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Abstract:

Aims:

This  study  proposes  a  bi-objective  linear  integer  programming  model  for  heterogeneous  fleet  VAP  with  emissions  considerations.  Profit
maximization and emissions minimization objectives are employed to handle economic and environmental sustainability purposes.

Background:
Our literature survey shows that there is no model for the heterogeneous fleet VAP with emissions considerations that simultaneously consider
vehicle heterogeneity, penalty costs for unmet demands, and emissions from transportation operations.

Objective:
The model is employed to also make several scenario analyses on sustainable freight logistics management to understand the trade-offs among
economic and environmental objectives. In freight transportation problems, decision-makers need to be able to maintain profitability and to reduce
emissions.

Methods:
In this study, a bi-objective linear integer programming model is proposed for a heterogeneous fleet Vehicle Allocation Problem (VAP) with
emissions considerations encountered in the field of sustainable freight transportation.

Results:
In the numerical analyses, various practical assumptions that can be confronted by decision-makers in real life are discussed. In each analysis, total
profit and emissions amounts are revealed along with several other KPIs. The results of the analyses provided in this study could also be useful in
terms of understanding the relations among pillars of sustainability in VAPs.

Conclusion:
It is thought that the proposed model has the potential to aid decision-making processes in sustainable logistics management.

In  the  base  case  analyses,  the  total  profit  obtained  under  profit  maximization  is  about  nine  times  higher  than  that  obtained  under  emissions
minimization.  When  the  aim  is  to  minimize  emissions,  the  total  emissions  are  found  to  be  nearly  one-tenth  of  that  of  profit  maximization.
Supported by also additional scenario analyses,  it  can be concluded that  it  might not economically viable to be environmentally-friendly for
companies. Therefore, companies have to be encouraged or forced to take environmentally and socially responsible actions through legislation.
The analyses demonstrated that various legislative policies on emissions may affect the transportation plans differently in such vehicle allocation
systems.
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1. INTRODUCTION

Sustainability is a vital necessity for today’s companies
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while planning their logistics activities, as a result of increasing
competition and the growing environmental problems, such as
greenhouse  gas  emissions,  depletion  of  natural  resources,
global warming climate change [1]. Sustainability was handled
at the United Nations World Summit in 2005 in terms of three
pillars, the economic, environmental, and social dimensions. It
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was stated that these dimensions can not be evaluated indepen-
dently.  According  to  Hart  (1999),  the  environment  includes
society  and  society  covers  the  economy,  and  these  three
dimensions affect each other. Accordingly, the suggestion is to
initially  ensure  environmental  sustainability,  as  it  is  not
possible to achieve economic and social sustainability without
achieving environmental sustainability [2].

With  the  growing  concerns  on  sustainability,  a  new
concept of “Sustainable Logistics Management” has emerged
[3].  The  importance  of  environmental  and  social  impacts
related to freight transportation has started to be recognized by
governments,  markets,  and  private  institutions  due  to  incre-
asing externalities about the environment. To ensure sustain-
able  logistics,  the  efficiency  of  freight  transport  should  be
increased, and the environmental externalities associated with
logistics  should  be  mitigated  [4,  5].  Therefore,  sustainable
logistics management focuses on environmental goals such as
greenhouse gas reduction, ensuring energy efficiency, or waste
reduction, in addition to various economic goals such as profit
maximization or cost minimization [6, 7].

Road  freight  transport  is  of  great  value  in  terms  of
economic  development  and  supply  chain  management;  how-
ever,  it  also has  many harmful  effects  on both human health
and the environment. Transportation activities account for 27%
of  total  global  CO2  emissions,  and  among  transportation
activities, the largest CO2 producer is highway freight transport
with 78.8% [8]. Traditional attempts on freight transport often
focus  on  economic  dimensions  and  ignore  negative  enviro-
nmental  externalities.  However,  alleviating  negative  exter-
nalities  in  freight  transport  in  recent  years  has  become  the
forefront with the growing importance of environmental targets
[9].

One of the main decisions to be made within the scope of
freight transport is vehicle allocation decisions. According to
the definition made by Ghiani, Laporte, and Musmanno (2004),
Vehicle Allocation Problems (VAPs) deal with the allocation
of  vehicles  in  the  logistics  system  faced  by  carriers  that
generate  revenue  by  transporting  goods  over  long  distances
[10].

In  VAPs,  a  number  of  vehicles  are  demanded  to  fulfill
direct  shipments  between  node  pairs  in  a  finite  planning
horizon.  After  the  delivery  and  unloading  of  the  cargo,  the
vehicles either take a new load from their current node or are

repositioned to another node by making an empty trip to meet
other future direct shipments. It is also possible for vehicles to
stay  idle  in  current  positions  before  making  either  of  the
aforementioned  choices.  In  VAPs,  the  aim  might  be  to
maximize  profit,  minimize  cost/emissions,  or  achieve  these
goals together. While achieving these goals, the movements of
both loaded and unloaded vehicles have to be decided.

In  this  study,  a  bi-objective  linear  integer  programming
model is proposed for a heterogeneous fleet Vehicle Allocation
Problem (VAP) with emissions considerations encountered in
the  field  of  sustainable  freight  transportation.  The  proposed
model allows either to maximize profit or minimize emissions
for  the  addressed  problem.  The  model  respects  different
vehicle types (in terms of capacity and fuel consumption) in the
fleet mix and includes a penalty for demand rejection (unmet
demand). The consideration of emissions and profit along with
heterogeneous  fleet  and  demand  rejection  possibility  are
confronted in real-life problems, and therefore, are important
for  logistics  decision-makers.  To  the  best  of  our  knowledge,
there is no model in the related literature for a VAP that takes
these dimensions simultaneously. The potential benefits of the
proposed  model  as  a  result  of  its  applicability  and  use  are
demonstrated by extensive numerical analyses.

The rest of the paper is structured as follows. In the second
section, the relevant literature is presented briefly to demons-
trate the contribution of our study. In the third section, a formal
problem  definition  is  provided.  In  the  fourth  section,  the
proposed mathematical model for the problem is explained. In
the  fifth  section,  numerical  analyses  on  a  logistics  chain
operating  in  Turkey  are  presented.  The  last  section  provides
conclusions and suggestions for future studies.

