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Abstract:

Aims:

Exploring the impact of full adoption of fit-for-demand shared and autonomous electric vehicles on the passenger vehicle fleet of a society.

Background:

Shared Eutonomous Electric Vehicles (SAEVs) are expected to have a disruptive impact on the mobility sector. Reduced cost for mobility and
increased accessibility will induce new mobility demand and the vehicles that provide it will be fit-for-demand vehicles. Both these aspects have
been qualitatively covered in recent research, but there have not yet been attempts to quantify fleet compositions in scenarios where passenger
transport is dominated by fit-for-demand, one-person autonomous vehicles.

Objective:

To quantify the composition of the future vehicle fleet when all passenger vehicles are autonomous, shared and fit-for-demand and where cheap
and accessible mobility has significantly increased the mobility demand.

Methods:

An agent-based model is developed to model detailed travel dynamics of a large population. Numerical data is used to mimic actual driving
motions in the Netherlands. Next, passenger vehicle trips are changed to trips with fit-for-demand vehicles, and new mobility demand is added in
the form of longer tips,  more frequent trips,  modal shifts from public transport,  redistribution of shared vehicles,  and new user groups. Two
scenarios are defined for the induced mobility demand from SAEVs, one scenario with limited increased mobility demand, and one scenario with
more than double the current mobility demand. Three categories of fit-for-demand vehicles are stochastically mapped to all vehicle trips based on
each trip's characteristics. The vehicle categories contain two one-person vehicle types and one multi-person vehicle type.

Results:

The simulations show that at full adoption of SAEVs, the maximum daily number of passenger vehicles on the road increases by 60% to 180%.
However, the total fleet size could shrink by up to 90% if the increase in mobility demand is limited. An 80% reduction in fleet size is possible at
more than doubling the current mobility demand. Additionally, about three-quarters of the SAEVs can be small one-person vehicles.

Conclusion:

Full adoption of fit-for-demand SAEVs is expected to induce new mobility demand. However, the results of this research indicate that there would
be 80% to 90% less vehicles required in such a situation, and the vast majority would be one-person vehicles. Such vehicles are less resource-
intense  and,  because  of  their  size  and  electric  drivetrains,  are  significantly  more  energy-efficient  than  the  average  current-day  vehicle.  This
research indicates the massive potential of SAEVs to lower both the cost and the environmental impact of the mobility sector. Quantification of
these environmental benefits and reduced mobility costs are proposed for further research.
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1. INTRODUCTION

Transforming  mobility  to  achieve  sustainable  passenger
transport is one of the main challenges for the transportation
sector of the coming decades [1]. Such a transformation can be
realized  with  automation,  sharing  and  the  electrification  of
vehicles  [2  -  6].  The  following  subsections  discuss  how
automation,  sharing,  and  electrification  can  change  the
mobility  system  and  identify  that  completely  transformed
mobility  systems  are  partly  left  unexplored.

1.1. A Transformation of Passenger Mobility
Autonomous and electric driving technologies are expected

to have a  revolutionary impact  on the mobility  sector  [3,  7  -
12].  The  elimination  of  the  driver  and  reduced  costs  of
operation could open up a huge market for shared autonomous
electric  vehicle  (SAEV)  fleets.  Such  fleets  could  provide
mobility as a service with high utility,  flexibility,  and at low
costs [13 - 17]. However, most of the technologies related to
SAEVs are under development,  and there are no commercial
SAEV fleets in operation at the time of writing. Therefore, it is
not yet clear if full autonomy of passenger vehicles is feasible
in the future,  nevertheless it  is  interesting to investigate how
exactly  SAEVs  might  transform  the  mobility  sector.  In
literature,  a  variety  of  those  transformative  aspects,  such  as
increased safety and vehicle connectivity,  can be found.  Fig.
(1)  connects  these  aspects  and  visualizes  how  technological
developments  can  change  passenger  mobility  and  trigger  a
behavioral response.

Fig. (1) shows that increased accessibility, increased utility
and  reduced  cost  of  mobility  lead  to  an  increase  in  mobility
demand. According to the literature, this increase in mobility
demand results from:

1.  Entry  of  new  user  groups  such  as  children,  elderly,
disabled and people without a driver’s license [13, 18, 19].

2. Modal shifts from public transport towards SAEVs [7,
20, 21].

3. Increased travel in terms of frequency and distance [7],

4. SAEV re-allocation for charging, parking and passenger
pick-up [22 - 24].

Fig. (1) also shows that the adoption of SAEVs leads to a
vehicle fleet with fit-for-demand vehicles. According to Dutch
mobility  behavior  data  (see  section  3.5  Data),  about  60% of
passenger  vehicle  trips  in  the  Netherlands  are  single-person
trips.  And  part  of  the  40%  remaining  trips  are  ‘carry-trips’,
trips to drop somebody off or to pick them up. A purpose-built
SAEV  fleet  that  is  fit-for-demand  could  therefore  consist  of
mainly one-person vehicles. Of course, also other options, such
as premium and multi-person vehicles for business meetings or
family trips, will be offered in a transformed mobility system.

1.2. Vehicle Fleet Sizes with SAEVs
Increasing mobility demand, switching to electric vehicles

and using fit-for-demand vehicles will greatly affect the envir-

*  Address  correspondence  to  this  author  at  the  Department  of  Mechanical
Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;
Tel: 0652381249; E-mail: p.hogeveen@tue.nl

onmental  impact  of  passenger  transport.  However,  also  the
total fleet size and the composition of the fleet play significant
roles.  With  the  idea  of  sharing  fit-for-demand  vehicles,  the
question: ‘how many vehicles would a society require at full
adoption of SAEVs?’ arises.

