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Abstract: Several versions of the “flexible chainlike walker” (FCW) model are proposed and investigated by numerical 

simulations on a square lattice. It is shown that the “original” FCWs aggregate spontaneously and irreversibly, where no 

adherence is assumed, triggered by “mutual locking”. This is in complete contrast to established aggregation models 

which necessarily require adherence, and exemplifies the significance of the deformability of self-driven objects. The 

behaviors of the “smart” FCWs, which have higher ability of moving, are similar to those of the original FCWs. This 

suggests that the spontaneous, irreversible aggregation is a robust feature peculiar to a many-body system of deformable 

self-driven objects. On the other hand, the “double-headed” FCWs do not undergo the mutual locking and the resultant 

irreversible aggregation, unlike the original and the smart FCWs. This indicates that “bidirectionality” prevents 

deformable self-driven objects from aggregating. 
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1. INTRODUCTION 

 Dynamics of systems where numerous self-driven objects 
are concerned is one of the hottest topics in the field of 
multidisciplinary physics. Various systems have been 
modeled mainly based on the random-walk model, and 
examined mainly by numerical simulations. For example, the 
territory visited by many random walkers [1,2] and 
aggregation processes of numerous random walkers [3-9] 
have been investigated. Also, traffic flows have been 
modeled by using the “biased” random-walk models [10-17]. 
The usefulness and the wide applicability of the random-
walk model are obvious. In addition, many related models 
have been considered, where the walker is deformable or 
affected by its own track. For instance, the reptation model 
[18], self-avoiding walk (SAW), true SAW (TSAW) [19], 
indefinitely-growing SAW (IGSAW) [20], smart kinetic 
walk (SKW) [21], Laplacian random-walk (LRW) [22,23], 
and the kinetic growth walk (KGW) [24] have been 
proposed, and their behaviors have been investigated and 
contrasted. While the dynamics of a single self-driven object 
has been deeply studied with these models, however, in 
studying many-body systems of self-driven objects, each 
object has been treated just as a point-like particle [3-7,10-
12] or, at most, as a rigid body [8,9,13-17] which does not 
possess deformability. 

 From the point of view of statistical physics, it is 
important and intriguing to examine how the microscopic, 
individual properties of the self-driven object affect the 
macroscopic, collective behaviors. Also, from the standpoint 
of application potentiality, it is interesting to investigate the 
properties of deformable self-driven objects, since there are 
actually  various  self-driven   objects   that   are   deformable  
 

 

*Address correspondence to this author at Department of Mechanical 

Engineering, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, 

Japan; E-mail: ttmasik@ipc.shizuoka.ac.jp 

around us. Even for one-dimensional objects alone, 
examples can be given from those living, such as some kinds 
of bacteria and worms, to those nonliving, such as container 
dollies towed by a tractor and snake-like robots. Especially, 
studying the behaviors of deformable machines is of 
increasing importance, in view of the rapid factory 
automation and the recent development of snake-like robots 
[25]. Therefore, it is a worthwhile issue to study the effect of 
the deformability of self-driven objects. Recently, the author 
proposed the “flexible chainlike walker” (FCW) model as a 
minimal model of deformable self-driven objects and as an 
extension of the regular random-walk model, and reported 
spontaneous, irreversible aggregation without adherence as a 
unique phenomenon peculiar to a many-body system of 
deformable self-driven objects [26]. In this paper, two 
extended versions of the model are proposed in the hope of a 
further understanding of many-body systems of deformable 
self-driven objects. Also, the FCW model has shown 
application potentiality to the study of some kinds of 
transport system or traffic flow, when “bias” is introduced 
[27,28]. This suggests that extending the FCW model also 
contribute to possible future applications in transport 
systems, though direct modeling of certain entities is not 
intended in this paper. 

 In what follows, the original FCW model and the 
irreversible aggregation process are briefly reviewed first. 
Then two derivative versions, the “smart” and the “double-
headed” FCW models, are introduced and compared with the 
original model. 

