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Abstract:

Background:

As wireless communication technologies evolve, probe-based travel-time collection systems are becoming popular around the globe. However, two
problems generally arise in probe-based systems: one is the outlier and the other is time lag. To resolve the problems, methods for outlier removal
and travel-time prediction need to be applied.

Methods:

In this study, data processing methods for addressing the two issues are proposed. After investigating the characteristic of the travel times on the
test section, the modified z-score was suggested for censoring outliers contained in probe travel times. To mitigate the time-lag phenomenon, a
recurrent neural network, a class of deep learning where temporal sequence data are normally treated, was applied to predict travel times.

Results:

As a  result  of  evaluation  with  ground-truth  data  obtained  through  test-car  runs,  the  proposed  methods  showed  enhanced  performances  with
prediction errors lower than 13% on average compared to current practices.

Conclusion:

The suggested methods can make drivers to better arrange their trip schedules with real-time travel-time information with improved accuracy.
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1. INTRODUCTION

Real-time travel-time information is an essential element
of  modern  traffic  management  systems.  It  enables  drivers  to
make detours in their routes to less congested ones or to adjust
their trip schedules to avoid traffic jams. With the development
of  wireless  communication  technologies  coupled  with  the
increased market penetration of relevant on-board units, probe-
based travel-time systems are being deployed worldwide due to
their  ability  to  directly  obtain  link  travel  times.  In  Korea,
freeways  and  major  arterials  are  equipped  with  Dedicated
Short-Range  Communications  (DSRC)  scanners  (Fig.  1).
DSRC  is  originally  used  for  the  electronic  toll  collection 
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systems  in  Korea  and  around  80%  of  vehicles  are  equipped
with DSRC on-board units, indicating that probe sample size is
not a critical issue.

However,  the  DSRC  systems  installed  on  suburban
arterials on which many intersections and roadside stores exist
inevitably  generate  substantial  outliers  due  to  intermediate
stops at stores and/or gas stations, exit/entry maneuvers on the
route,  U-turns,  driving  illegally  on  the  shoulder  lane  during
congestion,  and  so  on.  Moreover,  DSRC  scanners  cannot
identify the direction of a detected probe, so if a probe makes a
round trip on the roadway section, the probe is detected twice
by the scanner. In this case, the second detection generates an
abnormally  long  travel  time  and  should  be  classified  as  an
outlier. The severity of the outlier problem of the study site is
exemplified in Fig. (2), where substantial outliers are observed.
If  these  outliers  are  not  properly  treated,  the  travel-time
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information  could  be  useless.

Another issue to be addressed is a time-lag phenomenon.
Probe  travel  times  obtained  using  DSRC scanners  inevitably
include time lags equivalent to the travel times experienced by
the probes on the segment because they, which normally called

arrival time-based travel times, are to be computed after probes
complete the trip. However, the drivers who receive the arrival
time-based  travel-time  information  experience  the  departure
time-based  travel  time  (Fig.  3).  Therefore,  applying  a
prediction technique is more emphasized in probe-based real-
time systems than conventional detector-based systems.

Fig. (1). Schematic of the DSRC traffic information system.

Fig. (2). The plot of raw probe travel times collected at the study site.

Fig. (3). The plot of aggregated probe travel times collected at the study site.
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To resolve the above-mentioned problems, data processing
methods  for  outlier  removal  and  travel-time  prediction  were
proposed in  this  study.  After  identifying the  problems in  the
current practices, new methods were developed to resolve the
problems. Investigation on the distribution of the probe travel
times revealed that the current outlier removal technique based
on the z-score is inappropriate for the test section. Therefore,
an  alternative  method  is  suggested  that  takes  the  travel-time
characteristic  into  account.  Also,  a  widely  recognized  deep
learning  model  is  employed  to  enhance  the  travel-time
prediction  performance.  The  details  will  be  described  in  the
subsequent chapters.