2. METHODS

In this study, a mathematical model is proposed for VAP.
Therefore, quantitative studies involving mathematical models
are examined here in detail. For the literature review, we have
searched for the articles indexed by the Web of Science (WOS)
Core  Collection  database  with  the  keyword,  “vehicle
allocation” in the “topic” field. Among the results, the studies
which  are  irrelevant  to  our  study  or  do  not  involve
mathematical  models  are  eliminated.  Table  1  presents  the
summary of  the  remaining  studies  in  terms of  problem type,
modeling type, objective, vehicle type, the penalty for unmet
demand, and sustainability concerns.

Table 1. Summary of the reviewed studies.

# Article Problem
Type

Model
Type Objective Vehicle

Type

Penalty for
Unmet

Demand
Sustainability

1 Powell,1986 [11] VAP IP Profit max − − −
2 Hughes and Powell,1988 [12] VAP LP Profit max − − −
3 Frantzeskakis and Powell, 1990 [13] VAP SP Profit max − − −
4 Beaujon and Turnquist, 1991 [14] VAP MIP Revenue max − √ −
5 Birge and Ho, 1993 [15] NP SP Cost min − − −
6 Powell and Frantzeskakis, 1994 [16] NP SP Cost min − − −
7 Yan et al., 1995 [17] NP LP Min platform number − − −
8 Powell et al., 2000 [18] VARP IP Profit max − − −
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# Article Problem
Type

Model
Type Objective Vehicle

Type

Penalty for
Unmet

Demand
Sustainability

9 Bojović, 2002 [19] VRP LP Revenue max − − −
10 Hall and Zhong, 2002 [20] ICP Analytic - − − −
11 List et al., 2003 [21] FAP SP-RO Cost min √ √ −
12 Sung and Song, 2003 [22] NP LP Cost min √ − −
13 List et al., 2006 [23] FAP SP Cost min − √ −
14 Simonetto and Borenstein, 2007 [24] VARP MIP Cost min √ − −
15 Lee et al., 2008 [25] VRP MIP Revenue max √ − −
16 Fan et al., 2008 [26] VAP SP Profit max − − −
17 Wu et al., 2009 [27] VAP IP Total evacuation time min √ − −
18 Sayarshad and Ghoseiri, 2009 [28] VAP IP Revenue max − √ −
19 Sayarshad et al., 2010 [29] VAP MO-MIP Cost min, profit max, and fleet size min √ √ −
20 Wu et al., 2010 [30] VARP MO-MIP Emissions and cost min √ − √
21 Javadian et al., 2011 [31] TP IP Cost min √ √ −
22 Tan et al., 2011 [32] VAP FLP Total evacuation time min √ − √
23 Ibri et al., 2012 [33] VAP IP Traveling time min − √ −
24 Milenković and Bojović, 2013 [34] VAP FLP Cost min − √ −
25 Shi et al, 2014 [35] FAP SP Cost min − − −
26 Zolfagharinia and Haughton, 2014 [36] PDP MIP Profit max − √ −
27 Upadhyay and Bolia, 2014 [37] SPP IP Profit max and cost min − √ −
28 Upadhyay and Bolia, 2014 [38] VAP MILP Profit max − √ −
29 Hanczar and Peternek, 2015 [39] VAP MIP Empty wagon min − − −
30 Andrade and Cunha, 2015 [40] VAP MIP Total time min √ − −
31 Atasoy et al., 2015 [41] VAP LP Profit max − − −
32 Milenković et al., 2015 [42] VAP NLP Cost min √ − −
33 Tari and Hashemi, 2016 [43] TP MIP Cost min √ − −
34 Zolfagharinia and Haughton,2016 [44] PDP MIP Profit max − − −
35 Liu et al., 2016 [45] VAP MIP Demand max √ − −
36 Sánchez-Martínez et al., 2016 [46] VAP IP Service quality max − − −
37 Vasco and Morabito, 2016 [47] VAP IP Profit max √ − −
38 Mesa-Arango and Ukkusuri, 2017 [48] VAP SP Profit max − − −
39 Kaewpuang et al., 2017 [49] VAP SP Cost min − − −
40 Buuren et al., 2018 [50] VAP MIP Cost min − − −
41 Khayati and Kang, 2019 [51] HAPP MILP Travel differences min √ − √
42 Sullivan et al., 2019 [52] VAP MIP Travel time min √ − −
43 Pitakaso et al., 2019 [53] VARP MIP Cost min − − −
44 Rui et al., 2019 [54] VAP IP Total utility max − − −
45 Gkiotsalitis et al., 2019 [55] VAP NLP Cost min − − −
46 Li et al., 2019 [56] VAP MIP Profit max √ √ −

Our study VAP BO-IP Profit max and emissions min √ √ √
VAP: Vehicle allocation problem, VARP: Vehicle allocation and routing problem, VRP: Vehicle routing problem, ICP: Inventory control problem, FAP: Fleet assignment
problem, HAPP: Household activity pattern problem, PDP: Pickup and delivery problem, SPP: Scheduling problem, NP: Network problem, TP: Transportation problem,
LP: Linear programming, NLP: Nonlinear programming, SP: Stochastic programming, RO: Robust optimization, MIP: Mixed integer programming, MILP: Mixed-integer
linear programming, MO-MIP: Multi-objective Mixed integer programming, BO-IP: Bi-objective integer programming, IP: Integer programming, FLP: Fuzzy linear
programming.

In addition to the studies that directly address a basic VAP,
several others listed in Table 1 address variants of VAPs, such
as transportation problems, fleet assignment problems, vehicle
allocation and routing problems. Several objective functions,
such  as  profit  maximization,  cost  minimization,  or  time
minimization  are  used  in  these  attempts.  Some  studies  also
involve multi-objective models [29, 30]. A number of studies
take  vehicle  type  differences  into  account.  In  the  studies  of
Sayarshad et al. (2010), Javadian et al. (2011), and Vasco and
Morabito  (2016),  vehicle  types  are  divided  into  two,  as

vehicles owned by enterprises and vehicles rented from third
parties  [29,  31,  47].  Differences  in  vehicle  features  are  also
considered by List et al. (2003) and Lee et al. (2008) [21, 25].
Studies  such  as  Beaujon  and  Turnquist  (1991),  and
Zolfagharinia and Haughton (2014) incorporate penalty costs
due to unmet demands into their models [14, 36].

