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Abstract: This paper investigates the influence of melting and thermo-diffusion effect on natural convection heat and 

mass transfer from vertical flat plate in a non-Newtonian fluid saturated non-Darcy porous medium. The wall and the 

ambient medium are maintained at constant but different levels of temperature and concentration such that the heat and 

mass transfer occurs from the wall to the medium. The Ostwald-de Waele power law model is used to characterize the 

non-Newtonian fluid behavior. A similarity solution for the transformed governing equations is obtained, computation is 

carried out for various values of the non-dimensional physical parameters. The variation in velocity, temperature, 

concentration, heat and mass transfer coefficients with the power law index, inertia parameter, melting parameter, thermo-

diffusion parameter, buoyancy ratio and Lewis number is discussed for a wide range of values of these parameters. 
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INTRODUCTION 

 The study of convective heat and mass transfer 
accompanied by melting effect in porous media has received 
a much attention in the recent years because of its important 
applications in casting, welding and magma solidification, 
permafrost melting and thawing of frozen ground etc. 
Epstein and Chao [1] studied the melting heat transfer from a 
flat plate in a steady laminar case, while Kazmierczak et al. 
[2, 3] analyzed melting from a vertical flat plate embedded in 
a porous medium in both free and forced convection 
processes. The heat transfer at the melting surface in the 
laminar boundary layer by using Karman-Pohlhausen 
method is discussed by Pozvonkov et al. [4]. Bakier [5] 
studied the melting effect on mixed convection from a 
vertical plate of arbitrary wall temperature both in aiding and 
opposing flows in a fluid saturated porous medium while 
Gorla et al. [6] considered similar study with uniform wall 
temperature conditions. Tashtoush [7] studied the magnetic 
and buoyancy effects to investigate the flow, temperature 
profiles and heat transfer characteristics for melting effect 
associated with uniform wall temperature based on non-
Darcy flow model. The melting phenomena on unsteady and 
steady mixed convection heat transfer from a vertical plate in 
a liquid saturated porous medium with aiding and opposing 
external flows has been studied by Cheng and Lin [8, 9]. 
Later they extended their work to the unsteady mass transfer 
[10] by considering double diffusion processes. 

 Non-Newtonian power law fluids are so widespread in 
industrial processes and in the environment that it would be 
no exaggeration to affirm that Newtonian shear flows are the 
exception rather than the rule. Poulikakos and Spatz [11] 
analyzed the melting phenomena on free convection from a 
vertical front in a non-Newtonian fluid saturated porous 
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matrix. Natural convection of a non-Newtonian fluid about a 
vertical wall and that around horizontal cylinder and sphere 
in a porous medium was presented by Chen and Chen [12] 
and Chen and Chen [13], respectively. Nakayama and 
Koyama [14] analyzed the more general case of free 
convection over a non-isothermal body of arbitrary shape 
embedded in a porous medium. Rastogi and Poulikakos [15] 
examined the problem of double diffusive convection from a 
vertical plate in a porous medium saturated with a non-
Newtonian power law fluid. Shenoy [16] presented many 
interesting applications of non-Newtonian power law fluids 
with yield stress on convective heat transport in fluid 
saturated porous media considering geothermal and oil 
reservoir engineering applications. A unified similarity 
transformation for Darcy and non-Darcy forced, free and 
mixed convection heat transfer in non-Newtonian inelastic 
fluid-saturated porous media is studied by Nakayama and 
Shenoy [17]. Later, Shenoy [18] analyzed non-Darcy natural, 
forced and mixed convection heat transfer in non-Newtonian 
power-law fluid saturated porous media. 

 The diffusion of energy caused by a composition gradient 
is called the Dufour or diffusion-thermo effect. On the other 
hand, diffusion of mass due to temperature gradient is called 
Soret or thermo-diffusion effects. In liquid mixtures the 
Dufour terms is indeed very small and thus the Dufour effect 
will be negligible in comparison to the Soret effect. Hence 
one may ignore the Dufour terms when dealing with liquids. 
Alam and Rahman [19] studied the Dufour and Soret effects 
on steady MHD free convective heat and mass transfer flow 
past a semi-infinite vertical porous plate embedded in a 
porous media considering Soret Dufour effects. An 
analytical study of linear and non-linear double diffusive 
convection in couple stress liquids with Soret effect reported 
by Malashetty et al. [20]. Postelnicu [21] studied 
numerically the influence of chemical reaction on heat and 
mass transfer by natural convection from vertical surfaces in 
porous media considering Soret and Dufour effects. Thermal 
diffusion and MHD effects on combined, free-forced 
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convection and mass transfer of a viscous fluid flow through 
a porous medium with heat generation is examined by 
Abdel-Rahman [22]. The linear stability analysis of Soret-
driven thermo-solutal convection in a shallow horizontal 
layer of a porous medium subjected to inclined thermal and 
solutal gradients of finite magnitude is investigated 
theoretically by Narayana et al. [23]. 