2. LITERATURE REVIEW

Studies have been performed to deal with outlier problems
in probe-based travel-time systems.  The Southwest  Research
Institute [1] developed the TransGuide algorithm, which uses a
simple validity window calculated from the observations in the
previous  aggregation  interval.  Clark  et  al.  [2]  suggested  a
statistical technique to filter outliers contained in probe travel
times  collected  using  devices  that  recognize  vehicle
registration  numbers.  Dion  and  Rakha  [3]  suggested  an
algorithm to estimate travel times with an assumption that they
follow  a  lognormal  distribution.  Ma  and  Koutsopoulos  [4]
proposed a median filter  that  uses the median,  instead of the
mean,  as a measure of  location.  Boxel  et  al.  [5]  developed a
method that filters out outlying observations using a confidence
interval predefined through Greenshield’s traffic flow theory.
Soroush and Bruce [6] invented an adaptive outlier detection
algorithm that uses historical and current interval data gathered
on  signalized  arterials  to  determine  a  validity  window.  Park
and Kim [7] proposed a model to filter outliers in travel time
data  obtained  using  DSRC  on  the  interrupted  traffic  flow
section.

Several methods for predicting real-life travel times have
been  adopted  for  the  past  several  decades.  Among  the  most
reputed methods are the Kalman Filter (KF), Artificial Neural
Network  (ANN),  Time  Series  Analysis  (TSA),  and  the  k-
Nearest Neighbor (k-NN) technique. KF, firstly proposed by R.
E. Kalman [8], is an algorithm that utilizes observations in a
time sequence and generates estimates of unknown variables
[9]. ANN, created with inspiration from the biological neural

networks, is a computing algorithm that learns from archived
historical measurements to conduct a certain mission [10, 11].
Among  various  ANN  algorithms,  recurrent  neural  network
algorithms  that  mostly  treats  with  measurements  in  a  time
sequence  are  recently  receiving  much  attention  from
developers  on  the  globe  [12  -  14].  TSA  is  a  method  for
analyzing time-series data to forecast unknown variables based
on  the  values  observed  earlier  [15,  16].  k-NN,  a  sort  of
nonparametric  technique mostly adopted for  classification or
regression,  has  widely  exploited  to  forecast  real-time  travel
times [17 - 26]. In k-NN methods, the input variables are the k
closest training instances in the feature domain.

3. TEST SITE DESCRIPTION

Probe travel times collected from DSRC scanners installed
on  a  signalized  arterial  in  Pyeong  Taek  region,  South  Korea
(Fig.  4)  were  used  for  evaluating  the  data  processing
techniques proposed in this study. Traffic on the 4 km stretch
of the highway with two lanes in each direction is controlled by
six traffic signals. Due to intermediate stops by the signals, the
average  travel  speed  on  the  section  under  low  volume
situations is around 50 km/h even though drivers can drive up
to 80 km/h by the regulation.

Individual probe travel times, as shown in Fig. (5), without
outlying observations, exhibited a normal commuter corridor
with  apparent  morning  peak  hours  from  7:00  to  9:00  a.m.
during weekdays. Travel times during peak hours are 3-4 times
higher  than  the  remaining  hours,  indicating  that  real-time
traveler  information  is  highly  stressed  during  peak  hours.

4. OUTLIER TREATMENT

4.1. Current Practice for Outlier Removal

Presently,  an  outlier  removal  technique  based  on  the  z-
score  is  employed  that  uses  the  z-score  of  observations  to
censor outlying observations (refer to equations 1 - 3). Previous
30 probe samples, which is the minimum sample size for the
application  of  the  Gaussian  distribution  are  used  to  compute
the  relevant  statistics.  However,  the  technique  has  been
intuitively applied to the system since it was initially deployed;
that is, no detailed analysis of the characteristics of probe travel
times on the roadway has been performed to justify using it.

Fig. (4). Study site.
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Fig. (5). Individual probe travel times on the test section.

(1)

(2)

(3)

where

tt valid = valid travel times,

tt i = travel time of i-th probe vehicle, and

z 99.9% = z-score at 99.9% confidence interval

4.2. Problems in Current Practice

As  shown  in  Fig.  (6),  the  current  method  showed  poor
performance with substantial outliers unfiltered. The premise
behind the current method is that the probe travel times follow
the normal distribution. To verify the assumption, a normality
test  on probe travel  times on the test  section was performed.