Among  the  reviewed  studies,  three  of  them  consider
emissions and address a sustainability issue. Wu et al. (2010)
address the optimization of evacuations from urban areas [30].

(Table 1) contd.....
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The model proposed in the study respects vehicle allocation in
case of evacuation and optimizing the routes of the vehicles.
The  model  involves  three  different  objective  functions  as
minimizing mobile emissions, minimizing the total evacuation
time, and minimizing costs. The model does not respect vehicle
heterogeneity and penalty costs for unmet demand. Tan et al.
(2011)  define  the  objective  function  in  their  mathematical
model  as  ensuring  minimization  of  evacuation  time  [32].
Besides, the total emissions amount in the model is considered
as  a  constraint,  and  it  is  aimed  to  keep  the  total  emissions
amount at a certain level while minimizing the discharge time.
Different vehicle types are considered in the model; however,
penalty  costs  for  unmet  demand  are  not  taken  into  account.
Khayati  and  Kang  (2019)  make  a  comparison  of  electric
vehicles with internal combustion engine vehicles [51]. It was
stated  that  the  increase  in  the  use  of  electric  vehicles  has
positive  effects  on  the  environment  in  terms  of  emitted
emissions.  The  model  does  not  incorporate  emissions
estimations  while  making  decisions.  The  use  of  electric
vehicles  instead  of  conventional  ones  could  provide  huge
contributions in terms of sustainable logistics. Yet, their impact
on the market has not been as extensive as expected for several
reasons,  such  as  limited  range,  low  load-carrying  capacity,
insufficient charging stations infrastructure (see, e.g., Cavallaro
et  al.,  2018  [66],  Fioreze  et  al.,  2019  [67],  Saleh  &
Hatzopoulou, 2020 [68], Soysal et al., 2020 [69], Asadi et al.,
2021 [70]).

Our literature survey shows that there is no model for the
heterogeneous  fleet  VAP  with  emissions  considerations  that
simultaneously  consider  vehicle  heterogeneity,  penalty  costs
for unmet demands, and emissions from transportation opera-
tions.  The  model  is  employed  to  also  make  several  scenario
analyses  on  sustainable  freight  logistics  management  to
understand the trade-offs among economic and environmental
objectives. In freight transportation problems, decision-makers
need to be able to maintain profitability and reduce emissions.
For this reason, it is thought that the proposed model has the
potential  to  aid  decision-making  processes  in  sustainable
logistics  management.

3. PROBLEM DESCRIPTION

The  addressed  VAP  has  a  given  number  of  nodes  (e.g.,
cities),  N = {1,2,  …,|N|}.  The nodes  are  considered  as  cities
among which transportation operations are performed. Meeting
available  requests  generate  revenue.  The  fleet  that  serves

transportation requests comprises heterogeneous vehicles, each
of which belongs to a different vehicle type (A = {1,2, …,|A|}).
Each  vehicle  type  is  characterized  by  capacity  and  fuel
consumption rate values. The type of vehicle that can be used
to meet demand is dependent on the corresponding customer
request.  At  least  one  vehicle  type  is  suitable  to  meet  each
request of customers. The optimal vehicle allocation decisions
are made for a finite planning horizon (T={1,2, …,|T|}).

Demands (dijt) occur as vehicle requests between city pairs
during  the  planning  horizon.  For  example,  if  δ  vehicles  are
required for transporting related goods from node i to node j in
period t, then dijt = δ. Meeting a fraction of demand is allowed,
which  means  that  if  there  are  δ  requests  from  node  i  to  j  in
period  t,  it  is  possible  to  meet  any  (integer)  amount  smaller
than or equal to δ.

Transportation  costs  comprise  two  components  as  fuel
consumption  and  fixed  costs  for  dispatching  vehicles.
Estimating  total  fuel  consumption  as  a  result  of  transport
activities also allows us to estimate transportation emissions.
The penalty costs in the problem arise in two ways. The first is
the penalty of unmet demand (sijt).  The second is the penalty
that represents the opportunity cost of moving empty vehicles
(cij). These penalty costs do not vary depending on the vehicle
type.  Travel  time  varies  depending  on  the  distance  between
destination and arrival nodes of the transportation activity.

There is a demand fulfillment rate for each node. The value
of  this  rate  indicates  the  minimum ratio  of  the  total  demand
over the planning horizon that must be met for each node in the
system.  The  purpose  of  using  this  target  is  to  prevent  large
differences between the demand fulfillment ratios among the
nodes.  Preventing  such  differences  ensures  a  fair  delivery
service to each node, which will have a positive contribution in
terms of customer satisfaction and loyalty.

The  problem aims  to  determine  empty  or  loaded  vehicle
movements in the logistics system during the planning horizon,
which either maximizes profit or minimizes emissions.

3.1. A Bi-objective Integer Linear Programming Model for
the Problem

Table 2 presents the notation (sets, parameters, variables)
used  in  the  bi-objective  integer  linear  programming  model
proposed for the VAP that considers transportation emissions.

Table 2. Notation table for the model.

