
1874-3404/21 Send Orders for Reprints to reprints@benthamscience.net

1

DOI: 10.2174/1874340402107010001, 2021, 7, 1-7

The Open Toxicology Journal
Content list available at: https://opentoxicologyjournal.com

CLINICAL TRIAL STUDY

Blood Hemostasis Dysfunction and Inflammation in COVID-19 Patients: Viral
and Host Active Molecules as Therapeutic Targets

Mourad Errasfa1,*

1Department of Pharmacology, Faculty of Medicine and Pharmacy, University of Sidi Mohamed Ben Abdellah, Fez, Morocco

Abstract:

The COVID-19 pandemic is challenging world health authorities and researchers. WHO is supervising many clinical studies to ascertain whether
some  known  drugs  can  be  effective  against  the  disease.  Meanwhile,  researchers  around  the  globe  are  working  on  cellular  and  molecular
mechanisms that are key steps of SARS-Cov-2 associated infection. Blood hemostasis dysfunction, inflammation, hypoxia and venous thrombotic
events  are  reported  to  be  involved in  the  pathophysiology of  COVID-19 patients  at  early  and late  severe  stages  of  the  disease.  It  is  of  high
relevance to understand how SARS-Cov-2 triggers negative cellular and biochemical events in infected persons. A large number of cell species and
active molecules, such as blood and tissue enzymes, cytokines, and other active amines and lipid inflammatory molecular species, can be involved
in  immune  reactions  and  host  defense  mechanisms  upon  human  infectious  diseases  or  other  kinds  of  health  issues  such  as  trauma  or  snake
envenomation. Possible physiopathology trends of COVID-19 and some therapeutic perspectives are discussed in the present minireview.
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1. INTRODUCTION

The  COVID-19  pandemic  caused  by  SARS-Cov-2  took
place  early  this  year  after  a  first  patient  was  diagnosed  with
ARSD in Wuhan (China). The virus molecular characterization
was reported and its target receptor was identified [1, 2] as the
membrane  angiotensin-converting  enzyme-2.  Researches  on
effective drug therapy were launched in clinical studies like the
Solidarity  Trial  and  the  Discovery  Trial  in  Europe.  Both
clinical trial studies include many classic antiviral and antire-
troviral  molecules,  anti-malaria  drugs,  cytokines,  antibodies
and Chinese plant extracts [3 - 5]. Recent clinical findings have
found  that  COVID-19  patients  can  suffer  from  hypoxia  [6],
pulmonary venous thromboembolism [7], and gut dysbiosis [8
-  10].  Similar  viral  infection-associated  dysbiosis  was
described  earlier  upon  viral  infections  [11].  SARS-Cov-2  -
associated respiratory distress syndrome is the leading cause of
death  in  COVID-19  patients.  However,  the  underlying
mechanisms  that  cause  death  are  still  not  totally  known.

Recent  scientific  reports  have  shown that  the  severity  of
COVID-19  symptoms,  as  well  as  the  mortality  caused  by
COVID-19, would significantly affect the population after 40
years of age, and this incidence increases with age [12]. The
highest death  figures  (virus  fatality  index)  are  among  those
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over 60 years of age, reaching 15.6% in those over 80 years of
age [13]. On the other hand, individuals with underlying health
conditions  are  more  vulnerable  than  those  without.  Obese
patients  and  those  who  have  health  issues  such  as
cardiovascular diseases, diabetes, chronic respiratory diseases,
hypertension  or  cancer  have  a  higher  case  fatality  rate  for
COVID-19 [14].

2.  PHYSIOPATHOLOGY  ASSOCIATED  WITH  SARS-
COV-2 INFECTION

2.1. Inflammation

Blood analyses of patients have shown “cytokines storm”,
which might be leading to a serious general inflammation [15,
16].  A very  large  number  of  pro-inflammatory cytokines  are
described in viral  infections.  Pro-inflammatory cytokines are
released  by  specialized  immune  cells  (Fig.  1),  and  this
phenomenon might exacerbate a patient's health weakness. It is
likely that in COVID-19 patients, many blood cell species are
activated, such as platelets, monocytes and neutrophils. Other
tissue resident cells such as alveolar macrophages, mesangial
cells or glial cells might be activated as well. A large number
of  active  lipid  [17]  inflammatory  mediators  (prostaglandins,
leukotrienes,  platelet activating factor) and edema associated
molecules (histamine, serotonin and bradykinin) can play a role
in the inflammatory process of COVID-19. Macrophages and

https://opentoxicologyjournal.com
http://crossmark.crossref.org/dialog/?doi=10.2174/1874340402107010001&domain=pdf
mailto:mourad.er-rasfa@usmba.ac.ma
mailto:reprints@benthamscience.net
http://dx.doi.org/10.2174/1874340402107010001