2. MODEL 

 The basic idea of the FCW model is as follows: An FCW 

of length l  is represented by l  serially-concatenated 

particles, which, on a square lattice, occupy l  horizontally- 

or vertically-adjacent sites. One of the edge particles (the 

first particle) represents the head of the FCW and the other 

(the l th particle) represents the tail. Fig. (1) schematically 
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exemplifies the movement of an l = 5  FCW, where the head 

particle is represented by the double circle. At each time 

step, the head particle can choose and move to one of the 

nearest neighbor sites that is not occupied by another particle 

(either of the same FCW or of another). Then the subsequent 

particles follow the head particle. That is, the second particle 

moves to the site that the head particle has just left, the third 

particle moves to the site that the second particle has just 

left, and so forth. If the head particle fails to choose an 

unoccupied nearest neighbor site, the FCW does not move at 

that time step. 

 

Fig. (1). Flexible chain-like walker model on a square lattice. A 

typical series of movements of an l = 5  FCW is illustrated. At each 

time step, the head particle (represented by the double circle) can 

choose and move to an unoccupied nearest neighbor site in a 

random manner, followed by the subsequent particles. Possible 

moving directions are indicated by the arrows. (See text for details.) 

 As shown above, the FCW model is a simple model, 

which has a single free parameter, namely the length l . 

Also, the regular random-walk, in which the point-like 

walker moves to one of the nearest neighbor sites at every 

time step, irrespective of its track, is recovered from the 

FCW model in the limit of l =1 . Thus the FCW model is an 

extension of the regular random-walk model. It should be 

noted that an FCW of l 3  is deformable, while an FCW of 

l = 2  is a rigid body which does not change shape but just 

changes direction. 

 Now, several versions of the FCW model can be 
suggested depending on the specific way of FCW's moving: 
In the original FCW model [26], the head particle chooses 
one of its four nearest neighbor sites at random at each time 
step and moves to that site if it is vacant. If the chosen site 
happens to be an occupied one, the FCW does not move. On 
the other hand, in the smart FCW model, the head particle 
always chooses and moves to an unoccupied nearest 
neighbor site unless impossible (i.e., except when all the four 
are occupied). Thus the smart FCW is expected to have 
higher possibility of moving in comparison with the original 
FCW. Also, another derivative, the double-headed FCW 
model, can be introduced. In this model, the head and the tail 
particles of each FCW are not fixed but switch with each 
other randomly at every time step, being reminiscent of 
“pushmi-pullyu”, a fictional creature in “The Story of Doctor 
Dolittle” [29]. The randomly-selected head particle chooses 

one of its four nearest neighbor sites at random and moves to 
that site if it is vacant, followed by the subsequent particles, 
as in the case of the original FCW (not the smart FCW). 

3. RESULTS AND DISCUSSION 

 In the present study, N  FCWs are placed on a square 

area of W W  sites. To describe the behaviors of FCWs, 

the following quantities are defined: The density of particles 

is the ratio of the total number of particles to the number of 

sites on the square area; = lN /W 2
. The mobility of FCWs 

at time t  is defined as M (t) = Nmov(t) / N , where Nmov(t)  is 

the number of FCWs that have succeeded in moving at that 

time step. At t = 0 , FCWs are placed at random positions as 

initial distribution. Each FCW is put straight horizontally. 

This is partly for simplicity and partly for avoiding inborn 

“locking” (explained below). Then the FCWs are updated 

following the above-described rules in random order at every 

time step. In the present work, simulations are conducted 

with W =100  under periodic boundary condition. 

 The following are the results of the simulations. First, 

typical results for the original FCWs [26] should be mentioned. 

It was found that the mobility M  decreases with time, to an 

asymptotic value M = M (t ) . Typically, t ~ 50, 000  

was enough for M  to reach M . In Fig. (2) the values of M , 

each of which is averaged over 50,000 time steps in the 

asymptotic state (typically, t = 50, 001 100, 000 ) and over at 

least 10 runs, are plotted as functions of  for 1 l 8 . 