Symbol Description Unit
Sets - -
N Set of nodes where loads are taken from and delivered to {1,2, …,|N|} -
A Set of vehicle types {1,2, …,|A|} -
T Set of time periods {1,2, …,|T|} -

Parameters - -
rij Revenue obtained from each vehicle transporting goods from node i to j TL/unit
ffa The fuel consumption rate of a loaded vehicle with type a per km liter/km
faa The fuel consumption rate of an empty vehicle with type a per km liter/km
fc Fuel cost per liter TL/liter
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Symbol Description Unit
disij Distance between nodes i and j km
fixija Fixed dispatching cost of the vehicle with type a used for transportation from node i to j TL/unit
cij Penalty cost of empty travels from node i to j TL/unit
sijt Penalty cost for unmet demand between nodes i and j in period t TL/unit
efa Emissions rate of a loaded vehicle with type a per km gr/km
eaa Emissions rate of an empty vehicle with type a per km gr/km
ρki Lead time between nodes i and j day
mita Number of newly available vehicles with type a in node i at period t Unit
dijt Number of demand from node i to j in period t Unit
lijta 1 if vehicle type a is suitable to satisfy demand from node i to j at period, 0 otherwise (0,1)
α The demand fulfillment rate required for a fair distribution at each node [0,1]
M A sufficiently large number -

Decision variables - -
Xijta Number of loaded trips with vehicle type a from node i to j at period t Unit
Yijta Number of empty trips with vehicle type a from node i to j at period t, where Yii0a = 0,i ϵ N,a ϵ A Unit

The  proposed  bi-objective  integer  linear  programming
model is developed based on the integer linear programming
model  proposed  by  Ghiani,  Laporte,  and  Musmanno  (2004)
[10].  As  distinct  from their  model,  the  proposed  model  here
involves two objective functions. While the objective function
in  the  study  of  Ghiani  et  al.  (2004)  was  only  profit
maximization,  the  objective  functions  in  this  study  are  to
maximize  the  profit  and  to  minimize  the  emissions  [10].
Besides,  our  model  respects  penalty costs  for  unmet demand
and different vehicle types while satisfying requests. Ghiani et
al.  (2004)  assume  that  all  existing  vehicles  are  suitable  for
transportation;  however,  in  the  proposed  model  here,  the
suitability  of  vehicles  for  transportation  is  taken  into
consideration  [10].

The  proposed  bi-objective  linear  integer  programming
model that is developed to address a heterogeneous fleet VAP
by  considering  the  economic  and  environmental  factors  is
presented  below.  The  relevant  model  has  two  objective
functions  (1),  (2),  and  six  constraint  sets  (3,  …,  8).

Maximize (Profit)

(1)

Minimize (Emissions)

(2)

Subject to

(3)

(4)

(5)

(Table 2) contd.....

∑ ∑ ∑ ∑ (𝑟𝑖𝑗 ∗ 𝑋𝑖𝑗𝑡𝑎)

𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁𝑎∈𝐴𝑡∈𝑇

 

− ∑ ∑ ∑ ∑ (𝑓𝑓𝑎 ∗ 𝑑𝑖𝑠𝑖𝑗 ∗ 𝑓𝑐 ∗ 𝑋𝑖𝑗𝑡𝑎)  

𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁𝑎∈𝐴𝑡∈𝑇

 

− ∑ ∑ ∑ ∑ (𝑓𝑎𝑎 ∗ 𝑑𝑖𝑠𝑖𝑗 ∗ 𝑓𝑐 ∗ 𝑌𝑖𝑗𝑡𝑎)  

𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁𝑎∈𝐴𝑡∈𝑇

 

− ∑ ∑ ∑ ∑ (𝑐𝑖𝑗 ∗ 𝑌𝑖𝑗𝑡𝑎)

𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁𝑎∈𝐴𝑡∈𝑇

 

− ∑ ∑ ∑ 𝑠𝑖𝑗𝑡 ∗ (𝑑𝑖𝑗𝑡 − ∑ 𝑋𝑖𝑗𝑡𝑎)

𝑎∈𝐴𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁𝑡∈𝑇

       

∑ ∑ ∑ ∑ (𝑒𝑓𝑎

𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁𝑎∈𝐴𝑡∈𝑇

∗ 𝑑𝑖𝑠𝑖𝑗 ∗ 𝑋𝑖𝑗𝑡𝑎) +  ∑ ∑ ∑ ∑ 𝑒𝑎𝑎 ∗ 𝑑𝑖𝑠𝑖𝑗 ∗ 𝑌𝑖𝑗𝑡𝑎

𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁𝑎∈𝐴𝑡∈𝑇

∑(𝑋𝑖𝑗𝑡𝑎 +  𝑌𝑖𝑗𝑡𝑎)  −  ∑ (𝑋𝑘,𝑖,(𝑡−𝜏𝑘𝑖),𝑎

𝑘∈𝑁: 𝑘 ≠𝑖 ,𝑡> 𝜏𝑘𝑖

+ 𝑌𝑘,𝑖,(𝑡−𝜏𝑘𝑖),𝑎) −  𝑌𝑖,𝑖,𝑡−1,𝑎 =  𝑚𝑖𝑡𝑎 ,

𝑗∈𝑁

 

      for all 𝑖 ∈ 𝑁, 𝑡 ∈ {1, … , 𝑇}, 𝑎 ∈ 𝐴  

∑ 𝑋𝑖𝑗𝑡𝑎  ≤  𝑑𝑖𝑗𝑡 , for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 , 𝑡 ∈ 𝑇      

𝑎∈𝐴

𝑋𝑖𝑗𝑡𝑎  ≤  𝑀 ∗ 𝑙𝑖𝑗𝑡𝑎 , for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 , 𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴
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(6)

(7)

(8)

The objective function (1) consists of revenue, fuel cost for
loaded  vehicles,  fuel  cost  for  empty  vehicles,  fixed  costs,  a
penalty of moving empty vehicles, a penalty of unmet demand.
The objective function (2) expresses the total emissions of the
vehicles employed.

The constraint set (3) balances vehicle flows by taking into
account full and empty vehicle movements. The constraint set
(4) states that the number of loaded vehicles moving between
node pairs has to be smaller than or equal to the corresponding
demand in the same period. The constraint set (5) indicates that
the  types  of  loaded vehicles  should be in  line  with  customer
requests regarding that demand. The constraint set (6) ensures
that the unmet demand is kept at a certain level for each node
and  that  the  incoming  requests  are  met  fairly.  The  demand
fulfillment  rate,  α,  is  a  user-defined  parameter  that  takes  a
value between 0 and 1. The constraint sets (7) and (8) define
the restrictions on the decision variables.