For the test,  the Maximum Likelihood Estimation (MLE) for
estimating  parameters  and  the  Kolmogorov-Smirnov  (K-S)
statistic  at  a  5%  significance  level  for  goodness-of-fit  tests
were employed. The MLE technique is generally recognized to
be  the  best-unbiased  estimator  for  the  single  distribution
models  that  this  study  aims  to  investigate  [27].  The  K-S
statistic,  which  fits  a  cumulative  distribution  to  observations
point by point, is considered to be the most conservative test
compared to χ2 and Anderson Darling tests; in other words, it
has the lowest possibility of falsely rejecting a correct fit, and
for that reason, it is frequently employed by many researchers
[28].

The results of the fit tests are presented in Table 1 and the
relevant travel-time histogram superimposed by the distribution
curves  is  shown in  Fig.  (7).  The  results  show that  the  travel
times do not follow the normal distribution; rather, they were
correctly  fitted  by  the  lognormal  distribution.  This  indicates
that  the  use  of  the  current  z-score  cannot  be  theoretically
viable.

Fig. (6). Result of application of the current outlier filtering method.
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Table 1. Goodness-of-fit tests of normal and lognormal distributions.

Distribution Number of Samples μ σ K-S Statistic Critical K-S Statistic at sig.a = 0.05 p-value
Normal 1169 330 64 8.85e-2 3.93e-2 1.47e-8

Lognormal 1169 5.19 0.31 3.66e-2 3.93e-2 0.08
asig. = significance level.

Fig. (7). Histogram of probe travel times superimposed by distribution curves.

Instead, the z-score calculated from the logarithm (base e)
of  the  travel  times  is  justifiable.  Taking  these  findings  into
consideration, a new outlier removal method is developed and
will be described in detail in the section that follows.

4.3. New Technique for Outlier Removal

The  proposed  method  expressed  in  Equations  4  to  7  is
based on the modified z-score where the median instead of the
mean  as  a  measure  of  location  is  used.  Also,  the  natural
logarithm  is  applied  to  the  raw  travel  times  to  take  the
characteristic of the travel-time distribution into account. The
modified  median  filter  is  recognized  to  be  resistant  to
abnormally deviated values compared to the standard z-score,
because  the  median  is  less  susceptible  to  the  impact  of
abnormal  values  than  is  the  mean  [29,  30].

(4)

(5)

(6)

(7)

where

tt valid = valid travel times,

ln(tt i) = logarithm of travel time of i-th probe vehicle, and

z mod 99.9% = modified z-score at 99.9% confidence interval
(4.45 = 3*0.6745-1).

Fig. (8). Result of application of the proposed outlier removal method.
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Fig. (8) shows the result of the application of the proposed
method  to  the  same  data  presented  in  (Fig.  6).  Most  of  the
outliers  mainly  caused  by  intermittent  stops  and  round  trips
were  properly  filtered.  Although  some  valid  data  were
categorized into outliers, they seemingly have little influence
on  the  travel-time  information  to  be  generated.  The  cleaned
individual  probe  travel  times  are  then  aggregated  into  5  min
bins to be used for the prediction to reduce the time-lag in the
arrival time-based travel times.

5. METHODS

5.1. Current Prediction Method

The  k-NN  technique  is  initially  applied  for  predicting
travel  times  on  a  freeway  by  Davis  and  Nihan  [31].  In  their
model, the continuously archived probe travel times constituted
the  state  vector  as  an  input  variable.  The  established  model
finds out k-nearest neighbors in the predefined archived travel
times combined in a group (n collection intervals). The model
basically assumes that the future travel times to be forecast are
analogous  to  the  past  travel  times  in  archived  records.
Considering repetitive human activities that produce traffic on
the road, this assumption can be regarded to be reasonable. The
k-NN  algorithm,  expressed  in  equations  8  to  10,  constitutes
five phases as described below:

1.  Prepare  archived  travel  times.  For  this  study,  month-
long travel times in a 5-min bin were utilized.

2. Choose n seamlessly combined previous intervals in a
group.  For  this  study,  a  30  minute-long  (or  six  5-min  bins)
travel times that exhibited the lowest prediction error for the k-
NN algorithm according to an earlier study [32] were adopted.