Whereas the M -  curves for l =1  and 2  are linear (which 

were shown to agree with the theoretical formulas of 

M =1  and M =
3

4
(1 ) , respectively), those for 

l 3  are qualitatively different. The curves for l = 3  and 4  

show a sharp drop from a higher- M  state in the lower-  

region to an M ~ 0  state in the higher-  region. Further-

more, for l 5 , M  remains nearly 0  in the whole -region 

investigated. It was demonstrated that when the density  is 

higher the deformable FCWs (i.e., l 3 ) come to get 

immobile, with their head particles surrounded by each other, 

which the author named “mutual locking”, resulting in the 

formation of aggregates. Some of the mutual-locking patterns 

are exemplified in Fig. (3). Discussion about the mutual locking 

was able to qualitatively explain the basic features observed in 

Fig. (2). (These results for original FCWs are detailed in Ref. 

[26]). 

 Now, the results for the smart FCWs are shown in Fig. 

(4), corresponding to Fig. (2). It is clear that, for l =1  and 

2 , the M -  curves are not linear, and the mobility M  

of the smart FCWs is higher than that of the original FCWs 

at the same density . However, the smart FCWs give 

similar results to those of the original FCWs when they are 

deformable. For l = 3  and 4, the M -  curves show the 

transition from the moving (higher- M ) state to the 

aggregating ( M ~ 0 ) state. And the values of the critical 

density at which the transition occurs are nearly the same, as 
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can be seen in the closeup of Fig. (5), though the M -values 

in the moving state are higher than those of the original 

FCWs. For l 5 , M  remains nearly 0  as in the case of 

the original FCWs. 

 
Fig. (2). Asymptotic mobility M  as a function of particle density 

 for 1 l 8  original FCWs. Each symbol represents the 

averaged value taken over 50,000 time steps in the asymptotic state 
and over at least 10 runs. 

 

Fig. (3). Examples of mutual locking of FCWs. (a) Four-body 

mutual locking of l = 3  FCWs. (b) Two-body mutual locking of 

l = 5  FCWs. (c) Self-locking of an l = 8  FCW. (See Ref. [26] for 
details). 

 

Fig. (4). Asymptotic mobility M  as a function of particle density 

 for 1 l 8  smart FCWs. Each symbol represents the averaged 

value taken over 50,000 time steps in the asymptotic state and over 
at least 10 runs. 

 

Fig. (5). Closeup of the M -  curves of the original and the smart 

FCWs near the transition points for l = 3  and 4. 

 The fact that the qualitative behaviors are the same for 
the original and the smart FCWs means that the introduction 
of the “smartness” into each FCW does not essentially affect 
the collective behaviors. It can be concluded that the 
occurrence of the mutual locking and the resultant 
irreversible aggregation are robust features of a many-body 
system of unidirectional, deformable, self-driven objects 
represented by the original or the smart FCW model. 

 Here, it is worth mentioning the novelty and the essence 

of the aggregation mechanism observed in the systems of the 

original and the smart FCWs. There have been several 

models of aggregation processes; from those of point-like 

particles [3-7,30-32] to those of particles aggregates [8,9,33]. 

In  all  these  established  models  some  adherence  has  been 

assumed. That is, in terms of a particle-aggregation process 

like the well-known diffusion-limited aggregation (DLA) [4] 

or ballistic deposition [30,32], a particle adheres to and 

becomes part of an existing aggregate when it comes to 

contact the aggregate, even if stochastically (i.e., with a 

sticking probability p > 0). Also, it is easy to see that 

adherence is virtually assumed in somewhat different types 

of aggregation models like the Eden model [34], which was 

originally proposed for the growth process of a cell colony, 

where one of the adjoining sites of the colony (aggregate) is 

chosen and occupied by a new cell (particle). Obviously, in 

all these models adherence is essential for the aggregation 

process and the irreversibility is attributable to this 

adherence. In the present models, on the other hand, FCWs 

aggregate spontaneously and irreversibly, though no such 

adherence is assumed (i.e., p = 0). Adherence is not required 

for the occurrence of the aggregation of FCWs. Therefore, 

the aggregation mechanism is fundamentally different from 

that of the conventional models. The fact that the 

aggregation is observed only for l 3  clearly indicates that 

the occurrence and irreversibility of the aggregation process 

are brought about by the deformability of FCWs, via mutual 

locking. 