4. RESULTS AND DISCUSSION

This  section  shows  an  implementation  of  the  proposed
model on a data set obtained from a logistics network operating
in Turkey. The “e-constraint approach” proposed by Andersson
(2000) is employed while solving the bi-objective model [57].
The e-constraint approach is based on restructuring the model
by keeping one of the objectives in the objective function and
using the other one as an additional constraint. The additional
constraint is bounded by an epsilon value (ϵ). The value of ϵ is
specified explicitly for each set of analyses.

The  linear  integer  programming  model  for  the  profit
maximization  case  is  given  below:

The linear  integer  programming model  for  the emissions
minimization case is given below:

In what follows, we first describe the data used, and then
show the results.

4.1. Data Description

The addressed logistics problem comprises 30 cities (N =
{1, 2,  …, 30}).  The network is complete,  therefore,  intercity
transportation among all nodes can be done. Fig. (1) shows the
representation of the logistics network. The planning horizon is
15 days (T = {1, 2, …, 15}).

Lead  times  (τki)  vary  depending  on  the  length  of  the
distance between nodes. Lead time is assumed to be one day
when the distance between nodes is less than or equal to 499
kilometers. For lengths between 500-999 kilometers and equal
to or longer than 1000 kilometers, lead times are two and three
days, respectively.

Data for demand (dijt), vehicle suitability based on requests
(lijta), and the number of newly available vehicles at each node
(mita) are generated arbitrarily. It is assumed that there are 6546
requests between nodes throughout the entire planning horizon,
no penalties are applied for unmet demands and empty travels,
and there exist initially 225 vehicles at different nodes in the
network.  Apart  from  these  vehicles,  there  is  no  new  vehicle
entry throughout the planning horizon.

Demands between city pairs are satisfied by heterogeneous
vehicles. Each vehicle belongs to one of seven types (A = {1,
2, …, 7}). There are two main vehicle types in the problem as
standard  and  refrigerated  vehicles  [58].  Each  of  these  main
types has sub-types. It is assumed that there are 3 sub-types of
standard vehicles with different carrying capacities, 18, 26, and
32 tonnes. There are 4 sub-types of refrigerated vehicles, which
are formed by a combination of two features, age (new or old)
and capacity (12 or 15 tonnes).

∑ ∑  (𝑑𝑖𝑗𝑡 − ∑ 𝑋𝑖𝑗𝑡𝑎 

𝑎∈𝐴𝑡∈𝑇𝑗∈𝑁

)  ≤ 𝛼 ∗  ∑ ∑  𝑑𝑖𝑗𝑡

𝑡∈𝑇𝑗∈𝑁

,   for all 𝑖 ∈ 𝑁  

𝑋𝑖𝑗𝑡𝑎 ∈ 𝑍+  ∪ {0} , for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 , 𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴

𝑌𝑖𝑗𝑡𝑎  ∈ 𝑍+  ∪ {0} , for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 , 𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴
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Fig. (1). The addressed logistics network operating in Turkey.

Fuel  consumption  rates  are  generated  arbitrarily  using  a
similar  approach  followed  by  Hoen  et  al.  (2014)  [59].  The
vehicle type with the smallest carrying capacity (12 tonnes) is
assumed  to  have  the  least  fuel  consumption  rate.  The  other
rates  are  determined  accordingly,  assuming  that  the  fuel
consumption  rates  are  dependent  on  vehicle  type,  carrying
capacity, and being empty or fully-loaded. Table 3 provides the
fuel consumption rates (liter/km) of vehicle types used in the
logistics  network.  Fuel  consumption  is  converted  into
emissions  rates  through  a  fuel  conversion  factor,  which  is
assumed  as  2.63  gr/liter  [60,  61].

The  fuel  price  per  liter  is  taken  as  6.08  TL/liter  [62].
Several approaches are used to calculate logistics costs in long
haul freight transportation. We assume that fixed dispatching
cost is dependent on traveled time or distance, as the longer the
distance  is,  the  longer  the  travel  time  and  the  corresponding
preparation and opportunity costs will be. Here, the fixed cost
is taken as equal to the fuel consumption cost at  each travel.
The  revenue  generated  by  the  demands  met  is  calculated  by
taking  vehicle  types  into  account.  It  is  assumed  that  the
obtained revenue is 1.5 times the sum of fuel and fixed costs of
a  hypothetical  fully-loaded  vehicle  with  a  fuel  consumption
rate that is the average of the seven-vehicle types. The demand
fulfillment rate (α) required for fair distribution at each node is

assumed to be 10%. The summary of all the data is shown in
the Appendix 1.

For the numerical analysis, IBM OPL ILOG CPLEX 12.9
software  is  utilized  to  develop  and  solve  the  proposed
mathematical model. The relative MIP gap tolerance is set to
0.1%.  The  solutions  are  obtained  within  approximately  five
minutes on average using an HP Pavilion i5 computer with 8
GB memory with 1.8 GHz processor.

4.2. Base Case Solution

Both  profit  maximization  and  emissions  minimization
objectives  are  analyzed  for  the  base  case.  For  profit
maximization, the epsilon value (ϵ1) required for the emissions
constraint  is  set  to  1,000,000  grams.  For  emissions
minimization, ϵ2 required for the total profit constraint is set to
100,000  TL.  Table  4  provides  the  results  of  the  conducted
analyses  according  to  several  Key  Performance  Indicators
(KPIs).

According  to  the  solution  obtained  under  profit
maximization,  the  total  profit  is  2,503,380  TL  and  the  total
emissions  are  999,973  grams.  In  the  case  of  emissions
minimization,  the  solution  indicates  that  the  total  profit  is
284,425 TL, and the total emissions value is 103,257 grams.

Table 3. The fuel consumption rates of vehicle types used in the logistics network (liter/km).

Vehicle Type Rate (Empty, liter/km) Rate (Fully-loaded, liter/km)
1 (Standard - 18 tonne) 0.26 0.312
2 (Standard - 26 tonne) 0.286 0.3432
3 (Standard - 32 tonne) 0.3146 0.37752

4 (Refrigerated - 12 tonne/new) 0.2 0.24
5 (Refrigerated - 15 tonne/new) 0.22 0.264
6 (Refrigerated - 12 tonne/old) 0.24 0.288
7 (Refrigerated -15 tonne/old) 0.264 0.3168
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Table 4. The results of the conducted analyses according to the defined KPIs.