A  variety  of  studies  partly  explored  that  question  by
modelling mobility systems with SAEVs and quantifying the
number  of  vehicles  required.  In  most  cases,  the  results  are
expressed in terms of how many conventional vehicles can be
replaced per  adopted SAEV. The resulting value from six of
these  studies  is  plotted  in  Fig.  (2).  The  lowest  number  of
conventional vehicles replaced per SAEV in those studies was
seven, as found by Heilig et al. [24]. The highest value for this,
twenty  vehicles  replaced  per  SAEV,  can  be  found  in  the
research  by  Martinez  and  Viegaz  [25].

The different results of the modelling studies from Fig. (2)
can mainly be explained by the differences in three important
aspects  of  a  mobility  system  with  SAEVs.  First  of  all,  the
modelled  mobility  demand.  Secondly,  the  re-allocation
strategies of SAEVs. And thirdly, whether sequential sharing
or parallel sharing is considered [3, 22 - 27]. Parallel sharing
are modes where rides are shared between passengers, and with
sequential sharing, passengers finish their trip before the next
passenger can occupy the vehicle. Given the recent impact of
Covid-19,  it  is  possible  that  parallel  sharing  becomes  less
desirable  and  less  convenient  for  individuals.

1.3. Research Gap
The previous studies on SAEV and mobility demand, such

as depicted in Fig. (2), performed their analyses mainly from a
current mobility perspective. In doing so, two important factors
of a mobility transformation from SAEVs are being omitted: 1)
the  increase  in  mobility  demand  (called  induced  mobility
demand in the remainder of this article), and 2) the use of fit-
for-demand vehicles. Induced demand is frequently discussed
in qualitative studies about SAEVs. Literature discussing fit-
for-demand  vehicles  are  significantly  less  common,  even
though  the  adoption  of  fit-for-demand  vehicles  could  have
major  environmental  and  societal  implications.  In  terms  of
quantification, we have not encountered modeling studies that
take  both  induced  demand  and  fit-for-demand  into  account.
With the major societal implications that go hand-in-hand with
the adoption of SAEVs, it  is  important  to close this research
gap. This article, therefore, presents an agent-based modelling
approach  to  explore  and  quantitatively  predict  fleet
compositions  in  such  scenarios.  Mobility  data  of  the
Netherlands is used as a case study to quantify the number of
vehicles required and the fleet compositions in a high and low
scenario of SAEV induced demand.

1.4. Article Outline
The next section discusses previous modelling studies on

SAEV  fleet  sizes  and  clearly  identifies  that  exploring  the
combination  of  SAEV  induced  demand  and  fit-for-demand
vehicles  are  lacking  in  the  literature.  The  third  section
discusses the modeling approach and the data implementation
for  the  case  study.  The  results  demonstrate  the  simulation
outcomes, discuss the real-world applicability limitations, and
explain how the model can be used in further research. Finally,
the  conclusion  summarizes  the  findings  and  contributions  of
this research.

mailto:p.hogeveen@tue.nl
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Fig. (1). Transformative effects of autonomous and electric vehicles as a summary based on survey of literature [3]-[17].

Fig.  (2).  Conventional  vehicles  replaced  per  adopted  SAEV  as  found  in  previous  modelling  studies.  Loeb  and  Kockelman  [26],  Fagnant  and
Kockelman [22], Martinez and Viegas [25], Heilig et al. [24], Bishoff et al. [27], Iacobucci et al. [23].

2. RELATED MODELLING WORK

This section goes through previous studies on SAEV fleet
sizes  and  SAEV  dynamics  with  agent-based  modelling.  In
Appendix A, a short overview of these studies is provided in
the form of a table.

2.1.  Previous  Modelling  Studies  on  SAEV  Fleet
Quantification

Martinez and Viegas [25] used an agent-based approach to
study the fleet size, travel times and CO2 emissions when ride-
sharing SAEVs replace all  car  and bus trips in Lisbon.  They
found  that  CO2  emissions  can  be  reduced  by  up  to  40% and
congestion  by  30%.  The  vehicle-kilometres  per  day  increase
from  30  km  per  vehicle  to  250  km  per  vehicle.  This  could

imply  that  one  SAEV  replaces  about  8  privately  owned
passenger vehicles. However, induced demand was excluded in
this  study,  and  the  SAEVs  were  comparable  to  current  day
taxis.

Fagnant  and  Kockelman  [22]  developed  an  agent-based
model  to  study  the  fleet  requirements  and  environmental
impact  of  a  SAEV  fleet  when  trips  are  generated  in  a  grid-
based neighbourhood. The study only looked at ride-sharing.
The  results  indicated  a  replacement  rate  of  11  vehicles  per
SAEV  and  increased  travel  distances  of  10%  due  to  re-
allocation  and  pick  up.

Heilig et al.  [24] modelled the mobility behaviour of the
city of Stuttgart and excluded the private vehicles as a modality
option while adding SAVs. Current trips with private vehicles
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were  in  this  study  performed  by  the  other  available  modes
(including SAVs). As a result, number of trips with all modes,
such as walking and bus trips, increased. The study involved
only ride-sharing SAEVs and assumed that  the conditions of
using  SAEVs  are  similar  to  that  of  current-day  private  cars.
Trips  within  the  same 15 minute  timeslot  and with  the  same
destination  and  departure  zones  are  bundled  in  SAEVs.  The
results show that the number of vehicle trips reduces by 46%,
the  vehicle  kilometres  by  20%,  and  that  a  fleet  size  can  be
reduced to 15%. The number of vehicle trips reduced because
of  modal  shifts  from  vehicles  towards  other  modes.  Modal
shifts  from  public  transport  towards  SAEVs  and  induced
mobility  demand  were  not  considered.  In  our  opinion,  this
study fails  to  depict  a  realistic  picture  of  the  future  mobility
system, and it  also assumes a high willingness to share rides
with other passengers.

