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Abstract: Prenatal or perinatal exposure to physiologically-patterned magnetic fields (MFs) affects behaviour in weanling 

(22d) and young adult (90d) rats. However, the long-term (120d-730d) biological effects of these MFs have not been ex-

amined. In the current study, the long-term effects of developmental exposure to a physiologically-patterned MF, and their 

dependence on nitric oxide (NO) activity, were investigated. Pregnant dams were exposed from 2d before to 14d after par-

turition to square wave, 7 Hz MF and to either water or nitric oxide (NO) modulation in tap water with NO precursor 1.0 

g/L L-arginine or 0.5 g/L NO inhibitor n-methylarginine. To assess the possibility of intensity-windowing of any effects, 

MF intensities of <1, 1, 5, 10, 50 and 500 nT were employed. Male offspring were euthanized for post-mortem examina-

tion and wet organ weights were then taken. Analysis showed increased brain weight in 10 and 50 nT-treated groups, in-

creased bodyweight in 50 nT-treated groups and suggested increased testicular weight in 5, 10 and 50 nT-treated groups. 

Few effects of NO modulation were evident in these rats, reinforcing the idea that these are short-term and reversible. 

These findings suggest that subtle long-term changes in organ structure can arise from developmental exposure to physio-

logically-patterned MFs. 

INTRODUCTION  

 The prenatal period is characterized by rapid division, 
differentiation and heightened sensitivity of cells. Overlap-
ping this timeframe and extending into the weeks that follow 
is the perinatal period, where further growth and refinements 
occur that are heavily influenced by the environment [1, 2]. 
Together these phases determine the majority of the organ-
ism’s phenotype; dramatic redirection in phenotype can oc-
cur if specific stimuli are applied during either phase. Even if 
these stimuli are normally innocuous to the adult they may 
be dangerous to the neonate, with the developing central 
nervous system being particularly vulnerable [3].  

 Since the outset of industrialization there has been in-
tense investigation into the developmental effects of power 
frequency magnetic fields (MFs of 50 and 60 Hz) which are 
generated by appliances and their wiring. Developmental 
toxicology studies in the fruit fly [4], chick [5, 6], fish [7], 
mouse [8, 9], rat [10-12] and multiple avian species [13] 
have been done using these frequencies and do not suggest 
reliable biological correlates to fields of low intensity. Subtle 
effects on skeletal morphology have been the only consistent 
effect in rodent species [14]; external or visceral malforma-
tions do not appear to be enhanced in exposed offspring. 

 Power frequencies represent only a portion of the fre-
quencies encountered in nature. An examination of the de-
velopmental effects of physiologically-patterned MFs [15] 
strongly suggests that even extremely weak (< μT) MFs can  
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be dangerous to the neonate if they are of a specific pattern. 
Physiologically-patterned fields, which are modeled after the 
rhythms of natural processes, have multiple biological long-
term effects in exposed offspring. Examples of physiologi-
cally-relevant patterns include waveforms modeled after 
hippocampal theta rhythms [16] and waveforms modeled 
after geomagnetic micropulsations [17] as they are both 
naturally occurring patterns of magnetic activity. Brain struc-
ture appears sensitive to these fields: reductions in the den-
sity of the medial preoptic nucleus in males [18, 19] and 
parasolitary nucleus in both sexes [17] have been reported as 
have alterations in the gross [20] and fine structure of the 
hippocampus [16]. Changes in testicular weight [19] and 
thyroid weight [21] might also occur. One field configura-
tion increased the weight of exposed offspring by nearly 
33% [22]. Unpublished studies suggest these fields could 
influence organ structure [23]; the same does not appear true 
of power frequency fields [10]. Most remarkable is that these 
physiologically-patterned MFs can have effects at extremely 
low intensities (nT) that are nearly a million times lower than 
recommended public and occupational thresholds (~0.5 mT).  