Key Performance Indicators Profit maximization Emissions minimization
Total revenue (TL) 7,126,828 761,843

Total fuel cost of loaded vehicles (TL) 2,311,724 238,664
Total fuel cost of empty vehicles (TL) 0 45

Total fixed cost of operating vehicles (TL) 2,311,724 238,709
Total penalty cost for unmet demand (TL) 0 0
Total penalty cost for empty travels (TL) 0 0

Total cost (TL) 4,623,448 477,418
Total profit (TL) 2,503,380 284,425

Total emissions from loaded vehicles (gr) 999,973 103,238
Total emissions from empty vehicles (gr) 0 19

Total emissions (gr) 999,973 103,257
Total number of loaded trips (in unit) 1,600 669
Total number of empty trips (in unit) 0 1

Total number of stationary (non-moving) vehicles (in unit) 531 2,702
Total distance travelled (km) 1,308,880 147,968

Demand fulfillment rate ≥10% ≥10%

The results show that the total profit obtained under profit
maximization  is  about  nine  times  higher  than  that  obtained
under  emissions  minimization.  When the  aim is  to  minimize
emissions, the total emissions are found to be nearly one-tenth
of that of profit maximization.

When  the  objective  is  to  minimize  the  emissions,  the
model is constrained by the demand fulfillment rate (10%) and
the minimum total profit constraint (100,000 TL). Accordingly,
a  relatively  fewer  number  of  loaded  trips  for  emissions
minimization occurred compared to profit maximization. Out
of  the total  of  6,546 requests,  1,600 units  are satisfied under
profit maximization and 669 units are satisfied under emissions
minimization.  Note  that  the  total  distance  traveled  is  also
parallel  with  the  number  of  requests  met.

According  to  the  fuel  consumption  and  emissions  rates,
vehicles types can be listed in ascending order as follows: 4 < 5
< 6 < 1 < 7 < 2 < 3. As can be observed from Table 5, cost and
emissions performances of vehicle types play a significant role
in being selected for meeting demand. This shows the potential
benefit of taking vehicle heterogeneity into account.

4.3.  Scenario  Analyses  on  Sustainable  Freight
Transportation

This section analyzes and compares the solutions obtained
for several other scenarios in addition to the base case. In these
scenarios  that  are  likely  to  occur  in  real  life,  the  aim  is  to
observe the effects of parameter changes on several KPIs.

4.3.1. Positive Penalty Costs

Note  that  for  the  base  case,  the  penalty  cost  of  unmet
demands  (sijt)  is  assumed  to  be  zero.  Random  nonnegative
numbers are assigned to these parameters in this analysis. The
assigned numbers are provided in the supplementary data file.

In  profit  maximization,  the  profit  decreased  from

2,503,380  TL  to  2,452,109  TL  due  to  the  penalty  cost
component  in  the  objective  function,  without  a  significant
change in the total emissions (Table 6). The number of requests
met increased from 1,600 to 1,679 units to lessen the penalty
costs of demand rejection. Despite the increase in the number
of demands met, total revenue decreased from 7,126,828 TL to
7.112,039 TL. In addition to this, the added penalty cost led to
a decrease in total profit. In emissions minimization, the total
profit  decreased  from  284,425  TL  to  184,393  TL  without  a
significant change in the total emissions (Table 6). The number
of demands met did not change.

This  analysis  shows  that  additional  economic  concerns
might  alter  the  transportation  plans,  and  therefore,  corres-
ponding  decision  support  models  should  account  for  such
dimensions.

4.3.2. Emissions Tax

Transportation emissions tax is a strategy implemented by
governments to maintain sustainable development [63]. While
analyzing the emissions tax scenario, 1 TL emissions tax was
added per each gram of emissions.

For profit  maximization and emissions minimization, the
amounts  of  total  emissions  generated  were  not  affected
significantly, as a serious change was not observed in the total
number  of  loaded  trips.  However,  additional  emissions  tax
causes total costs to increase, and this results in a total profit
decrease for both cases. Total profit decreased from 2,503,380
TL to 1,503,849 TL for profit maximization, and from 284,425
TL to 181,071 TL for emissions minimization (Table 6).

The results show that increased cost of transportation due
to  additional  emissions  tax  does  not  reduce  environmental
externalities  significantly  but  reduces  total  profit  to  be
observed.  A  basic  emissions  tax  policy  might  not  always  be
sufficient to improve the environmental performance of supply
chains.
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Table 5. Total number of loaded trips for each vehicle type.

Vehicle Type Fuel Consumption Rate (Fully-Loaded, Liter/km) Profit Maximization Emissions Minimization
4 (Refrigerated /12 tonne/new) 0.24 209 267
5 (Refrigerated /15 tonne/new) 0.264 267 195
6 (Refrigerated /12 tonne/old) 0.288 304 101

1 (Standard - 18 tonne) 0.312 328 48
7 (Refrigerated /15 tonne/old) 0.3168 252 34

2 (Standard-26 tonne) 0.3432 192 14
3 (Standard-32 tonne) 0.37752 48 10

Table 6. Summary results for the scenarios related to penalty cost and emissions tax.

- - - Scenarios

- Indicators Base Case Penalty
Costs

Emissions
Tax

Profit maximization
Total Profit (TL) 2,503,380 2,452,109 1,503,849

Total Emissions (gr) 999,973 999,994 999,785
Total Cost (TL) 4,623,448 4,659,930 5,622,363

Emissions minimization
Total Profit (TL) 284,425 184,393 181,071

Total Emissions (gr) 103,257 103,235 103,235
Total Cost (TL) 477,418 577,231 580,553

4.3.3. Homogeneous Vehicles

While  planning  delivery  operations,  heterogeneous
vehicles  are  considered  in  the  base  case.  In  case  the  vehicle
types are not taken into account, the relevant analysis has been
made  using  the  average  of  the  loaded/unloaded  fuel
consumption rates of the 7 vehicle types specified in Table 3.
The  fuel  consumption  rates  of  the  vehicle  in  the  loaded  and
unloaded  states  are  taken  as  0,255  and  0,306  liter/km,
respectively. This means that fuel consumption was calculated
roughly  without  respecting  vehicle  heterogeneity.  Table  7
provides  the  results  of  homogeneous  vehicle  analyses  with
rough and real fuel calculations.