Iacobucci  et  al.  [23,  32]  studied  fleet  size  and  charging
dynamics  of  a  SAEV  fleet  in  order  to  assess  power  grid
integration.  Car  and  taxi  trip  dynamics  of  Tokyo  were
implemented. They found that more trips per hour with SAEVs
result in shorter waiting times for trips. From a fleet size that
equals 1.4 times the number of trips per hour, the waiting times
seem to converge to 15 to 25 minutes depending on the number
of trips per hour. This implied about 5-7 vehicles per 100 trips
per day, and one SAEV would replace 7 to 10 private vehicles.
Improved  traffic  fluidity  with  SAEVs  was  not  taken  into
account as a driving speed during the peak hour of 20 km/hr
was  applied.  Charge  scheduling  and  V2G  (vehicle-to-grid)
employment was found to reduce the cost/km by 33% in the
case  of  high adoption of  renewable  energy.  V2G and charge
scheduling  were  set  up  such  that  they  did  not  influence  the
service level of the SAEV fleet.

2.2. Other Modelling Studies on SAEV Systems

Several studies developed agent-based models to assess the
impacts of SAEVs on urban space and parking demand. Zhang
et  al.  [28]  developed  a  ride-sharing  agent-based  model  and
concluded that parking demand can be reduced by about 90%
with sufficient SAVs in the system. The authors argue that at
the expense of vehicle-miles-travelled, even greater reductions
can  be  achieved.  Miliard-Ball  [29]  identified  and  modelled
three  strategies  for  how  private  autonomous  vehicles  could
avoid parking costs in city centres. He argues that autonomous
electric  vehicles  have  the  incentive  to  cause  congestion  and
advocates congestion tariffs in order to counteract this effect.
However, he states that shared fleets will reduce the induced
congestion, and he did not take increased driving fluidity and
more packed parking of autonomous vehicles into account.

Other studies looked at SAEV demand as a last/first-mile
solution  through  integration  with  a  Public  Transport  (PT)
system. Scheltes et al. [30] concluded that, in their case study,
a last-mile solution of a 1.8 km connection from a train station
to a university campus, an automated last-mile transport system
may have difficulties to compete with bicycles. However, they
pointed  out  there  are  benefits  that  can  be  obtained  by  using
existing  road  infrastructure  with  SAEVs  as  opposed  to
constructing  new rails  or  roads.  In  the  agent-based model  of
Shen et al. [31], passengers on the least economical bus routes

from a metro station in Singapore were transported their  last
mile with SAEVs instead of with buses. They found increased
service  quality,  financial  benefits  and  less  congestion  as  a
result of SAEV implementation.

Kamel  et  al.  [20]  developed  an  agent-based  model  to
simulate modal choices of a synthetic population of travellers
based on heterogeneous user  preferences.  Whenever a  trip is
generated, a trip score representing the disutility of a specific
modality,  is  calculated  for  all  the  available  modalities.  The
model was calibrated with travel data from Paris, after which
hypothetical user preferences for SAVs were implemented. 3.8
to  5.3  percent  of  the  trips  would  be  made  with  SAVs  in  a
situation  with  their  hypothetical  preferences.  The  authors
suggest further research into user preferences of SAVs in order
to  draw  adequate  conclusions  for  modal  choices  with  SAV
systems.

Papadoulis  et  al.  [15]  modelled  autonomous  driving
behavior on motorways and assessed the safety consequences
of connected EVs., using platoons. They found that with 25%
penetration of connected AVs, up to 47% of road accidents can
be  avoided.  At  100% adoption,  this  increases  to  about  95%.
Although less accidents, travel time increased with higher AV
adoption  because  long  vehicle  platoons  with  a  slow  leader
reduced the average travel speeds significantly. They note that
this  result  is  susceptible  to  the  desired  speed  distribution  in
their model.

2.3. Summary of Literature

Previous  modelling  studies  of  SAEV  fleets  have
predominantly looked at niche solutions for SA(E)Vs from the
perspective of current mobility demand. None of the mentioned
studies explored a mobility system where passenger transport is
dominated  by  purpose-built,  fit-for-demand,  one-person
vehicles and where SAEVs induce new mobility demand. As
such,  in  scientific  literature,  there  have  been  no  attempts  to
actually  quantify  the  fleet  composition  in  a  completely
transformed  mobility  system  with  fit-for-demand  vehicles.

3. METHODOLOGY

This  section  elaborates  on  the  modelling  approach  to
quantify  the  fleet  composition  in  full  adoption  scenarios  of
SAEVs.  The  agent-based  methodology,  modelling  mobility
behavior,  SAEV induced demand,  and fit-for-demand SAEV
are  discussed.  Section  3.5  elaborates  on  data  sources,  input
parameters and input distributions.

3.1. Agent-based Modelling to Study Mobility Demand

The mobility behaviour of a population can be modelled in
many  different  ways.  Depending  on  the  research  focus,
elements  like  traffic  fluidity,  geo-spatial  routing,  modal
choices, micro-economics, and consumer preferences can all be
taken  into  account.  In  this  research,  the  aim  is  to  assess  the
number  of  SAEVs  required  for  passenger  mobility  at  full
adoption  of  SAEVs.  A  realistic  narrative  for  the  temporal
mobility  demand  of  a  representative  synthetic  population  is
therefore key. As such, the main focus of our model approach
is: when people go on what type of trip and with what transport
mode. Agent-Based Modelling (ABM) is a perfect fit for this



Full Adoption of Shared Autonomous Electric Vehicles The Open Transportation Journal, 2021, Volume 15   51

as  it  is  designed  to  model  heterogeneous  decision-making
processes  of  large  populations  [33].

