,  Wij  is  the
spatial  weight  between feature i  and j,  n  is  equal  to the total
number of features and:

(Eq 3)

(Eq 4)

In  Equation  2,  the  attribute  values  of  each  feature  were
multiplied  by  the  spatial  weight  matrix,  Wij  defines  which
locations  were  included  in  the  analysis  and  corresponding
weight. The sum of these observed values was deducted from
the expected value, the sample mean. Then, this difference was
divided by the standard deviation to obtain a standardized z-
score,  values  for  each  site  i.  The  Gi*  (d)  statistics  return  z-
score for each feature in the dataset. For statistically significant
positive z-scores, the larger the z-score is, the more intense the
clustering of high values (hot spot). For statistically significant
negative z-scores, the smaller the z-score is, the more intense
the  clustering  of  low values  (cold  spot)  [9].  This  study  used
attribute values as the injury severity type of each crash.

4.6. Conceptualization of Spatial Association

Construction  of  the  spatial  weight  matrix,  or
conceptualization of spatial association among the features, is
one of the most important aspects of the spatial autocorrelation.
Accuracy  of  the  results  mainly  depends  on  the  ways  of
interaction  between  the  features.  Different  methods  of
conceptualization  of  spatial  relationships,  such  as  inverse
distance, inverse distance squared, fixed distance band, zone of
indifference,  get  spatial  weights  from  file,  distance  band  or
threshold  distance,  generate  different  results  [5].  A  fixed
distance band method was selected for this analysis due to its
performance  with  point  features.  It  is  also  important  to
determine  a  distance  threshold  associated  with  maximum
spatial autocorrelation because each feature would be analyzed
with  respect  to  its  neighboring  features.  In  this  study,  the
incremental spatial autocorrelation tool was used to determine
the distance associated with the maximum Z score. A distance
band of 25,000 m was selected because the minimum distance
at which all crashes had at least one neighbor was calculated to
be 24,405 m with a maximum Z value of 10.83. Any distance
larger than that would result in a larger number of neighbors.
Therefore,  25,000  m  of  distance  band  would  be  the  best
possible  option.

4.7. Crash Hotspots Map

Finally, the Spatial join tool was used to join high-risk road
segment map generated through NetKDE and other GIS tools,
and  Map  from  Getis-Ord  Gi*  (d)  statistics  to  determine  the
statistically significant crash hotspots in the FPIR.

4.8. Temporal Analysis, Spider Plot

The temporal analysis enables investigating whether time
has an impact on crash occurrences. The time at which crashes
occur is crucial to analyze the pattern of crashes and increase
infrastructure and emergency response. Spider graph has been
used widely to  assist  in  picturing the pattern of  crashes  over
time.  As  the  spider  plot  has  no  beginning  or  end  due  to  its
circular  nature,  it  is  easier  to  assess  the  time  interval  that  is
shown discontinuously  on the  bar  chart  (e.g.  9  am to  5  pm).
Also, only a glance is required to understand the crash pattern
throughout the day as the graph resembles a clock.

In  this  paper,  two  types  of  temporal  analyses  have  been
performed.  The  first  one  is  the  investigation  of  the  crash
pattern  throughout  the  day,  and  comparison  of  the  temporal
distribution  of  crashes  among  the  three  roadway  systems,
including  Indian  Reservation  Roads,  City  and  County
Highways,  and State  highways.  The second one is  analyzing
the temporal distribution of crash frequency according to the
days of the week.

5. RESULTS

This  section  would  outline  the  results  of  the  discussed
methods.

5.1. NetKDE

The NetKDE analysis  revealed  several  clusters  of  crash-
prone areas. The result displays a higher degree of linearity due
to  the  network-based  calculation.  Because  of  the  small
bandwidth,  high crash rate areas generated the steeper slope.
The crash rate map can be found in Fig. (4).

5.2. Crash Severity Map

After providing weights to each crash, according to Table
1, road segments were categorized into three classes: low-risk
road segments, medium-risk road segments, and high-risk road
segments indicated by blue, yellow, and red color, respectively,
as shown in Fig. (5).