According to the results, the rough fuel calculation leads to
inexact total profit and emissions. For profit maximization, the
total profit was roughly determined as 2,247,981 TL, however,

the corresponding real profit was calculated as 2,226,237 TL
when  the  vehicle  heterogeneity  was  taken  into  account.  The
real  fuel  calculation shows that  for  both  profit  maximization
and emissions  minimization,  the  total  profits  have  decreased
and total emissions have increased compared to the base case
solution.  The  number  of  vehicles  used  from  each  type
presented in Table 8  also shows that  vehicles with relatively
higher  fuel  consumption  rates  are  more  frequently  used
compared to that of the base case (Table 5). Therefore, it can
be concluded that not respecting heterogeneous vehicles results
in  suboptimal  delivery  plans  in  terms  of  both  profit  and
emissions.  The  results  on  the  benefits  of  respecting  vehicle
heterogeneity  are  in  line  with  the  findings  of  the  studies
existing in the related literature, such as the studies conducted
by  Bektaş  and  Laporte  (2011)  and  Demir  et  al.  (2012)  [64  -
70].

Table 7. The results of homogeneous vehicle analyses.

Key Performance Indicators
Profit Maximization Emissions

Minimization Profit Maximization Emissions
Minimization

Rough fuel calculation Real fuel calculation
Total revenue (TL) 6,872,479 742,291 6,872,479 742,291

Total fuel cost of loaded vehicles (TL) 2,312,249 268,445 2,323,121 272,413
Total fuel cost of empty vehicles (TL) 0 0 0 0

Total fixed cost of operating vehicles (TL) 2,312,249 268,445 2,323,121 272,413
Total penalty cost for unmet demand (TL) 0 0 0 0
Total penalty cost for empty travels (TL) 0 0 0 0

Total cost (TL) 4,624,498 536,890 4,646,242 544,826
Total profit (TL) 2,247,981 205,401 2,226,237 197,465

Total emissions from loaded vehicles (gr) 999,976 116,094 1,004,902 117,836
Total emissions from empty vehicles (gr) 0 0 0 0

Total emissions (gr) 999,976 116,094 1,004,902 117,836
Total number of loaded trips (in unit) 1,786 669 1,786 669
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Key Performance Indicators
Profit Maximization Emissions

Minimization Profit Maximization Emissions
Minimization

Total number of empty trips (in unit) 0 0 0 0
Total number of stationary (non-moving) vehicles (in

unit) 362 2,705 362 2705

Total distance travelled (km) 1,242,824 144,288 1,242,824 144,288
Demand fulfillment rate ≥10% ≥10% ≥10% ≥10%

Table 8. Total number of loaded trips for each vehicle type when vehicle heterogeneity is ignored.

Vehicle Type Fuel Consumption Rate (Fully-loaded, liter/km) Profit Maximization Emissions Minimization
4 (Refrigerated /12 tonne/new) 0.24 202 82
5 (Refrigerated /15 tonne/new) 0.264 271 88
6 (Refrigerated /12 tonne/old) 0.288 277 90

1 (Standard - 18 tonne) 0.312 303 135
7 (Refrigerated /15 tonne/old) 0.3168 243 59

2 (Standard-26 tonne) 0.3432 191 101
3 (Standard-32 tonne) 0.37752 299 114

Table 9. Total profit and total emissions obtained under different demand fulfillment rates.

- Profit Maximization Emissions Minimization
Demand Fulfillment Rates Total Profit (TL) Total Emissions (gr) Total Profit (TL) Total Emissions (gr)

20% 2,438,226 999,982 711,334 291,130
10% 2,503,380 999,973 284,425 103,257
0% 2,512,686 999,972 100,035 23,772

4.3.4. Changes in Demand Fulfillment Rate

The  demand  fulfillment  rate  is  defined  as  the  value  that
indicates  how  much  of  the  demands  that  occur  during  the
whole  planning  horizon  for  each  of  the  nodes  have  to  be
satisfied. The value of this parameter (α) is assumed to be 0.9
in  the  base  case.  Table  9  presents  the  obtained  results  for
different demand fulfillment rates.

For profit maximization, the increase in demand fulfillment
rate results in a decrease in total profit. The reason is the fact
that  the  increase  in  demand  fulfillment  rate  results  in  the
necessity  to  meet  transportation  requests  that  generate  lower
revenues.  Since  there  is  no  such  requirement  at  0%  demand
meeting  level,  total  profit  can  be  obtained  even  though  less
demand is met. Considering the total number of movements of
loaded vehicles, it is observed that there are 1,772 loaded trips
when the  level  of  meeting the  demand is  20%,  1,600 loaded
trips when 10%, and 1532 loaded trips when 0%.

For  emissions  minimization,  the  increase  in  demand
fulfillment  rate  increases  total  profit  and  total  emissions.
Considering the total number of movements of loaded vehicles,
it is 1,322 when the level of meeting the demand is 20%, 669
when 10%, and 68 when 0%. When the demand fulfillment rate
is  taken  as  0%,  the  model  does  not  have  to  achieve  a  fair
distribution among nodes while satisfying the minimum profit
constraint (ϵ2).

Ensuring  fair  distribution  at  each  node  in  the  logistics
network might  be  considered as  a  social  sustainability  target
for transportation companies. The provided results here show

the potential  trade-offs between this target and the other two
pillars of sustainability. That is, tightening demand fulfillment
rates  may  cause  worse  economic  and  environmental
externalities.

4.3.5. The Trade-off between Profit and Emissions

Here we examine the total profits encountered at different
emissions levels. While making total emissions pareto analysis,
profit maximization is used as an objective function and total
emissions amount is accepted as an e-constraint.