A  major  advantage  of  agent-based  models  is
straightforward  calibration  with  real-world  data  due  to  the
intrinsic connection between real-world entities, such as people
and vehicles, and the modelled agents, such as people-agents
and vehicle-agents [34]. It is also an efficient method for both
‘what-if’ analyses and modifying the model-logic once a base
model is developed. For example, with an agent-based model
that simulates mobility demand with people-agents that make
biking and passenger vehicle trips, a new transport mode, such
as  trains  or  autonomous  vehicles,  can  be  added  with  minor
changes to decision trees and input parameters.

3.2. Modelling Mobility Behaviour

The  core  of  the  model  is  a  population  of  people-agents
where each agent decides on daily trip patterns based on their
individual  preferences  at  the  start  of  each  day.  For  example,
‘Person  345’  is  an  adult  woman  who  lives  40  km  from  her
work and commutes by car. She leaves in the morning at her
preferred departure time and comes back in the afternoon. On
some days, she may go shopping or to the gym in the evening,
on  other  days,  she  does  not  make  any  leisure  trips.  ‘Person
1012’ is 71 years old man that does not work but does own a
car. He may undertake visiting or shopping trips several times
a week, it is possible that he makes three trips a day, but that
does not happen often.

At  the  start  of  a  simulation,  10.000  people-agents  are
created. In time steps of minutes, their mobility behaviour with
passenger vehicles throughout the day is simulated with a state
diagram. Some agents make trips with other transport modes,
like public transport; those trips are tracked with variables, not
with a state diagram. In agent-based modelling, state diagrams
are  a  useful  tool  to  keep  track  of  agent-states,  for  example,
physical  activity,  location,  or  the  level  of  happiness.  A  state
diagram can only have one active state, but a single agent can
have  multiple  state  diagrams.  State  transitions  can  happen
through a variety of interactions and timers that are defined by
the  modeller.  In  our  model,  the  mobility  state  of  each adult-
agent (all people-agents with age > 18) is determined with the

mobility state diagram of Fig. (3).

Adults  start  in  the  state  ‘At  home’  and  can  move
throughout the day to other states, for example, to ‘At work’
via  ‘Driving  to  work’.  Departure  from  home  or  another
location is triggered by a timer that is stochastically set at the
start  of  each  day  based  on  that  specific  agents’  mobility
parameters  and  variables  (departure  time  distribution,
probability of making trips, distance to work, trip type, etc.).
These  mobility  parameters  and  variables  are  dictated  by  the
input settings of the model. In this research, these are defined
based on Dutch mobility data (see section 3.5). Elderly-agents
follow the same state diagram, but their parameters are set up
to fit driving patterns of the elderly based on the same Dutch
mobility data. Children have a slightly different state diagram
that involves school instead of work.

The  heterogeneity  of  mobility  behaviour  within  the
population  results  from a  combination  of  socio-demographic
spread  and  preferences  for  mobility  demand.  Both  are
attributed  to  the  agents’  population  through  distributions  of
age,  departure  times,  modal  choices,  trip  durations,  and  trip
distances (see section 3.5). The distributions that prescribe trip
characteristics vary per trip type. School trips, commuting trips
and leisure trips all have different distance and departure time
distributions  associated  with  them.  Also,  different  socio-
demographic  groups  have  different  values  for  their  trip
parameters.  Table  1  shows  the  split  in  socio-demographic
groups in the model and the type of tips each of those groups
make.

Table  1.  Socio-demographic  groups  and  their  mobility
demands

Category Age Group Mobility Characteristics
Very young children 0 – 6 y/o No mobility demands

Young children 6 – 12 y/o Primary school, infrequent
leisure trips

Teenage children 12 – 18 y/o Secondary school, leisure trips
Commuting adults 18 – 69 y/o Commuting and leisure trips

Non-commuting adults 18 – 69 y/o Leisure trips
Elderly 69 + y/o Leisure trips

Fig. (3). The state diagram for passenger vehicle trips of an adult-agent.
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Trips with passenger vehicles can be made as passengers
and as drivers. Therefore, to avoid double counting a trip, the
number of vehicles required should only be measured by the
trips made as drivers. For example, trips made by children are
not  specifically  modelled  as  a  trip  with  a  vehicle  from  the
perspective  of  the  child,  They  are  counted  by  the  carry  trips
made  by  their  parents.  This  is  not  modelled  specifically  but
follows  from the  implementation  of  the  Dutch  mobility  data
(section 3.5).

3.3. Modelling SAEV Usage and Scenarios

A  parameter  is  added  that  dictates  the  percentage  of  the
population using SAEVs. Whenever a person departs with an
SAEV,  a  SAEV  agent  is  created  that  virtually  picks  up  the
passenger  and  takes  them  to  their  destination.  Each  person
using  SAEVs  makes  longer  trips,  more  frequent  trips,  their
public transport trips can be shifted to SAEVs, and they add a
relocation time to the SAEV after the trip. Also, some children
and  elderly  that  initially  did  not  make  trips  with  passenger
vehicles can use SAEVs for trips. The parametrisation of these
dynamics  and  the  probabilities  of  trips  and  modal  shifts
happening define the induced demand scenario.  The induced
demand  scenario  can  be  varied  each  simulation  run.  In  this
article, three scenarios are explored:

A reference scenario with the current mobility demand,
i.e., no induced demand,
A SAEV low scenario with relatively low values for
induced demand, and
A SAEV high scenario with relatively high values for
demand.