 The main purpose of the present investigation is to 
illustrate the effect of melting and thermal-diffusion on 
natural convection heat and mass transfer in a non-
Newtonian fluid saturated non-Darcy porous medium, with a 
power law model for non-Newtonian fluid, using the 
similarity solution technique. 

 

Fig. (1). Schematic of the interface (vertical line) separating the 

solid and liquid saturated porous medium. 

Mathematical Formulations 

 Consider the free convection heat and mass transfer from 

a vertical plate embedded in a non-Darcy porous medium 

saturated with a non-Newtonian fluid. It is assumed that the 

plate constitutes the interface between the liquid phase and 

the solid phase during melting inside the porous matrix. The 

co-ordinate system and flow model are shown in the Fig. (1). 

The  x -coordinate is taken along the plate, the 
 
y -coordinate 

is measured normal to the plate, while the origin of the 

reference system is taken at the leading edge of the plate. 

The fluid flow is moderate and the permeability of the 

medium is assumed to be low so that the Forchheimer flow 

model is applicable and the boundary-drag effect is 

neglected. The plate is at a constant temperature 
 
T

m
 at which 

the material of the porous matrix melts. The liquid phase 

temperature is 
 
T (>

 
T

m
) and the temperature of the solid far 

from the interface is 
  
T

0
(<

 
T

m
). The concentration at the wall 

is 
 
C

w
 and the surrounding porous medium is maintained at 

constant concentration 
 
C . The flow is steady, laminar and 

two dimensional. With the usual boundary layer and linear 

Boussinesq approximations, the governing equations, 

namely the equation of continuity, the non-Darcy flow 

model (i.e. the model given by Shenoy [18]), the energy 

equation and the concentration equation for the isotropic and 

homogeneous porous medium may be written as 
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 In the above equations, u and v are the Darcian velocity 

components along the x and y directions,  T  and  C  are the 

temperature and concentration, respectively, n is the power 

law index.  is the reference density, g is the acceleration 

due to gravity, 
  

= k / ( c
f
) is the equivalent thermal 

diffusivity, k is the effective thermal conductivity of the 

saturated porous medium,  D  is the effective solutal 

diffusivities, respectively, 
  
D

1
quantifies the contribution to 

the mass flux due to temperature gradient, 
 T

 and 
 C

 are 

the thermal expansion coefficient and concentration 

expansion coefficient, respectively. Also, b is the empirical 

constant associated with the Forchheimer porous inertia term 

and 
 
μ *  is the consistency index for power law fluid. 

Following Christopher and Middleman [24] and 

Dharmadhikari and Kale [25], the modified permeability of 

the flow k* of the non-Newtonian power law fluid is defined 

as 
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and for   n = 1 , 
  

c
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. 

 The boundary conditions necessary to complete the 
problem formulation are written as: 

y = 0: 
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where L and 
s
c  are latent heat of the solid and the specific 

heat capacity of the solid phase, respectively. 
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 The boundary condition (5) at the interface states that the 

temperature of the plate is equal to the melting temperature 

of the material saturating the porous matrix and the other 

condition means that the heat conducted to the melting 

surface is equal to the sum of heat of melting and the 

sensible heat required to raise the temperature of the solid, 

  
T

0

 to its melting temperature 
 
T

m
. It is important to note that 

the aforementioned equation is consistent with a coordinate 

system fixed to the melting surface, so that the interior of the 

solid appears to move towards the (stationary) melting 

surface with constant velocity equal to the melting velocity 

v(x,0). According to the present formulation, transient 

effects in the solid have been neglected. This assumption is 

valid as long as melting solid is large compared to its 

thermal boundary layer thickness [1]. 

 The continuity equation is automatically satisfied by 

defining a stream function 
  

(x, y)  such that 

 

u =
y

 and 

 

v =
x

. We introduce the following similarity 

transformation: 
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 The above transformation reduces the system of partial 
differential equations into the following system of non-linear 
ordinary differential equations: 

  
n f

n 1
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 The boundary conditions are 

 
= 0 ,

  
f + 2M = 0 ,  = 0 , 
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, 
  
f 0 ,  1 , 

 
1 .         (11) 

 In the above, n is the power law index. The power law 

fluids with n < 1 are called pseudoplastics, while those with 

  n > 1  are termed as dilatants. 

  

M =

c
f
(T T

m
)

L + c
s
(T

m
T

0
)

 is the 

melting parameter, 
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 is the Soret number, 
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is the modified 

Grashof number. The buoyancy ratio is 
 
N =

c w T w
 and 

 
Le = D  is the Lewis number. The parameter   N > 0  

represents the aiding buoyancy and   N < 0  represents the 

opposing buoyancy. 