 The waveforms applied in electromagnetic medicine [24] 
are not always within the 50-60 Hz range and often fall into 
the range of the physiologically patterned frequencies ( 10 
Hz). This is true of exploratory therapies such as those for 
multiple sclerosis [25, 26] and established therapies such as 
repetitive transcranial magentic stimulation [27]. A compre-
hensive examination of the developmental effects of the lat-
ter is warranted as the behavioural and biological effects of 
any MF are specific to the temporal pattern of its frequency 
or complex frequencies [15] and are not typically identical to 
those of 50 and 60 Hz frequencies.  
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 In order to resolve these concerns, a wide-scale, com-
parative investigation of biological variables following de-
velopmental MF exposure is in order. This insight compelled 
the current study. Rats were exposed during development to 
a 7 Hz, square wave MF previously shown to be effective 
[22] during the perinatal period (2d before to 14d after birth) 
and then examined for general biological responses in adult-
hood. The involvement of NO activity in the MF’s effect 
[28] was addressed by applying either NO donour amino 
acid L-arginine (LA; 1.0g/L) or NO inhibitor n-
methylarginine (NMA; 0.5g/L) along with the field. This 
design also permitted the examination of the effects of peri-
natal NO modulation independent of MF. Among the poten-
tial chemical effectors of MFs, NO and opiates are the most 
widely implicated [15]. NO metabolites, as opposed to opiate 
indicators, are often up-regulated following exposure 
[14,29]. Exposed rats were observed from birth to late adult-
hood and then sacrificed for post-mortem examination. Wet 
organ weights were taken as were qualitative observations of 
health and behaviour prior to euthanasia. 

 If physiologically-patterned MFs have long-term biologi-
cal influences as the research suggests, detectable changes in 
organ weight or structure, particularly in the thyroids or sex 
organs, should be observable in adult rats as these effects 
have been reported for other fields. If MFs induce NO acti-
vation, any changes shown in animals exposed to the 7 Hz, 
square wave MF should be similar to those induced by LA 
application and should be counteracted by NMA [22]. 

MATERIALS AND METHODS  

Subjects 

 The procedures employed have been described previ-
ously [22]. Briefly, pregnant dams received a 7 Hz, square 
wave MF of either <1, 1, 5, 10, 50 or 500 nT in strength dur-
ing the perinatal period (2d before to 14d after birth). To 
assess the contribution of NO to the effectiveness of the MF, 
these six groups also received one of three solutions during 
the MF exposure period: either tap water (control), 1.0g/L 
NO donour L-arginine (Sigma) or 0.5g/L NO inhibitor n-
methlyarginine (Sigma). The offspring of these dams were 
maintained in standard colony conditions with food and wa-
ter available ad libitum. At ages between 200-730d male rats 
were selected for sacrifice. Rats fit into one of four age 
groups: 1) 200-300d; 2) 300-400d; 3) 400d-500d and 4) 
500d or older. These groups were equally weighted and each 
accommodated 25% of the design.  

Organ Sampling 

 Following carbon dioxide euthanasia ( 2 minutes), key 
organs were harvested and trimmed of fat and connective 
tissue. The brain, pituitary gland, thyroids, pancreas, spleen, 
adrenals, kidneys and testicles were all removed in consis-
tent order. Wet tissue weights were taken using a balance 
accurate to ±0.1 mg. Separate left and right weights were 
taken for large paired organs (adrenals, kidneys, and go-
nads). The extraction process took an average of 30 minutes. 
Prior to euthanasia, the animal was weighed.  

Qualitative Observations 

 Any abnormal behaviours (such as over-grooming or 
lethargy) or health conditions (such as development of sores 

or tumours) were recorded during daily monitoring of the 
animal. These assessments were made by an animal care 
technician. Inspection of the body for subtle effects, such as 
hair loss (which can occur during many health problems in-
cluding over-grooming) was also performed regularly. Dur-
ing post-mortem, any internal qualitative anomalies suggest-
ing aberrant or damaged tissue were recorded.  