3. Calculate the distance metric defined as the Euclidean
distance and choose the number of k. The selected number of k
was set at 4 based on an earlier study [25] that argued that 4 is
the optimal k number considering both computing efficiency
and accuracy of  the model.  Their  rule was also proven to be
valid in this study.

4. Determine k-nearest neighbors based on the calculated
distance metric.

5. Predict the future travel times (the departure time-based
travel times) averaged by the k-nearest neighbors weighted by
the computed distance values.

(8)

(9)

(10)

where

TT(Dt) = departure time-based travel time at time t,

TTk
h(Dt)  =  k-th  departure  time-based  travel  time  at

historical  time  t,
wk(At)  =  k-th  weight  of  arrival  time-based  travel  time  at

time t,

dk(At) = k-th distance between current and historical arrival
time-based travel time at time t,

TT(At) = current arrival time-based travel time at time t,

TTk
h(At) = k-th historical arrival time-based travel time at

time t, and ,

i= aggregation interval (e.g. 5 min).

5.2. Alternative Prediction Method

The current k-NN method has been proven to be inefficient
for real-time applications due to its  relatively long searching
time: around 2 min for 6 month-long historical data using the
server  system  currently  deployed.  To  improve  prediction
performance  as  well  as  real-time  capabilities,  a  Recurrent
Neural Network (RNN), a class of deep neural networks where
connections  between  nodes  form  a  directed  graph  along  a
temporal  sequence,  is  adopted  for  an  alternative  method.
Unlike the conventional feedforward neural networks, recently
developed  RNN  models  use  their  internal  states  to  process
sequences  of  inputs.  This  characteristic  allows  them  to  be
widely applicable to tasks including handwriting recognition,
speech recognition, and time-series data prediction [33, 34].

Among RNN models, a Lng Short-Term Memory (LSTM)
model  which  can  avoid  the  vanishing  gradient  problem  was
adopted  in  this  study.  As  LSTM  models  are  normally
augmented  by  recurrent  gates,  it  prevents  backpropagated
errors from vanishing or exploding [35]. In other words, LSTM
has the merit  of  learning tasks that  need memories  of  events
that  happened discrete time steps earlier.  Also,  a  mix of  low
and  high-frequency  components  can  be  handled  by  LSTM
models [36]. All these characteristics make LSTM-based RNN
models be the optimal solution for forecasting travel times in a
time sequence. They can, moreover, forecast travel times on a
real-time basis with less than several seconds.

The  input  data  format,  as  represented  in  Table  2,  was
arranged to have a sequence length of one, a data dimension of
six,  and  an  output  dimension  of  one.  The  constructed  model
with 10 hidden nodes was optimized by the widely-recognized
adaptive  moment  estimation.  One month-long historical  data
were divided into training data of 80% and testing data of 20%.
The performance of the applied model is plotted in Fig. (9). For
comparison  with  the  k-NN  model,  six  5-min  intervals  data
were  used  as  independent  variables  where  it  revealed  the
lowest  error.

Table 2. Input data format (before normalization).

Independent Variables (Previous 30 min) Dependent Variable
A-25 min A-20 min A-15 min A-10 min A-5 min A-0 min D-0 min

219 197 300 223 283 329 334

𝑇𝑇(𝐷𝑡) =
∑ ,𝑇𝑇ℎ

𝑘(𝐷𝑡)×𝑤𝑘(𝐴𝑡)-𝑘
𝑘=1

∑ 𝑤𝑘(𝐴𝑡)𝑘
𝑘=1

𝑤𝑘(𝐴𝑡) = 𝑑𝑘(𝐴𝑡)−1

𝑑𝑘(𝐴𝑡) = [∑ {𝑇𝑇(𝐴𝑡 − 𝑖) − 𝑇𝑇ℎ
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Independent Variables (Previous 30 min) Dependent Variable
197 300 223 283 329 331 334
300 223 283 329 331 466 476

Note: A indicates arrival time-based travel times and D indicates departure time-based travel times.

Fig. (9). Training process of the proposed LSTM-based RNN model.