2   The Open Toxicology Journal, 2021, Volume  7 Mourad Errasfa

neutrophils  are  the  main  cell  species  that  release  NADPH-
Oxidase dependent oxygen free radicals upon their activation.
Hence,  oxidative  stress  might  be  an  additional  burden in  the
physiopathology of SARS-Cov-2 infection [18]. Interestingly,
recent  studies,  including  a  meta-analysis  investigation  [19],
have  shown  that  intravenous  corticoid  (anti-inflammatory
steroids)  treatment  was  associated  with  a  better  outcome  of
COVID-19 severe cases.

2.2. Hemostasis Dysfunction

Clinical  and  laboratory  data  of  COVID-19  patients  from
many countries have pointed out several molecular and cellular

mechanisms that may be crucial in the physiopathology caused
by  SARS-Cov-2  [20,  21].  It  was  observed  that  patients  of
COVID-19  have  hypoxia  and  hemoglobin  oxygen  transport
dysfunction.  On  the  other  hand,  venous  thromboembolism
might be damaging tissues in several organs, such as kidneys,
heart, lungs and brain. The hallmark of SARS-Cov-2 infection
and  thrombogenic  blood  parameters  was  associated  with  the
severity of COVID-19. Blood coagulation dysfunction [22, 23]
and  thrombocytopenia  [24]  were  reported  in  COVID-19
patients.  Blood  clots  were  found  in  many  organs,  and
abnormally elevated levels of plasmin [25] and D-dimers [23]
were  found  in   severe   cases   of  COVID-19   patients,   and  
tissue  factor  was

Fig. (1). The figure represents groups of cells and molecules (Blood and tissue host cells, viral enzymes, snake venom enzymes) that could have close
enzymatic and pharmacological interactions. The red ellipse represents blood components, clotting/fibrinolysis factors, and inflammatory mediators
that are the resulting output of cells and enzymatic activations in the host body under physiological conditions or during pathological situations. Viral
proteins and enzymes have close interaction with the host cells, starting from the priming of the S spike protein by host serine proteases. Blood
coagulation/fibrinolysis enzymatic system involves many protease activities. Snake venom proteases, phospholipases and toxins interact with many
host cells and blood components that lead to hemostasis dysfunction. The ellipse forms do not imply separate physical compartments in the host body.
It is meant that foreign enzymes and molecules of invading organisms can pharmacologically interact with host enzymatic and molecular machinery,
which leads to physiopathological events. * TMPRSS2: Transmembrane protease serine2. ACE2: Angiotensin converting enzyme 2. TF: Tissue
factor. vWF: von Willebrand factor. tPA: Tissue plasminogen activator. PAI-1: Plasminogen activator inhibitor. PAF: platelet activating factor. NO:
Nitric oxide.
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described  as  a  possible  key  molecule  in  coagulation
dysfunction  in  COVID-19  patients  [26,  27].  Human  blood
coagulation  and  fibrinolysis  are  controlled  by  many  serine
protease enzymes (Fig. 1). The physiological process of blood
clotting and fibrinolysis is highly regulated by a large number
of  blood  proteins  that  have  enzymatic  proteolytic  activities,
such  as  thrombin  and  plasmin,  to  mention  just  these  two
cornerstone enzymes. Blood hemostasis is a specific target in
many  infectious  diseases  and  health  issues  such  as  enve-
nomation. Indeed, it  is known that blood clotting induced by
snake venom is associated with many serine protease enzymes
of the venom [28]. The toxicity of snake venom is known to be
associated  with  a  large  number  of  venom  enzymes,  such  as
phospholipases,  proteases  and  other  toxins.  Among  SARS-
Cov-2 proteins, papain-like protease and 3-chy -motrypsin-like
protease are key proteases for their replication and infectivity
[29  -  31].  Blood  coagulation  and  fibrinolysis  in  COVID-19
patients could be affected by the above viral proteases in the
case of their release in the host bloodstream. They would act
through  similar  human  blood  clotting/fibrinolysis  protease
cascade (thrombin, plasmin) or that of snake venoms protease-
induced hemostasis dysfunc-tions [28].