Statistical Analysis 

 As there were three drug groups (either water, LA or 
NMA) and six intensity groups (either <1 (Sham), 1, 5, 10, 
50 or 500 nT), a 3 (drug) x 6 (intensity) two-way ANCOVA 
was performed on all measures. Age and bodyweight were 
used as covariates. Prior to analysis, extreme outliers (  +2 
SD or  -2 SD) were omitted. This was to exclude tumour-
ous organs and atrophied organs. When appropriate, Chi-
square analysis was performed on qualitative observations. 
Post-hoc analysis was performed on the residuals of the 
ANCOVA using the tukey multiple ranges test with signifi-
cance set at p = 0.05. All analysis was performed using SPSS 
on a VAX 4000 computer. For significant analysis, the effect 
size (

2
), defined as the variability in the dependent variable 

explained by the independent variable (or the treatment), is 
provided. This value is a measure of the strength of the effect 
of the treatment and is equivalent to the r

2
 value in correla-

tions.  

RESULTS 

 Mean and standard error of the mean (SEM) for body-
weight and organ weights by group are listed in Table 1.  

Bodyweight 

 Two-way ANCOVA detected a main effect for field 
treatment on bodyweight (F(5,86)=7.30, p<.001, 

2
=.25) and 

a field by drug interaction (F(1,86)=2.18, p<.05, 
2
=.15) 

when accommodating age. Post-hoc analysis showed the 
source of the interaction to be the larger bodyweight of rats 
given 50 nT MF + water only (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

Fig. (1). Mean and SEM for bodyweight by field and drug treat-

ment group. Sh = Sham. The group given 50 nT + water is elevated 

with respect to the control.  

Brain Weight 

 Two-way ANCOVA detected a main effect for field 
treatment on brain weight (F(5, 84)=4.40, p<.001, 

2
=.14) 
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but no drug effect or interaction. Post-hoc analysis of the 
residuals showed that brain weight was elevated in 10 and 
500 nT 7 Hz groups (Fig. 2). The difference in the case of 5 
nT was marginal but not statistically significant. In a poly-
nomial analysis, the relationship between intensity and brain 
weight was shown to possess a statistically significant quar-
tic term which was weighted more heavily than the linear 
term.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Residual mean and SEM for brain weight by field treat-

ment group. Superimposed on the means is the quartic function for 
the relationship. 

Thyroid Weight 

 Two-way ANCOVA found no significant main effects or 
interactions of the treatments on thyroid weight. The two 
main effects (p<.15) and interaction (p<.10) were marginally 
significant but had weak effect sizes (

2
<.10).  

Kidney Weight 

 Two-way ANCOVA detected a main effect for field 
(F(5,84)=2.32, p<.05, 

2
=.05) and drug (F(2,84)= 3.69, 

p<.05, 
2
=.08). Post-hoc analysis showed that kidneys from 

groups given 10 nT fields were heavier than those given 1 
nT fields but were not different than controls. A significant 
quartic relationship between intensity and residual kidney 
weight was also extracted using polynomial analysis (Fig. 
3a). Further analysis showed the source of the drug effect to 
be the reduced kidney weights of animals given NMA com-
pared to those given water (Fig. 3b). 

Testicular Weight 

 Two-way ANCOVA detected a main effect for drug 
(F(2,84)= 10.93, p<.001, 

2
=0.14) and a significant field by 

drug interaction (F(2,84)= 2.11, p<.05, 
2
=0.14) when co-

varying for age and bodyweight. Animals given 1 nT field + 
LA, 50 nT + NMA or 500 nT + LA all had reduced testicular 
weight relative to the other groups. Several field-treated 

Table 1. Mean and SEM for Bodyweight and Organ Weights (in g) by Field and Drug Treatment Group. Outliers have been omit-

ted. W = Water 

Group n Bodyweight Brain Pituitary Thyroid Spleen Pancreas Kidneys Adrenals Testicles 

Sh/W 4 607.1 (20.9) 2.16 (0.006) 0.013 (0.001) 0.029 (0.002) 1.12 (0.13) 1.27 (0.16) 4.22 (0.39) 0.072 (0.004) 4.13 (0.35) 