 The non-dimensional heat and mass transfer coefficients 
are defined as 

  
Nu

x
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x

1/2
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RESULTS AND DISCUSSION 

 The resulting ordinary differential equations (7)-(9) along 

with the boundary conditions (10)-(11) are solved using 

matlab BVP solver bvp4c which is a finite difference code 

that implements the 3-stage Lobatto IIIa formula. The 

integration length  varies with the parameter values and it 

has been suitably chosen each time such that the boundary 

conditions at the outer edge of the boundary layer are 

satisfied. The results obtained here are accurate up to the  4
th

 

decimal place. In order to assess the accuracy of the solution, 

the present results for the Nusselt number are compared with 

those obtained by Poulikakos and Spatz [11] with N = 0 and 

  
S

r
= 0 , the trend shows that the results are in good 

agreement. The following values are considered for the 

parameters:   0.5 n 1.5 ,   0 M 1 , 
  

0.5 N 3 , 

  
0.5 S

r
0.5 ,   0.5 Le 5  and   0.01 Gr* 0.1 . The 

variation of heat and mass transfer coefficients are shown for 

some selected values of the parameters through figures. 

Aiding Buoyancy 

 Figs. (2-4) show the non-dimensional velocity 
  
f /

, 

temperature  and concentration  profiles for various 

values of power law index n and melting parameter M for 

fixed values of N, Gr*, Le and Sr. It can be seen from Fig. 

(2) that the values of the slip velocity, 
  
f / (0) , decreases as 

the power law index n increases. As the power law index n 

increases, the momentum, temperature and concentration 

boundary layer thicknesses increases. Increasing the melting 

parameter M increases the velocity inside the boundary layer 

and, therefore, it decreases the temperature and concentration 

distributions. 

 The variation of Nusselt and Sherwood number versus 

the power law index parameter n for different values of M 

and 
 
S

r
 is shown in Figs. (5, 6). As the power law index n 

and the melting parameter M increases, the Nusselt and 

Sherwood number decreases. The reason for this is that 

increasing the power law index n and the melting parameter 

M increases thermal and concentration boundary layer 

thickness (see Figs. 3, 4) which results in a reduction in  
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Fig. (2). Variation of velocity profiles with similarity variable  for 

aiding buoyancy (N > 0). 

 

Fig. (3). Variation of temperature profiles with similarity 
variable  for aiding buoyancy (N > 0). 

temperature and concentration gradient at the surface of the 

plate. Also it can be noted that as the Soret parameter 
 
S

r
 

increases the heat transfer coefficient increases but the mass 

transfer coefficient reduces for all values of n. This is 

because, either a decrease in concentration difference or an 

increases in temperature difference leads to an increase in the 

value of the Soret parameter 
 
S

r
. Hence increasing the 

parameter 
 
S

r
 increases the non-dimensional heat transfer 

coefficient and decreases the mass transfer coefficient. The 

effect of Soret parameter on the heat and mass transfer 

coefficient reduces with increasing M for all values of n. 

 Fig. (7) depicts the effect of Le on the heat transfer 
coefficient for varying n and M. It is clearly seen from this 
figure that as Le increases the reduction due to increasing M 
in heat transfer coefficient reduces for both pseudoplastic 
and dilatant fluids. Also, it is more for the dilatants in the 

whole range of Le. The variation of mass transfer coefficient 
against Le for different values of n and M is illustrated in the 
Fig. (8). It is observed that as Le increases the reduction in 
the mass transfer coefficient due to increase in the value of 
the melting parameter M increases. It is also noticed that this 
reduction is more for dilatants when compared to 
pseudoplastic fluids. 

 

Fig. (4). Variation of concentration profiles with similarity variable 
for aiding buoyancy (N > 0). 

 

Fig. (5). Variation of heat transfer coefficient against n for varying 

 M and 
 
S

r
. 

Opposing Buoyancy 

 The variation of non-dimensional velocity 
  
f /

, 

temperature  and concentration  against the similarity 

variable  for different values of n and M is shown in Figs. 

(9-11). It is observed from these figures that slip velocity, 

  
f /

(0), increases with n and the momentum, temperature and 

concentration boundary layer thickness decreases with n, 

therefore, heat and mass transfer rate increases with the 

power law index n. With the increase in the value of the 

melting parameter M, an identical behavior is observed, as in 
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case of aiding buoyancy, on the velocity, temperature and 

concentration fields. 

 

Fig. (6). Variation of mass transfer coefficient against n for varying 

 M and 
 
S

r
. 

 

Fig. (7). Variation of heat transfer coefficient against Le for varying 

n and M. 