2.3. Serine Protease-dependent Entry of the Virus in Host
Cells

Entry  of  the  SARS-Cov-2  in  host  cells  was  shown  to
involve the priming of the S spike protein of the virus by a host
cell serine protease (Fig. 1). Thus, surface proteases of the host
cell play a key role in the infectivity of viruses (Fig. 2). In the
case  of  SARS-Cov-2,  TMPRSS2  (Transmembrane  protease
serine2), a human serine protease, primes the S virus protein

[32],  and  leads  to  the  subsequent  binding  of  the  virus  to  its
receptor;  Angiotensin  Converting  Enzyme  2.  Other  host
proteases could play a role in priming the S spike protein as
well [33]. Research on the molecular sequence of SARS-Cov-2
RNA and its  spike glycoprotein sequence have shed light  on
other host cell serine protease enzymes that could participate in
priming the S protein on host cells [34, 35]. The above studies
have  shown  that  SARS-Cov-2  RNA,  unlike  its  coronavirus
predecessors,  has  a  genomic  sequence  of  12  bases,  which
encodes  a  peptide  sequence  of  a  few  amino  acids  that  rep-
resents a cleavage site for several serine proteases found in the
entire  human organism.  The  sequence  of  the  SARS-Cov-2  S
glycoprotein would explain why the virus can infect  most of
the organs, and this would explain the actual higher virulence
of SARS-Cov-2 and its widespread effects on the bloodstream,
lungs  and  other  organs.  Interestingly,  plasmin  was  also  des-
cribed  as  a  possible  priming  enzyme  of  the  S  viral  protein
during SARS-Cov-2 infection [25], and its possible inhibition
was  suggested  to  be  one  of  the  therapeutic  targets  against
SARS-Cov-2.

2.4. Perspectives in Therapeutic Targeting of SARS-Cov-2 -
Associated Pathology

Due  to  recent  clinical  and  biological  findings  on
COVID-19  cited  above,  the  physiopathology  and  clinical
aspects  of  COVID-19  were  much  better  understood,  which
allowed  better  therapeutic  management  of  the  disease,
especially in severe cases. In the absence of a specific antiviral
drug against SARS-Cov-2, anti-bacterials, blood thinners and
corticoids were the main drugs that gave some hope, mainly in
COVID-19 severe cases.

Fig. (2). A host cell bearing receptors of SARS-Cov-2; ACE-2. Cell infection by the virus involves priming of the S spike glycoprotein of the virus by
cellular serine proteases and possibly by other extracellular serine proteases. Priming of the S spike protein allows the virus to pursue its entry into the
host cell, and proceed to the rest of the biochemical steps for its RNA and protein synthesis, followed by virion assembly.
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For virus targeting, and according to the above mentioned
possible physiopathological processes that could be associated
with SARS-Cov-2 infection (Fig. 1), as most of the molecular
mechanisms of the viral infection involve catalytic activities of
proteases,  starting  from  the  first  beginning  of  viral  S  Spike
protein priming, until virus replication and assembly, it should
be  obvious  to  target  several  protease  activities  on  both  host
cells and viral enzymatic machinery. Viral protease inhibition
was  used  as  a  therapeutic  strategy  for  many viral  infections,
such  as  the  HIV  ones  [36].  Recently,  molecular  modeling
studies  have  suggested  some  old  protease  inhibitors  for
COVID-19  therapy  [37].  Therapeutic  strategies  that  use
nucleotide  and  nucleoside  drugs  that  interfere  with  viral
replication  are  presented  elsewhere  [38],  and  will  not  be
discussed  in  this  paper.

Promising therapeutic strategies for COVID-19 are being
suggested,  such  as  lactoferrin  milk  enzyme  [39  -  43]  and
oligosaccharides  [44  -  48]  as  next  antivirals  in  human
infectious diseases, as these substances have exhibited antiviral
activities in laboratory experiments. Interestingly, in a recent
clinical study on COVID-19 patients in Italy [43], lactoferrin
has  been  used  to  treat  mild-to-moderate  and  asymptomatic
COVID-19  patients  to  prevent  disease  evolution.  The  study
concluded that lactoferrin induced an early viral clearance and
a fast clinical symptoms recovery, in addition to a statistically
significant  reduction  of  D-Dimer,  Interleukin-6  and  ferritin
blood  levels.  Hence,  lactoferrin  might  be  a  real  promising
therapeutic molecule either as a purified active ingredient or as
part of a whole natural product.

In relationship to traditional medicine, some natural food
and plant extracts, known for their antiviral, anti-oxidant, anti-
inflammatory  and  anti-cancer  properties,  were  recently
proposed  as  therapeutic  candidates  for  the  management  of
COVID-19.  These  potential  therapeutic  candidates  include
camel milk, a known traditional food of many countries in Asia
and Africa, where people use it for both nutrition and healing
purposes.  The  health  benefits  and  therapeutic  properties  of
camel  milk  are  well  documented  in  many reviews [49  -  51].
Among  camel  milk  active  components,  lactoferrin  was
extensively studied for its anti-viral and antibacterial properties
[39,  52,  53],  and  gut  bacteria  and  immune  modulatory
properties  [54].  Lactoferrin  was  shown  to  have  a  serine
protease activity that could have some biochemical relevance
in its anti-viral properties [40]. Lactoferrin was also described
to possess anti plasminogen activity, which could play a role in
the control of blood clot and fibrinolysis [41].