Sh/LA 4 637.3 (14.5) 2.16 (0.042) 0.010 (0.001) 0.030 (0.005) 1.39 (0.10) 1.19 (0.03) 4.57 (0.24) 0.070 (0.006) 3.78 (0.24) 

Sh/NMA 3 517.7 (48.3) 2.12 (0.038) 0.011 (0.001) 0.026 (0.006) 1.04 (0.19) 1.14 (0.19) 3.57 (0.25) 0.054 (0.001) 3.86 (0.09) 

1 nT/W 6 598.0 (24.6) 2.23 (0.054) 0.020 (0.003) 0.032 (0.003) 1.91 (0.24) 1.75 (0.23) 5.99 (0.82) 0.095 (0.012) 3.33 (0.24) 

1 nT/LA 2 718.8 (93.8) 2.34 (0.020) 0.013 (0.050) 0.040 (0.006) 1.74 (0.21) 1.10 (0.01) 5.22 (0.90) 0.099 (0.033) 2.44 (0.39) 

1 nT/NMA 5 571.7 (51.9) 2.26 (0.030) 0.019 (0.001) 0.034 (0.002) 1.44 (0.15) 1.97 (0.29) 4.91 (0.48) 0.087 (0.011) 3.84 (0.55) 

5 nT/W 2 576.5 (52.5) 2.28 (0.010) 0.012 (0.001) 0.029 (0.002) 1.21 (0.03) 1.15 (0.11) 4.61 (0.25) 0.067 (0.018) 4.66 (0.22) 

5 nT/LA 4 559.0 (38.9) 2.16 (0.025) 0.011 (0.002) 0.031 (0.006) 1.11 (0.08) 1.08 (0.07) 3.85 (0.15) 0.074 (0.006) 3.92 (0.33) 

5 nT/NMA 5 528.8 (36.9) 2.17 (0.027) 0.015 (0.003) 0.022 (0.001) 1.00 (0.05) 1.00 (0.06) 3.62 (0.12) 0.062 (0.002) 3.70 (0.22) 

10 nT/W 13 641.0 (36.2) 2.37 (0.022) 0.018 (0.002) 0.048 (0.003) 1.87 (0.17) 1.90 (0.18) 6.71 (0.48) 0.116 (0.019) 4.33 (1.15) 

10 nT/LA 11 637.7 (42.4) 2.35 (0.039) 0.017 (0.001) 0.040 (0.005) 1.98 (0.04) 1.55 (0.25) 6.04 (0.45) 0.212 (0.134) 3.61 (0.23) 

10 nT/NMA 7 796.4 (41.6) 2.46 (0.054) 0.018 (0.002) 0.043 (0.005) 1.97 (0.14) 1.97 (0.29) 6.26 (0.46) 0.074 (0.006) 3.86 (0.11) 

50 nT/W 3 738.2 (76.6) 2.36 (0.024) 0.016 (0.005) 0.050 (0.011) 2.26 (0.58) 1.21 (0.50) 6.88 (0.35) 0.129 (0.048) 3.77 (0.31) 

50 nT/LA 3 566.7 (58.8) 2.31 (0.007) 0.013 (0.001) 0.043 (0.008) 2.02 (0.34) 1.29 (0.16) 10.16 (2.92) 0.089 (0.004) 3.56 (0.51) 

50 nT/NMA 6 614.1 (52.7) 2.36 (0.056) 0.017 (0.004) 0.032 (0.004) 1.54 (0.22) 1.48 (0.39) 5.05 (0.44) 0.292 (0.184) 2.68 (0.15) 

500 nT/W 9 625.0 (27.7) 2.33 (0.049) 0.018 (0.002) 0.033 (0.002) 1.60 (0.12) 1.88 (0.25) 5.30 (0.19) 0.086 (0.007) 4.36 (0.22) 

500 nT/LA 10 650.5 (40.8) 2.41 (0.053) 0.018 (0.001) 0.047 (0.003) 1.62 (0.19) 1.38 (0.11) 6.65 (1.03) 0.091 (0.006) 3.04 (0.37) 

500 nT/NMA 8 610.8 (50.8) 2.29 (0.039) 0.015 (0.001) 0.034 (0.006) 1.51 (0.23) 1.34 (0.20) 4.94 (0.37) 0.151 (0.071) 3.49 (0.18) 
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groups fed water (5, 10 and 500 nT + water) tended to have 
increased weight compared to controls (Fig. 4).  