The  exact  values  used  for  the  per  scenario  are  shown in
Table 2. The values of the reference scenario are based on the
data  analysis  of  the  Dutch  mobility  behaviour  (section  3.5
Data).  The  additional  vehicle  usage  time  and  additional
mileage for re-allocation of SAEVs are set at 10%, based on
the findings of  Fagnant  and Kockelman in their  study on re-
allocation  of  SAEVs  with  a  geo-spatial  model  [22].  The
remaining values are, after careful consideration, based on our
best estimates for a high and low scenario of induced demand
since there are no previous studies that explored full adoption
SAEV  scenarios  with  induced  demand  to  this  extend.  Our
agent-based modelling approach allows for easy adjustments of
these values when more accurate estimates becomes available.

3.4. Modelling Fit-for-demand

To  explore  the  fleet  composition  required  in  the  SAEV
scenarios,  trip  distances  and  user  preferences  are
probabilistically linked to fit-for-demand vehicle types. Three
types  of  SAEVs  are  implemented:  basic  SAEVs,  standard
SAEVs and premium SAEVs. Basic SAEVs represent simple
one-person vehicles for short-range mobility demand in urban
areas. Standard SAEVs provide more room and/or power for,
for example, longer distance trips. Premium SAEVs represent
SAEVs used for trips such as family, holiday or luxury trips.

The choice  model  that  prescribes  SAEV types  to  trips  is
shown in  Table  3.  A  simple  choice  model  is  applied  as  it  is

difficult to argue for more detailed and complex choice models
without  further  knowledge  of  SAEV  consumer  behaviour.
When  more  data  is  available,  the  choice  model  is  easily
adapted and improved. The current values of the choice model
follow from reasoning that basic SAEVs are designed for short
trips and that a certain percentage of the trips will be made with
premium SAEVs.

Table 2. Parameter set up for induced demand.

Parameter Reference
Scenario

SAEV Low
Scenario

SAEV High
Scenario

Percentage of SAEV usage 0% 100% of
adults

100% of
adults

Probability of shifting from
public transport to SAEV

0% 10% 60%

Re-allocation time* 0% 10% of trip
time

10% of trip
time

Re-allocation distance* 0% 10% of trip
distance

10% of trip
distance

Avg. increase of trip
distances

0% 5% 30%

Elderly first trip probability 18% 25% 40%
Elderly additional trip

probabilities
0% 10% 25%

Non-commuting adult day
trip probability

68% 72% 78%

Adult additional trip
probability

25% 30% 40%

Perc. teenage children using
SAEVs

0% 10% 40%

Teenage children avg.
SAEV trip distance

0 km 6 km 12 km

Perc. young children using
SAEVs

0% 10% 25%

Young children avg. SAEV
trip distance

0 km 5 km 8 km

* Values from literature.

Table 3. Choice model for the SAEV type chosen per trip.

Type of
SAEV

Trip Characteristics Vehicle Characteristics

Basic SAEV Trips < 15 km, and trips
made by children

1-person, low luxury,
mainly for urban

environment
Standard
SAEV

Trips > 15 km 1-person, avg luxury, fit
for longer trips

Premium
SAEV

All trips for adults and
elderly have a probability

of 0.2 to become a trip with
a premium SAEV

Multi-person, high luxury,
fit for longer trips

Energy consumption of vehicles and battery technologies
are expected to make significant improvements during the next
decades [7]. It is, therefore, reasonable to assume that SAEVs
last  a  full  day  on  a  single  charge.  Charging  of  the  SAEVs
would  occur  when  a  vehicle  is  not  in  demand,  for  example,
during nighttime. This means that the utilization of the SAEV
fleets  can  be  modelled  without  the  complexity  charging
constraints.
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Fig. (4). Conceptual overview of the model 17.

A conceptual overview of how the model runs is shown in
Fig. (4). At the start of a simulation run, the agent-population is
created. During the simulation, individual people-agents plan a
daily trip pattern at the start of each day. As explained at the
beginning  of  this  section,  the  heterogeneity  of  these  trip
patterns follows from the input distributions, and these differ
for  each  socio-demographic  group  as  defined  in  Table  1.
During  the  day,  the  planned  trips  are  carried  out  with  their
respective modes of  travel.  In the reference scenario,  private
vehicles are used for trips with passenger vehicles, while in the
SAEV  scenarios,  these  trips  are  performed  with  SAEVs.
SAEVs  are  reallocated  after  each  trip.

3.5. Data

Two data sources were used to determine the input values
for the model and, as such, define the case study of this article.
The first is the expected age distribution of the Netherlands in
2050  [35].  This  distribution  prescribes  ages  to  the  people-
agents.  Due  to  phasing  out  of  privately  owned  vehicles,  it
seems reasonable to assume that  full  adoption will  not occur
during  the  next  two  decades.  For  this  reason,  the  age
distribution of 2050 instead of the current  age distribution is
used.

The second data source contains mobility behaviour from
the Netherlands. This is a dataset resulting from a survey with
about 40.000 respondents that is yearly gathered by Statistics
Netherlands  [36].  It  contains  socio-demographics  of  the
respondents  and  a  rich  amount  of  details  on  the  daily  trip
pattern  they  had  on  a  specific  day,  among  which  the  travel
modes, departure times, trip purposes, arrival times, and other
passengers. In total, about 200.000 trips are logged. The data is
added to the supplementary material of this paper.