Milk oligosaccharides have anti-viral properties [45 - 48,
55,  56],  in  part,  due  to  their  carbohydrate  binding  on  viral
glycoproteins.  Oligosaccharides  and  lactoferrin  are  both
present  in  camel  milk,  and  the  latter  was  suggested  as  a
functional diet for COVID-19 management [57]. However, the
effect of whole camel milk ingestion intended for antiviral and
antibacterial  effects  could  involve  other  molecules  than
oligosaccharides  and  lactoferrin.

Lectins of plant and seaweed origins are known for their
interaction with carbohydrate moieties of glycoproteins and for
interacting  with  viruses  [58].  Many  lectins  were  previously
shown  to  bind  the  S  glycoprotein  of  coronaviruses  [59]  and

gave promising results in laboratory experiments against viral
infection [60]. Interestingly, in recent laboratory experiments, a
lectin  from  edible  hyacinth  beans  was  shown  to  block  the
infections of Influenza and SARS-Cov-2 in vitro  and in vivo
[61].  Many  laboratory  experiments  [62,  63]  have  shown
binding and antiviral  properties  of  several  species  of  lectins,
and these data have encouraged researchers to suggest lectins
as  a  therapeutic  tool  against  COVID-19  [57,  61].  Though,
because of their high molecular weight, lectins use in clinical
trials would be facing some challenging issues, such as route of
administration, the bioavailability of the administered lectins,
and their possible antigenic and mitogenic properties.

In  relation  to  the  physiopathology  associated  with
COVID-19,  mainly  inflammatory  reactions  and  weakness  of
antioxidants  status  of  patients,  other  natural  substances  were
proposed for COVID-19 management, such as thymoquinone;
the main active ingredient  of  Nigella sativa  extracts.  Nigella
sativa extracts and thymoquinone were widely studied for their
therapeutic  potentials  [64].  Both  thymoquinone  and  Nigella
sativa  extracts  have  interesting  pharmacological  properties
[65], such as anti-inflammatory, anti-cancer and anti-oxidants.
The  use  of  thymoquinone  by  COVID-19  patients  was
suggested in a recent publication [66]. Route of administration
and  pharmaceutical  presentations  of  thymoquinone  were
suggested  [67,  68]  that  could  be  of  interest  in  clinical
application.

Magnesium  has  hundreds  of  biochemical  properties  in
human  physiology.  Its  deficiency  can  cause  cardiovascular,
neurologic  and  metabolic  health  issues,  with  some  phy-
siopathology  aspects  that  are  identical  to  some  of  those
encountered in COVID-19 patients, such as blood hemostasis
and  endothelium  dysfunction,  inflammation  and  oxidative
stress  [69].  Those magnesium supplementation,  as  suggested
by others [70 - 72], could help COVID-19 patients to overcome
some of the physiopathology events of the disease.

CONCLUSION

So  far,  in  the  absence  of  an  effective  vaccine  against
SARS-Cov-2, drug management of critical cases of COVID-19
relies  on  several  therapeutic  protocols,  including  antibiotics,
blood clotting/fibrinolysis drugs, glucocorticoids, antimalarial
and  some  antivirals  [73].  Antimalarial  chloroquine  and
hydroxychloroquine were used in many therapeutic protocols
in various countries, though their efficacy is still under debate
by the scientific community despite their many effective anti-
viral  and  other  biological  properties  shown  in  laboratory
experiments and their long history as antimalarial drugs [74].
Meanwhile,  vitamins  (such  as  vitamin  C and  B1),  prebiotics
and probiotics, as well as magnesium are suggested as adjunct
treatments for COVID-19, while some health promoting foods
such as olive oil [75] and argan oil [76, 77] could also be of
high  relevance  for  nutritional  interventions  for  COVID-19
patients,  due  to  their  unique  vitamins  and  antioxidants  com-
position  (polyphenols,  phytosterols,  vitamin  E,  carotenoids,
oleic acid and other essential fatty acids).

ADDENDUM

Following submission of the present paper, a clinical trial
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was approved by the University Hospital Ethics Committee of
Fez  (Morocco)  to  investigate  the  effect  of  camel  milk
consumption as an adjunct treatment in parallel to the official
drug protocol approved by the Ministry of Health of Morocco
to treat COVID-19 patients. The clinical trial coordinator is Pr
Mourad Errasfa.
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