The  results  of  the  NetKDE  map  and  crash  severity  map
(Fig.  6)  were  overlaid  to  generate  a  high  priority  map  for
ascertaining  high  risk  roads  with  high  crash  rate  and  more
severe crashes.  The high-risk road segment  map,  depicted in
Fig.  (7)  presents  the  results  of  high-risk  road  segments.  Red
color indicates the high-risk road segments, while yellow and
green colors represent the medium and low-risk road segments.
Some  parts  of  the  US  highway  13,  BIA  route  1,  and  US
highway 2 are among the many segments being identified as
high-risk road segments in this analysis. Also, although some
residential roads have PDO crashes, they have been detected as
high priority areas due to high crash occurrence.

5.3. Getis–Ord Gi*(d) Statistics

The  results  of  Getis–Ord  Gi*  (d)  statistics  analysis  of
crashes, based on severity level for 10-year period (2005-2014)
is  presented  in  Fig.  (8).  The  Gi*  (d)  statistic  provides  and
negative spatial  correlation as the clustering of high and low
attribute values. Each crash is represented by a standardized z-
score  value  in  five  categories,  as  calculated  by  the  Gi*(d)
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statistic. The z-score values above and below 1.96 demonstrate
crashes that are surrounded by a cluster of relatively high and
low  weighted  values,  respectively,  statistically  significant  at
approximately  95%  confidence  level.  On  the  other  hand,
crashes  with  a  z-score  between  +  1.96  and  −1.96  represent
locations that may have a high or low weighted value but are
not part of a statistically significant spatial pattern or cluster at
95% confidence level. Fig. (8) shows the result of the hotspot
analysis: the red points indicate the locations where accidents
with high weighted values are clustered together and the blue
points show the locations where accidents with low weighted
values  are  clustered  together.  In  this  study,  GiZScore  of  the
crashes ranges from -10.73 to -10.75, with GiP Values of 0 to
0.99. The results were interpreted considering the fact that the
normal distribution of the variables might not hold true for the
crash count [24].

5.4. Crash Hotspots Map

Finally, since NetKDE with crash severity does not show
statistically significant road segments, and Getis-Ord Gi* (d)
statistics represent statistically significant point features, maps
generated  through  these  methods  were  spatially  joined  to
ascertain  statistically  significant  crash  locations.  Fig.  (9)
displays the final map generated through the previous methods.
With  a  limited  budget,  red-colored  /high  risk  road  segments
need to be prioritized as most of the crashes with high severity

occurred in these road segments.

5.5. Temporal Analysis

Temporal  analyses  are  performed  using  spider  plots.  In
order  to  investigate  the  overall  temporal  distribution  of  all
crashes, spider plots were generated for a better understanding
of the variation of the crashes over time.

5.6. Overall Temporal Distribution

Fig.  (10a  and  b)  illustrate  how  the  number  of  crashes
across the FPIR, from 2005 to 2014, varied throughout the day.
It is evident that the number of crashes was high at 9:00 am,
1:00  pm,  and  4:00  pm,  which  indicates  that  most  crashes
occurred during peak traffic hour. Fig. (10b) shows the crash
distribution  for  three  types  of  roadways:  Indian  Reservation
Roads, City and County Highways, and State Highways. State
Highways had higher crash frequency than county roads and
reservation roads. While state highway frequency peaks were
at  9  am  and  4  pm  to  6  pm  (during  peak  hour  traffic),  the
crashes  on  county  and  reservation  roads  are  distributed
throughout the day with the highest frequency at 9 am, 1 pm,
and  6  pm.  These  roads  had  crashes  occuring  at  midnight
(between  12  am  and  3  am)  when  traffic  volume  is  low.
Impaired  driving  is  one  of  the  leading  causes  of  crashes  on
Indian  reservations,  and  may  contribute  to  this  high  crash
occurrences  due  to  its  occurrence  during  night  time.