 

 

 

 

 

 

 

 

 

 
 
Fig. (3a). Residual mean and SEM for kidney weight by field 

treatment group. Superimposed on the means is the quartic function 
for the relationship. 

 

 

 

 

 

 

 

 

 

 

Fig. (3b). Residual mean and SEM for kidney weight by drug 
treatment group. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Residual mean and SEM for testicular weight by field and 
drug treatment group.  

Other Organs 

 Two-way ANCOVA detected no main effects, interac-
tions or trends of field or drug treatment on pituitary, spleen, 
pancreas or adrenal weight.  

Symmetry of Large Paired Organs 

 Two-way MANOVA was used to examine the effect of 
treatment on symmetry of large paired organs (adrenals, kid-
neys and testicles). No significant findings were obtained at 
the sample size employed.  

Incidence of Health Ailments 

 Chi-squared analysis was performed on all qualitative 
observations. These included: 1) presence of external tu-
mours; 2) presence of pituitary tumours; 3) occurrence of 
sudden deaths; 4) general symptoms (such as weight loss or 
respiratory distress). No significant findings were obtained.  

DISCUSSION 

 Current MF exposure studies predominantly utilize power 
frequencies and are conducted within a limited timeframe 
(<90d). Here, physiologically-patterned MFs were used in a 
developmental investigation with an observation period that 
extended into late adulthood. This expanded scope showed 
long-term MF effects on bodyweight and brain weight of 
significant statistical power. Previously noted increases in 
testicular weight were also suggested. NO modulation tended 
to reduce kidney weight, but otherwise was inert and failed 
to show evidence of interactions with the MF.  

 One of the most revealing results, in addition to the find-
ing that persistent effects resulted from a relatively brief ex-
posure to weak MFs, was that a non-linear relationship ex-
isted between the effects of the MF and its intensity. If the 
quartic (sine wave) function shown in Figs. (2 and 3a) holds, 
it is possible that MFs may be much more effective than ex-
pected. MF intensities which traverse this range – including 
effective and non-effective intensities – might produce an 
“averaged” zero effect in the organism. This null or weak 
result could create the misleading impression that the MF is 
not biologically active. Similarly, MFs with intensities lying 
within the “zero” regions of the sine function – and not the 
“peak” or “trough” regions - would show no effect and ap-
pear benign. While the plot is technically non-linear, the 
lower intensity ranges (from 1-10 nT) are close in sequence 
and tightly adhere to the generated curve. Before definitive 
conclusions can be drawn about the 10-50 and 50-500 nT 
ranges, the intermediate intensities will have to be tested.  

 The concept that a large amount of substance produces a 
mild effect while a small amount of the same substance pro-
duces a large, specific effect is well-known in pharmacology. 
Within the range of high affinity to low affinity receptor sub-
types, various concentrations of the same ligand can induce 
powerful and even opposite effects. This concept, clearly 
articulated in experiments on the cholinergic system and its 
associated muscarinic and nicotinic receptors, has been 
known to pharmacology for nearly 100 years but has yet to 
be embraced by bioelectromagnetics. These effects, while 
small in size, are very relevant when one considers the size 
of the populations that could potentially be exposed to these 
MFs. 

 As weanlings, rats exposed to 5, 50 or 500 nT 7 Hz MF 
show increased bodyweight [22]. Here, weight increases 
were found in very late adulthood. When age was accommo-
dated, it was shown that exposure to only 50 nT 7 Hz MFs – 
and not 5 or 500 nT – increased bodyweight. Weight 
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changes with developmental MF exposure have not been 
widely reported and are likely specific to this waveform.  