6. RESULTS

The  significance  of  travel-time  prediction  is  highlighted
during  peak  hours  because,  under  noncongested  conditions,
predicted  vs.  current  travel  times  do  not  show  notable
differences.  The  peak  hour  (7-9  a.m.)  probe  travel  times  on
three  weekdays  (Wed.  –  Fri.)  were  therefore  considered  for
evaluation  of  the  two  prediction  methods.  A  month-long
weekday travel times on the same stretch were included in the
historical  database.  As  shown  in  Table  3,  the  average  travel
times  on  the  two  datasets  were  similar  due  to  the  recurrent
travel-time patterns observed in the section during weekdays
(Fig. 5).

Table 3. Data description.

Item Historical Data Set Prediction Data Set
Perioda Jan. 1st – 31st, 2019

(Weekdays)
Feb. 6th (Wed.) – 8th

(Fri.), 2019
Average nonpeak
hour travel time

298 s 308 s

Average peak hour
travel timeb

654 s 667 s

aWeekends are not included.
bFrom 7 to 9 a.m.

Ten experiment cars were employed to collect ground truth
data. The drivers were instructed to operate the cars with the

floating car method where the number of cars overtaking and
overtaken was equivalent. A total of 10 experiment cars with
roughly  2  min  headway  were  driven  along  the  bi-directional
roadway repeatedly during the peak hours for the three days. A
total  of  220  test-car  runs  in  75  5-min  collection  bins  (2-4
ground-truth  data  in  each  bin)  were  obtained.  The  mean
absolute  error  (Equation  11)  was  utilized  to  quantitatively
measure  the  prediction  errors.

(11)

where MAE= mean absolute error,

n= number of samples,

x(t)= actual (observed) travel time, and

 = predicted travel time.

Table  4  and  Fig.  (10)  show  comparisons  between  the
ground  truth  and  predicted  travel  times.  In  all  cases,  the
proposed  LSTM-based  RNN  model  revealed  higher
performances than the current k-NN method. It also decreases
the  variance  of  prediction  errors  that  can  reduce  uncertainty
and therefore allows drivers to better plan activities who rely
on arrival  time.  Further,  quartile  error  comparisons (Fig.  11)
reinforces the superiority of the proposed method where lower
dispersions were observed in the alternative method.

Table 4. Travel-time prediction error.

Statistics (s) Wednesday Thursday Friday
Current Alternative Current Alternative Current Alternative

Mean 48 37 87 77 41 39
Variance 48 29 105 69 48 32

Maximum 177 102 347 293 237 127

(Table 2) cont.....
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Statistics (s) Wednesday Thursday Friday
75th percentile 65 45 115 132 52 50

Median 33 33 40 42 27 31
25th percentile 17 13 26 32 12 19

Minimum 3 2 2 0 0 0

Fig. (10). Performances of the current (k-NN) and the proposed (RNN) predicton methods.

Fig. (11). Boxplots of the errors in the current and the proposed prediction methods.
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7. DISCUSSION

Although probe-based travel-time systems have merits in
that  they  can  directly  collect  link  travel  times  and  generally
require  a  lower  budget  compared  to  the  traditional  vehicle
detector-based  systems,  improper  treatment  of  outlying
observations  and  time-lag  phenomenon  could  make  them
obsolete.  After  identifying  shortcomings  in  the  current
methods,  a  new  outlier  treatment  technique  and  an  LSTM-
based RNN model were proposed in this study.

To censor outliers in the probe travel times, the modified z-
score that is less susceptible to aberrant values was proposed.
Also,  to take the characteristic  of  the probe travel  times into
consideration,  the  natural  logarithm  was  applied  to  the  raw
travel times. The developed method was proven to outperform
the  current  one.  To  mitigate  the  time-lag  phenomenon,  an
LSTM-based RNN model,  which is  recently  garnering much
attention  for  forecasting  time-series  data  is  applied  and  its
prediction  performance  was  compared  to  the  current  k-NN
method. Resultantly, it generated fewer prediction errors when
evaluated by 3-day-long ground-truth data collected by test-car
runs during the peak hours (7-9 a.m.) on the stretch.

CONCLUSION

Although the proposed methods were thoroughly tested on
the  segment,  it  would  be  preferable  to  be  further  verified
through follow-up research into spatiotemporal universality by
applying the proposed methods to other arterial and/or freeway
systems.
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