Table 1. Weight of each injury level based on crash cost

Injury Severity Level Comprehensive Crash cost Weight
Fatality(K) $ 4,008,900 542

Disable Injury (A) $ 216,000 29
Evident Injury (B) $ 79,000 11
Possible Injury (C) $ 44,900 6

Property Damage Only $ 7,400 1

Fig. (4). Planar KDE vs. NetKDE (14).
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Fig. (5). Crash Rate map of the FPIR.

Fig. (6). Crash severity map of the FPIR.
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Fig. (7). High-Risk Road Segments in the FPIR.

Fig. (8). Crash hotpots.
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5.7. Days of the Week

The temporal distribution of crash frequency can also be
analyzed  by  comparing  variation  according  to  days  of  the
week, as shown in Fig (11a and b). The figure reveals that the
crash distribution over the time of the day exhibits a different
pattern on weekdays and weekends. During the week, crashes
appear to be more frequent in the morning and evening (11 am-
noon and 3 pm – 5 pm),  while many weekend crashes occur

late in the afternoon (3 pm -5 pm) and early in the morning (12
am to 2 am). There is a large temporal variation from Monday
to Thursday. Although crash frequency increases towards the
end  of  the  week,  crashes  are  particularly  less  frequent  on
Friday, with the highest frequency at 11:00 am. Interestingly,
more  crashes  occurred  on  Saturday  than  Sunday.  Saturday
crashes occurred in the early morning from 12 am to 2 am and
afternoon  (3  pm  -5  pm),  which  might  be  explained  by  the
findings of alcohol-related night-time crashes.

Fig. (9). Temporal distribution of crashes (a), the temporal distribution of crashes on different roadways(b).

Fig. (10). Temporal distribution of crashes (a), the temporal distribution of crashes on different roadways(b).
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Fig. (11). Temporal distribution of crashes on Weekdays (a), Temporal distribution of crashes on weekends (b).

CONCLUSION

Crash hotspots were analyzed in an effort to determine the
high  risk  crash  locations.  A  methodology  was  developed  to
determine crash hotspots using NetKDE and GIS tools being
implemented on the FPIR. This analysis proved to be useful in
narrowing  down  potential  locations  for  improvement,  which
can then be investigated in their full  context for a better risk
assessment.

NetKDE  was  used  to  locate  areas  with  high  crash  rates.
Then, a crash severity map was generated via a series of GIS
analyses  in  order  to  determine the  locations  with  the  highest
severity of crashes. Finally, these two maps were overlapped to
ascertain high priority areas that demand immediate attention.
This  study  also  employed  Getis-Ord  Gi*  (d)  statistic  to
determine  statistically  significant  crash  hotspots.  The  Getis-
Ord  Gi*  (d)  statistic  provides  positive  and  negative  spatial
correlation as the clustering of high and low attribute values.

Each crash is represented by a standardized z-score value,
where this z-score values above and below 1.96 demonstrate
statistically significant crash hotspots. Finally, maps generated
through  these  two  methods  were  assessed  to  determine
statistically  significant  high-risk  road  segments.  Also,  the
temporal analysis of crashes was performed to see the variation
of crash patterns throughout the day. The analysis revealed that
crash patterns were almost similar on the weekdays reaching
the peak at traffic peak hours, but during the weekend, crashes
mostly occurred at midnight.

By better  understanding where crashes  occur,  authorities
and professionals can decide to utilize funds into areas with the
largest impact. This methodology can be adapted in other areas
to improve their roadway safety conditions with the marginal
investment  of  resources.  Along  with  the  ease  of  approach,
these maps can be used as a powerful visual aid. Tribes will be

able to quickly identify the safety concerns without the use of
complicated jargons or statistics.

This will help the professionals to incorporate people and
create awareness on roadway safety. However, this approach
should  not  be  used  alone  in  determining  high  risk  crash
locations. Due to the unavailability of traffic volume data, the
crash “rate” map generated through NetKDE is actually based
on the absolute number of crashes. Since the exposure was not
considered  in  the  analysis,  the  crash  rate  map  might  not
represent  the  actual  crash  scenario  in  the  reservations.  Also,
there are many other determinants, such as individual behavior,
traffic speed, time of day, and weather affecting crash severity
and crash occurrence in roadways, and need to be considered
during crash hotspots analysis.
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