 The basis of these bodyweight increases is difficult to 
ascertain. While changes in thyroid structure with MF expo-
sure have been suggested [21], they are not evident in all 
cases [30] and their involvement here is unlikely. The 50 nT 
group which displayed the prolonged bodyweight increase 
did not appear to have heavier or otherwise abnormal thy-
roids. In future replications, the pursuit of behavioural corre-
lates might be more revealing. Decreased overall activity 
may be a factor as might increased nutrient consumption.  

 Brain weight was increased by 10 and 50 nT 7 Hz MF 
independent of NO modulation. This increase was equivalent 
to the gender difference in brain weight between males and 
females (approximately 3%) in terms of strength but its 
source is unknown. If, as suggested by St-Pierre and Pers-
inger [20] extra-cellular fluid volume is affected by devel-
opmental MFs, then the weight increase might be an increase 
in fluid rather than cells. The involvement of MF-induced 
increases in vasculature is a further possibility [31]. Lack of 
interaction of this MF effect with NO modulation in devel-
oping rats is consistent with past findings that suggest the 
brain is insensitive to NO inhibition [32] and L-arginine ad-
ministration [33]. The absence of effects of NO modulation 
in this long-term study is notable when one considers the 
drastic effects that are observed shortly after the end of the 
treatment period, particularly in the case of perinatal NO 
inhibition [22,28,32,34]. With perinatal NO inhibition, 
strong reductions in size or growth [22,28,34] and changes in 
behaviour [22,28,32] are found. This study suggests that at 
least some of these effects are partly reversible.  

 In general, the effects of NO modulation were few and 
weak in strength. It is proposed that the long timeframe of 
the study (200-730d) eclipsed the window of sensitivity to 
NO modulation. Whereas relatively brief MF exposure pro-
duced a permanent alteration, prolonged NO inhibition might 
be required to induce an equivalent effect or interact with the 
MF effect. The only notable effect of perinatal NO modula-
tion was the ability of NMA to decrease kidney weight. In-
terestingly, this trend is the reverse of what has been found 
to occur with chronic NO inhibition administered in adult-
hood [35]. The time at which NO modulation occurs might 
therefore determine the vector of effect on kidney mass. 

 Exposure to 5, 10 and 500 nT MFs tended to increase 
testicular weight while any NO modulation tended to reduce 
it. Selected field-treated groups given water (5, 10 and 500 
nT) strongly tended to have increased testicular weight. This 
is in partial confirmation with past findings [19,21,36]. Age 
was shown to be a significant covariate and negatively corre-
lated with testicular weight (r = -.35, p<.001). It is therefore 
possible that age-related decreases in testicular mass masked 
the MF’s effects on these tissues.  

 Perhaps counter-intuitively, field intensity did not have a 
linear relationship with the effect of the MF. In the case of 
brain weight (Fig. 2) and kidney weight (Fig. 3a) the rela-
tionship was quartic. While non-linear relationships were 
described by Adey [37] decades ago there has been resis-
tance to accommodating them in design and little progress in 
describing them using mathematical relationships. Predicting 

the efficacy of an MF using such relationships could opti-
mize clinical therapies and minimize safety risks.  

CONCLUSIONS 

 There has been relatively little variation in the design of 
MF developmental toxicology studies since the birth of 
bioelectromagnetics. The empirical evidence that physio-
logically-patterned MFs have heightened penetrability and 
the growing use of these fields in MF-based therapies sug-
gests that investigations into their safety be performed and 
interpreted within their own context. Past findings of 50 and 
60 Hz exposure studies do not appear applicable to these 
MFs, which have multiple biological effects not reported for 
power frequency fields. That these effects were noted at such 
a weak intensity and followed non-linear relationships testi-
fies to the complexity of the interactions between MF and 
the biological system. 

 The findings herein suggest that physiologically-
patterned MFs, and any other MFs in widespread use, must 
be explored specifically in custom-designed, long-term stud-
ies. They also reinforce the idea that peripheral and central 
changes can result from perinatal and prenatal MF exposure 
and that these may be as powerful and persistent as those 
arising from exposure to chemical teratogens. 
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