 The variations of the Nusselt and Sherwood number as a 

function of power law index n is shown for three different 

values of M and 
 
S

r
 in Figs. (12, 13) respectively with fixed 

values of the other parameters. From these figures it is 

evident that increasing the melting parameter M reduces the 

heat and mass transfer coefficient. Also it plays a vital role in 

reducing the heat and mass transfer coefficient for dilatants 

in the medium compared with that for pseudoplastics. It can 

be noted from these figures that increase in 
 
S

r
 reduces the 

heat and mass transfer coefficient for all values of the power 

law index n. The effect of 
 
S

r
 on the heat and mass transfer 

coefficient reduces as the melting parameter increases. 

 Figs. (14, 15) illustrate the variation of the Nusselt and 
Sherwood numbers against Le for different values of n and 
M, respectively with fixed value of other parameters. It is  
 

observed that as Le increases the reduction due to increment 
in the melting parameter on the Nusselt and Sherwood 
number increases. Also it can be noted that the reduction is 
more pronounced for dilatant fluids in the porous medium. 

 

Fig. (8). Variation of mass transfer coefficient against Le for 

varying n and M. 

 

Fig. (9). Variation of velocity profiles with similarity variable  

for opposing buoyancy (N < 0). 

CONCLUSIONS 

 In this study the melting phenomena with thermo-

diffusion effect on free convection from a vertical flat plate 

with constant wall temperature and concentration embedded 

in a non-Darcy porous medium saturated with non-

Newtonian fluid is analyzed. Both the aiding and opposing 

buoyancies are considered for analysis, and the heat and 

mass transfer coefficients are obtained for various values of 

flow influencing parameters. The results are analyzed 

thoroughly for different cases of  Le <1,  Le =1, and  Le >1. It 

is noted that the velocity, temperature and concentration 

profiles as well as the heat and mass transfer coefficients are 

significantly affected by the melting phenomena and 

thermal-diffusion in the medium. The major conclusion is  
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Fig. (10). Variation of temperature profiles with similarity variable 
 for opposing buoyancy (N < 0). 

 

Fig. (11). Variation of concentration pr iles with similarity 
variable  for opposing buoyancy (N < 0). 

Fig. (12). Variation of heat transfer coefficient against n for varying 

 M  and 
 
S

r
. 

 

Fig. (13). Variation of mass transfer coefficient against n for 

varying M and 
 
S

r
. 

 

Fig. (14). Variation of heat transfer coefficient against Le for 

varying n and M. 

 

Fig. (15). Variation of mass transfer coefficient against Le for 

varying n and M. 
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that the heat and mass transfer coefficient are reduces with 

increasing value of the melting parameter M for all n (>, =, < 1). 

The effect of Soret parameter on the heat and mass transfer 

coefficient reduces with increasing value of the melting 

parameter in the whole range of n. Finally, the effect melting 

on the heat and mass transfer coefficient is more significant 

for dilatant fluids in the medium, compared to 

pseudoplastics. 

NOMENCLATURE 

 b  = Coefficient in the Forchheimer term 

 
c

f
 = Specific heat capacity of the convective fluid  

   [J / kg K] 

 
c

s
 = Specific heat capacity of the solid phase [J / kg K] 

 d  = Pore diameter [m] 

D = Solutal diffusivity [m
2
/s] 

D1 = Soret coefficient 

 = Porosity of the saturated porous medium 

 
f  = Dimensionless stream function 

 
g  = Acceleration due to gravity [ m/s

2 ] 

  k *  = Intrinsic permeability of the porous medium for  

   flow of power law fluid [ m
2
] 

K = Permeability of the porous medium [ m
2
] 

Gr* = Non-Darcian (inertia) parameter or Grashof  

   number based on permeability for power law fluid 

n = Power law index 

N = Buoyancy ratio 

Nu = Nusselt number 

Sh = Sherwood number 

 
S

r
 = Thermal-diffusion or Soret parameter 

L = Latent heat of the solid [J /kg] 

Le = Lewis number 

T = Temperature [K] 

C = Concentration 

  
x, y  = Axial and normal co-ordinates [m] 

  
u,v  = Velocity components in x and y directions [m/s] 

Greek Symbols 

 
μ *  = Fluid consistency of the inelastic non-Newtonian  

   power-law fluid [ kg/(ms) ] 

 = Reference density at some point [kg/m
3
] 

 = Thermal diffusivity [m
2
/s] 

 T
 = Coefficient of thermal expansion [ 1/K ] 

 c
 = Coefficient of solutal expansion [ 1/K ] 

 = Dimensionless stream function 

 = Similarity variable 

 = Dimensionless temperature 

 = Dimensionless concentration 

 w
 = 

 
T T

m
 

 w
 = 

 
C

w
C  

Subscripts 

  
w,  = Conditions on the wall and at the ambient medium 
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