After  filtering  the  Dutch  mobility  data  for  weekdays,
distributions that prescribe the mobility patterns for the socio-
demographic groups of Table 1 were extracted. Fig. (5) shows

four examples of this. The top-right graph of Fig. (5) contains
the  departure  times  of  non-commuting  adults  with  each
transport mode. This distribution is implemented in the model
such that the non-commuting adults of the population follow
these departure times with the corresponding transport modes.
Other distributions, including the remaining three in Fig. (5),
such  as  trip  distances  and  public  transport  trips,  are
implemented  in  the  same  way.  More  details  on  this  and  the
values  of  the  distributions  can  be  found  in  the  model  itself,
which is openly available (see section 4.5).

4. RESULTS AND DISCUSSION

This  section  demonstrates  and  discusses  the  simulation
outcomes  that  quantify  the  potential  future  mobility  demand
and  SAEV  fleet  composition  in  the  Netherlands.  The  last
subsection explains how the open-source model can be applied
to other case studies and different SAEV scenarios.

4.1.  Impact  of  Induced  Demand  on  the  Vehicle-miles-
travelled

The  induced  mobility  demand  of  SAEVs  results  in  an
increase  in  the  Vehicle-Miles-Travelled  (VMT)  per  resident.
Fig.  (6)  shows  that  the  average  VMT  in  the  Netherlands
increases  from  14.3  km/day  per  resident  to  19.0  km/day
(+33%)  per  resident  in  the  SAEV  Low  scenario  and  to  35.1
km/day (+145%) per resident in the SAEV High scenario. Part
of  this  additional  mileage  is  re-allocation  miles,  which  is
mileage  made  without  passengers.

4.2. Number of Vehicles Required

Fig.  (7)  shows  an  example  of  Dutch  vehicle  utilization
during  a  day  in  the  reference  scenario.  In  the  reference
scenario, which simulates the current mobility demand of the
Netherlands,  the  maximum number  of  simultaneous  vehicles
on  the  road  reaches  about  500.000  vehicles.  The  number  of
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vehicles  occupied  peaks  around  12:00  o’clock  at  almost
3.250.000 vehicles. The difference of 2.75 million vehicles is a
result  of  the  underutilization  of  vehicle  assets  in  a  mobility

system  with  privately  owned  vehicles.  The  magnitude  of
underutilization in the Netherlands is in fact, much higher, as
there  are  about  8.5  million  passenger  vehicles  in  the
Netherlands.

Fig. (5). Examples of distributions extracted from the raw mobility data of the Netherlands (N=40.000). These figures are part of the input that define
mobility demand in the model. Top-left: Number of departures by elderly per motive. Top-right: departures of non-commuting adults per mode of
transport. Bottom-left: distances travelled to work by car. Bottom-right: distances travelled to work with train. Note. Figures were made by analysing
the data with Matlab.

Fig. (6). VMT in each scenario.
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Fig. (7). Simulated daily profiles of the number of vehicles in use and number of vehicles on the road in the Netherlands.

The model simulates the time a vehicle is in use based on
the  distance  of  the  trip  and  an  average  driving  speed.  The
average driving speed is  a  function of  the trip  distance via  a
gamma  distribution  extracted  from  the  Dutch  mobility  data.
This gamma distribution, which can be found in our model, is
time-invariant,  while  in  practice,  driving  speeds  differ
throughout  the  day,  specifically  during  rush  hours.  Thus,  in
practice,  the  higher  and  wider  peak  of  vehicle  utilization  is
expected than those in Fig. (7).

As no specific data is available on reduced driving speeds
during rush hours in the Netherlands, a sensitivity analysis on
reduced  driving  speeds  during  peak  hours  is  performed.  The
results, demonstrated in Fig. (8), show that the morning peak of
the  number  of  vehicles  on the  road increases  gradually  from
500.000 to 900.000 as the driving velocities during rush hours

reduce from 100% to 40% of the nominal  driving velocities.
However,  reduced  driving  speeds  during  peak  hours  are  not
necessarily applicable to SAEV scenarios. Autonomous driving
might  increase  driving  speeds  due  to  traffic  smoothening,
optimised driving, less accidents, and increased speed limits.
Therefore,  the  dynamics  of  reducing  driving  speeds  are  not
applied when simulating the SAEV scenarios.

The  vehicle  utilization  in  the  SAEV  scenarios  is  shown
below  in  Fig.  (9).  Re-allocation  of  the  SAEVs  for  charging,
picking  up  passengers,  etc.,  is  included  in  these  graphs.  The
maximum  number  of  SAEVs  on  the  road  thus  equals  the
number  of  SAEVs  required.  In  the  reference  scenario,  the
maximum number of vehicles on the road was 500.000. This
increases to 800.000 in the SAEV low scenario and 1.400.000
in the SAEV high scenario.

Fig. (8). Sensitivity of ‘the maximum number of vehicles on driving the road during a day’ to reduced driving velocities during peak hours (25 daily
runs for each value of reduced driving velocities).
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Fig. (9). Simulated daily profile of SAEV demand in the Low (left) and High (right) scenario.

Section 4.1 shows the daily mileage more than doubles in
the  SAEV high scenario.  Fig.  (9)  shows that  even with  such
extreme  increased  mobility  demand,  one  SAEV  can  still
replace about 6 privately owned vehicles since there are about
currently  about  8.5  million  privately  owned  vehicles.  A
significant contribution to the peak demand (about 40%) in this
scenario  comes  from  children  going  to  school.  Most  of  the
induced  demand  is  spread  out  over  the  day;  and  does  not
contribute  to  the  peak  demand  or  the  number  of  vehicles
required.  In  the  SAEV low scenario,  one  SAEV can  replace
about 10 privately owned vehicles.