Solutions  have  been  reached  by  gradually  increasing  the
total  emissions  amount  (ϵ3)  in  grams  from  150,000  up  to
950,000 grams by 50,000 grams increments. The pareto graph
of the profit and emissions values is shown in Fig. (2).

This analysis reveals that economic concerns might result
in worse environmental performance. According to the results,
in order to obtain higher profits, higher amounts of emissions
have to be endured. The conclusion is that there is no economic
incentive  for  companies  to  be  environmentally  friendly.
Therefore,  emissions  restrictions  on  the  logistics  network  to
mitigate  transportation  emissions  are  required  to  alleviate
negative externalities despite the corresponding profit decrease.
It would also be useful for decision-makers to estimate the cost
of  being  environmentally-friendly  while  planning  freight
distribution.  Moreover,  there  are  more  than  just  economic
incentives.  Currently,  there  is  already  a  slight  increase  in
customers  requesting  transparency  in  environmental
performance,  and  choosing  those  companies  which  perform
better  (sometimes  even  willing  to  pay  extra  for  a  more

(Table 7) contd.....
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environmentally  friendly  service).  In  time,  reducing  the
environmental footprint might become a license to operate, and

companies not paying attention to their impact might lose out
on business.

Fig. (2). Trade-off between profit and emissions.

Fig. (3). Total emissions level of each period.

Table 10. Results of periodic emission analysis.

Key Performance Indicators Profit Maximization
Total revenue (TL) 7,115,515

Total fuel cost of loaded vehicles (TL) 2,311,774
Total fuel cost of empty vehicles (TL) 0

Total fixed cost of operating vehicles (TL) 2,311,774
Total penalty cost for unmet demand (TL) 0
Total penalty cost for empty travels (TL) 0

Total cost (TL) 4,623,548
Total profit (TL) 2,491,967

Total emissions from loaded vehicles (gr) 999,994
Total emissions from empty vehicles (gr) 0

Total emissions (gr) 999,994
Total number of loaded trips (in unit) 1,609
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Key Performance Indicators Profit Maximization
Total number of empty trips (in unit) 0

Total number of stationary (non-moving) vehicles (in unit) 497
Total distance travelled (km) 1,304,829

Demand fulfillment rate ≥10%

4.3.6. Periodic Emissions Analysis

In  the  periodic  emissions  analysis,  the  status  of  the
emissions during each of the periods in the planning horizon
will  be examined for the base case.  In this analysis,  the case
that the emissions amount should be kept under 70,000 grams
for  each  period,  in  addition  to  the  existing  total  emissions
restriction of 1,000,000 grams, is examined. Table 10 provides
an overview of  the  results.  Fig.  (3)  shows the observed total
emissions level of each period.

Periodic  emissions  restriction  aims  to  ensure  that  the
emissions that occur in each period are kept at a certain level.
When the periodic emissions are kept at 70,000 grams for each
period;  it  is  observed that  total  profit  decreased compared to
the  one  obtained  in  the  base  case.  According  to  the  results
presented  in  Fig.  (3),  the  base  case  solution  violates  the
periodic emissions restriction in periods 1 and 15. This result,
in  addition  to  the  previous  analysis  on  emissions  tax,  shows
that  various  legislative  policies  on  emissions  affect  the
transportation  plans  in  such  vehicle  allocation  systems.

CONCLUSION

This  study  proposes  a  bi-objective  linear  integer
programming  model  for  heterogeneous  fleet  VAP  with
emissions  considerations.  Profit  maximization  and emissions
minimization objectives are employed to handle economic and
environmental sustainability purposes. As far as we know, this
study is the first attempt to formulate and solve the addressed
problem. The added value of the proposed model is presented
through several numerical analyses.

In  the  numerical  analyses,  various  practical  assumptions
that  can  be  confronted  by  decision-makers  in  real  life  are
discussed. In each analysis, total profit and emissions amounts
are revealed along with several other KPIs. The results of the
analyses provided in this study could also be useful in terms of
understanding the relations among pillars  of  sustainability in
VAPs.

In  the  base  case  analyses,  the  total  profit  obtained under
profit  maximization  is  about  nine  times  higher  than  that
obtained  under  emissions  minimization.  When  the  aim  is  to
minimize emissions, the total emissions are found to be nearly
one-tenth  of  that  of  profit  maximization.  Supported  by  also
additional scenario analyses, it can be concluded that it might
not be economically viable to be environmentally-friendly for
companies.  Therefore,  companies  have  to  be  encouraged  or
forced to take environmentally and socially responsible actions
through  legislation.  The  analyses  demonstrated  that  various
legislative  policies  on  emissions  may  affect  transportation
plans  differently  in  such  vehicle  allocation  systems.

The  proposed  model  is  generic  and  applicable  for  other
VAPs confronted in long-haul freight transportation as well. In
future studies, new modeling approaches can be developed by
taking  other  relevant  concerns  into  account,  such  as  demand
uncertainty,  dynamic  fleet  mix,  traffic  density  and  road
conditions.
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Appendix 1. The summary data table of the problem.

Symbol Values/Estimations Source
N {1,2, …,30} Assumption
A {1,2, …,7} Assumption
T {1,2, …,15} Assumption
rij See supplementary file Assumption
ffa Table 3 Hoen et al. (2014) [59]

https://www.truck.man.eu/tr (2019)
faa Table 3 Hoen et al. (2014) [59]

https://www.truck.man.eu/tr (2019)
fc 6.08 TL/l http://www.tppd.com.tr

disij Figure 1 https://www.google.com/maps (2019)
fixij See supplementary file Assumption

(Table 10) contd.....
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Symbol Values/Estimations Source
cijija See supplementary file Assumption
sijt See supplementary file Assumption
efa ffa * conversion Ubeda et al. (2011) [61]
eaa faa * conversion Ubeda et al. (2011) [61]
τki 0-499 km 1 day

500-999 km 2 day
1000+ km 3 day Assumption

mita Total: 225 Assumption
dijt Total:6546 Assumption
lijta See supplementary file Assumption
α 0.9 Assumption
M A sufficiently large number Assumption

conversion 2,63 gr/l Defra (2007) [60]
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