 Next, the results for the double-headed FCWs are shown 

in Fig. (6), corresponding to Figs. (2, 4). The M -  curve 
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for l =1  agrees with that of the original FCWs (i.e., 

M =1 ). This is quite expected, because in this case 

each FCW is a point-like particle (or the regular random-

walker) and there is no point in considering the head and the 

tail particles; that is, the double-headed FCW is identical 

with the original FCW for l =1 . On the other hand, the 

results for l 2  are different from those of the original 

FCWs. The M -  curve for l = 2  is convex upward, while 

that of the original FCWs was a straight line as in the case of 

l =1 . What is more important, however, are the results for 

the deformable FCWs. The curves for l = 3  and 4  show no 

transition from a higher- M  state to an M ~ 0  state. 

Instead, they are similar to that of l = 2  and approach to the 

straight line of l =1  as the density  increases. In other 

words, the double-headed FCWs do not undergo the 

irreversible aggregation but keep higher mobility. The 

difference between the original or the smart FCWs and the 

double-headed FCWs is obvious. While in the former case 

the M -gap between l =1  and l = 3  or 4  widens due to 

the transition, in the latter case it narrows monotonically as 

 increases. Also, while in the former case the M -values 

for l 5  remain nearly 0 , in the latter case they are very 

close to that for l = 2  and keep a high level in the whole -

region investigated. 

 

Fig. (6). Asymptotic mobility M  as a function of particle density 

 for 1 l 8  double-headed FCWs. Each symbol represents the 

averaged value taken over 50,000 time steps in the asymptotic state 
and over at least 10 runs. 

 The system of the double-headed FCWs is characterized 

also by the fact that all the M -  curves (of l 2 ) are 

close to each other, which means that the length l  does not 

much affect the collective behaviors. This is in contrast with 

the cases of the original and the smart FCWs, where the 

length acts as an “immobilizer” in the sense that the mobility 

M  considerably decreases as the length l  increases, 

leading to more opportunities of mutual locking. The reason 

why the double-headed FCWs do not undergo mutual 

locking is not because they remain in nearly the same 

positions, without moving effectively, due to the random 

switching of the head and the tail particles. In a macroscopic 

time scale, each double-headed FCW surely travels, as does 

the regular random-walker whose displacement is proport-

ional to the square root of the elapsed time ( t ). Never-

theless, the double-headed FCWs do not fall into the 

M ~ 0  state (which was confirmed in long runs of simula-

tion for t =100, 000, 000 ). 

 The comparison of the behaviors of the double-headed 
FCWs with those of the original or the smart FCWs shows 
that the introduction of “bidirectionality” into each FCW 
makes a significant change in the collective behaviors. It can 
be concluded that bidirectionality prevents deformable self-
driven objects from undergoing the mutual locking and the 
resultant irreversible aggregation, which are robust features 
of unidirectional, deformable, self-driven objects. 

4. CONCLUSION 

 To conclude, in the present paper, “flexible chain-like 

walker” (FCW) models have been proposed and their 

behaviors have been investigated through numerical 

simulations. In the many-body system of the “original” 

FCWs, the mutual locking and the resultant irreversible 

aggregation were observed for l 3 . They were observed 

also for the system of “smart” FCWs, where each FCW 

moves whenever possible. This shows that they are robust, 

unique characteristics of unidirectional, deformable, self-

driven objects. On the other hand, the “double-headed” 

FCWs did not aggregate irreversibly as in the cases of the 

original and the smart FCWs. This indicates that bidirectionality 

prevents self-driven objects from experiencing the mutual 

locking and thus the irreversible aggregation. 

 Further studies of the many-body systems of FCWs, 
motivated by the present work, would be challenging. For 
example, extending the FCW model for off-lattice or higher-
dimensional space may reveal some other properties peculiar 
to many-body systems of deformable self-driven objects. 
And, of course, it is intriguing to investigate traffic flows 
with the use of “biased” FCW models, from the viewpoint of 
transport phenomena, some of which has actually been done 
and reported elsewhere [27,28]. 
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