The mobility demand simulated in the above scenarios is
based  on  the  average  mobility  demand  of  the  Netherlands
during  weekdays.  A  larger  vehicle  fleet  will  be  required  at
monthly  or  yearly  highs.  Such  variations  in  demand  can  be
caused  by,  for  example,  weather  conditions  or  national
festivities.  Future  fleet  operators  might  counter  high
fluctuations  in  demand  by  varying  trip  prices  based  on  the
demand.  Such  methods  could  be  applied  to  optimize  the
vehicle fleet and reduce the total fleet size. Additionally, with
regards  to  the  recent  covid-19  developments,  the  number  of
vehicles required during rush hours could also reduce due to
increased working-from-home and societal acceptance of it.

4.3. SAEV Fleet Composition

Each simulated trip with SAEVs is linked (via the choice

model of Table 3) to one of the three SEAV types defined in
Section 3.2. Plotting the daily demand profiles for each type of
SAEV provides a first impression of the fleet composition in a
mobility system with full adoption of SAEVs. Fig. (10) shows
an  example  day  of  these  figures.  The  resulting  fleet
compositions,  which  are  the  peaks  of  the  graphs,  are
summarized  in  Table  4.  From  Fig.  (10)  and  Table  4  can  be
deduced  that  the  potential  of  SAEVs  to  reduce  the  resource
intensity of passenger transport is enormous since about 80%
of  the  required  vehicles  are  one-person  vehicles  in  both
scenarios.

4.4. Model Limitations

The  results  presented  in  the  previous  sections  provide  a
first  impression  of  the  required  vehicle  fleet  in  a  mobility
system  with  full  adoption  of  SAEVs.  However,  as  with  any
modelling exercise,  the real-world applicability  is  limited by
assumptions and model simplifications. The parametrization of
the  induced  demand,  as  shown  in  Table  2,  is  an  example  of
this. How SAEVs will exactly induce demand is unknown. It is
possible  that  SAEV  demand  from  children  remains  very
limited, while increased demand from elderly triples. Although
the scenarios have been constructed to encompass the high and
the  low  end  of  the  spectrum,  many  different  sub-states  are
possible that lead to different mobility demands. Also, modal
shifts from walking and biking trips were not implemented in
the SAEV scenarios of this research.
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Table 4. Required number of passenger vehicles in the Netherlands.

- Reference Scenario SAEV Low SAEV High
Privately owned vehicles 3.250.000 0 0

Basic SAEVs 0 200.000 600.000
Standard SAEVs 0 400.000 520.000

Multi-person SAEVs 0 200.000 240.000

Fig. (10). Simulated daily profiles of SAEV demand and SAEV fleet composition per scenario.

In  this  research,  full  adoption  of  sharing  is  assumed.
However, even if autonomous and electric vehicle technologies
reach  full  adoption,  vehicle  sharing  might  not.  In  such
scenarios,  the  results  of  this  research  can  be  scaled  with  the
share of the population that does adopt sharing. Several other
factors  regarding  the  applicability  of  the  results  to  real
situations have already been discussed throughout this paper,
these are:

The  usage  of  Dutch  mobility  behaviour  (other  case
studies have other driving patterns),
Traffic congestion and driving speeds with SAEVs,
Optimisation effects of fleet management, and

Seasonal or yearly peak demands.
4.5. Open Source Model to Study SAEV Fleet Compositions

The  model  developed  in  this  study  is  an  open-source
model. A fixed version of it with only the user interface can be
run from the Anylogic cloud1,  which is  a  cloud service from
The Anylogic Company, the company that develops Anylogic
[37].  Anylogic  is  the  java-based  modelling  software  used  in
this  research.  The  source  code  of  the  model  can  also  be
downloaded  from  the  Anylogic  cloud.

1

https://cloud.anylogic.com/model/1866aef3-50ce-435d-beb0-84348df5e700?mod
e=SETTINGS
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Fig. (11). Step-to-step approach to apply our model to other case studies.

The  model  is  intended  to  be  used  for  other  scenario  and
case studies. Input values and distributions can be changed to
define  other  SAEV scenarios  and case  studies.  The model  is
also adaptable with extendable decision trees that dictate, for
example, the choice model for SAEV categories. Adding new
dynamics requires relatively little modelling effort. Examples
for this are time-dependent re-allocation times, parallel sharing
of  the  SAEVs  and  congestion  dynamics  for  SAEV  fleets.
Working  with  the  model  in  Anylogic  requires  some  basic
Anylogic  knowledge.

Several steps are required to use the open-source model for
exploring  new SAEV case  studies:  1)  condense  the  mobility
patterns  of  the  case  study  into  distributions,  2)  construct  a
representative  population  of  people-agents,  3)  define  and
parametrize the induced demand scenarios, 4) design a choice
model  for  the  fit-for-demand  vehicles,  and  5)  run  the
simulations.  These  steps  are  shown  in  Fig.  (11).

Recommendations  for  improving  the  model  are  adding
multi-destination  and  multi-model  trips,  although  the
complexity  of  both  the  model  and  data  synchronisation
increases  rapidly  with  such  functionalities.  The  approach  in
this research was to simplify this by treating multi-destination
trips as a single destination trip with the trip distance equal to
the total of the multi-destination trip. Also, modal shifts from
bicycles  and  walking  trips  can  be  implemented.  In  the
Netherlands,  it  is  not  uncommon for  people  to  make  several
bicycle trips per day. On rainy days a modal shift from bicycles
to  SAEVs  could  substantially  increase  the  SAEV  demand.
However, like with monthly peak demand, this could partly be
managed by fleet operators’ optimisation strategies. Besides, in
many  countries,  biking  trips  play  a  smaller  role  than  in  the
Netherlands.

CONCLUSION
Shared Autonomous Electric Vehicles (SAEVs) have the

potential  to  completely  transform  passenger  transport  as  we
know  it.  Cheaper,  safer,  and  more  accessible  mobility  will
increase  mobility  demand.  Sharing  of  autonomous  vehicles
could  lead  to  a  fleet  of  fit-for-demand  vehicles  with  mainly
one-person vehicles. This could have massive implications for
both the environment and the societal aspects of the transport
sector.

Several  modelling  studies  explored  how  many

conventional vehicles could be replaced per SAEV. But fit-for-
demand vehicles and new SAEV induced mobility demand go
mostly  unmentioned.  Specifically,  the  more  transformative
aspects, like fit-for-demand vehicles and children as new user
groups  of  passenger  vehicles,  are  often  ignored  in  those
quantification  studies.  Due  to  the  societal  relevance  and  the
impact of mobility on our climate, it is important to gain some
first insights into the number and types of vehicles required in
full SAEV adoption scenarios. This study closes that research
gap  by  developing  an  agent-based  model  to  explore  such
scenarios.

The developed model is open source and can be applied to
any  case  study  or  SAEV scenario.  In  this  research,  mobility
dynamics of the Netherlands were applied and a high and a low
scenario  for  induced  mobility  demand  were  defined.  To
explore future fleet compositions, three SAEV categories were
defined; small one-person SAEVs for short trips, more potent
one-person  SAEVs  for  longer  trips,  and  multi-person/luxury
SAEVs for other mobility demand such as business meetings
or family holidays. The model simulates individual trips of a
large population. If the transport mode of a trip is a SAEV then
the  trip's  characteristics  determine  probabilistically  which
category  of  SAEV  is  used.

The  simulation  results  indicate  that  at  full  adoption  of
SAEVs  the  Netherlands  would  require  0.8  million  to  1.4
million  vehicles.  Compared  to  the  8.5  million  passenger
vehicles at the time of writing, each SAEV would replace 6 to
10 privately owned vehicles. On top of this, 75% to 80% of the
trips can be provided by one-person SAEVs. The reductions in
vehicle  ownership  are  despite  increases  in  a  vehicle-miles-
travelled per  resident  of  35% in the SAEV low scenario and
145% in the SAEV high scenario.

Summarizing  these  results  several  major  advantages  of
SAEV  adoption  can  be  identified.  First  of  all,  significantly
reduced resource intensity of passenger mobility because of a
six- to tenfold reduction in the required number of vehicles and
because the majority of these required vehicles would be one-
person  vehicles.  Secondly,  it  significantly  reduced  energy
demand  related  to  the  production  of  vehicles.  Thirdly,
significantly reduced energy consumption from road transport
due to electrification and fit-for-demand vehicles. And finally,
other societal benefits related to SAEV adoption such as less
road accidents, safer and greener cites, and increased utility of
travel time.
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The results of this research provide a first perspective on
how full adoption of fit-for-demand SAEVs could transform a
vehicle fleet for passenger transport. Mobility behaviour with
SAEVs and consumer acceptance of  sharing can go in many
directions and thus pose some limitations on the applicability
of  the  results.  Nevertheless,  this  exploration  provides  a  very
promising perspective that is worthy of future research. Some
suggestions are to focus on the quantification of emissions or
energy consumption, improving on the open source model by
addressing one of the limitations, or applying our approach to
other case studies.
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APPENDIX

Appendix A. Overview of previous agent-based models of shared autonomous electric vehicle fleets.

Authors Scope Fit-for-demand
Vehicles?

Induced
Demand?

Martinez & Viegas
[25]

Modelled ride-sharing services in the city of Lisbon with current-day mobility
patterns. Full replacement of private vehicles was considered in two ride-sharing
scenarios. Modal choice, which also included metro, rails and walking, was based

on a decision tree.

Partly, demand was fitted
to vehicles (4p sedans +
minivans) trough ride-

sharing

No

Fagnant and
Kockelman [22]

Explored service level and vehicle miles travelled of different relocation strategies
with mid-sized SAVs. The model involved random trip generation on a synthetic
grid. SAV service was limited to a 15 mile distance. Lack of realistic narrative.

No Only
relocation of
the vehicles

Zhang et al. [28] Studied the parking space that could be saved in a SAV system. Used hypothetical
gridded city where 2% of people use SAVs instead of private vehicles.

No No

Kamel et al. [20] Developed an ABM methodology to analyze modal choices when SAVs become an
additional option. The method requires input about user preferences of modal

choices. Cost and travel time are the main components determining heterogeneous
decisions. Mobility behaviour of Paris was implemented.

No No

Scheltes et al.
(Scheltes et al. 2017)

Looked at the SAEV feasibility as an alternative last mile solution for a 1.8 km
corridor from a train station to university.

Partly, vehicle fit for trip
type. However, just one
trip type was modelled

No

Milliard-Ball [29] Studied how private AVs can impact congestion and parking dynamics with three
strategies to avoid parking costs. It was found that there is incentive for AVs to
induce congestion if private AVs intent to avoid parking costs by free-floating.

No Partly,
additional
parking
mileage

Shen et al. [31] Examined how SAVs can replace scheduled-fixed route buses as a last-mile
solution from metro stations in the city of Singapore.

No No

Iacobucci et al. [23] Studied fleet size and charging dynamics of an SAEV fleet in order to assess power
grid integration. Car and taxi trip dynamics of Tokyo were implemented.

No No

Heillig et al. [24] Modelled a future scenario with 100% AVs and without private cars to determine
the number of AVs required to cover the mobility needs of the city of Stuttgart.

No, four person
ridesharing SAEVs

Partly, longer
trips
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