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Abstract: Effect of small amplitude oscillation in the wall temperature on the natural convection flow from a cylinder of 

elliptic cross section has been investigated. Solutions of the governing equation are obtained for eccentric angle  in the 

range [0, ] employing the finite difference method together with Keller-box elimination. The solutions are discussed in 

terms of amplitude and phase of the skin-friction and rate of heat transfer for fluid having Prandtl number equals 0.1 for 
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1. INTRODUCTION 

 Free convection refers to a case where the fluid move-

ment is created by the warm fluid itself and also a process in 
which the fluid motion is set up by buoyancy effects due to 

density gradients within the fluid caused by the temperature 

field itself. The density of fluid decreases as it is heated; 
thus, hot fluids are lighter than cool fluids. Warm fluid sur-

rounding a hot objects rises, and is replaced by cooler fluid. 

The result is a circulation of a fluid above the warm surface. 
The requirements of modern technology have stimulated 

interest in fluid flows, which involve the interaction of appli-

cable phenomena. For example, free convection over vertical 
or horizontally placed cylinders is relevant to flow over 

tubes in nuclear reactors and cylindrical heating elements. 

With this understanding, Merkin [1] considered the case of 
free convection boundary layer on an isothermal horizontal 

circular cylinder in viscous fluid and was the first to present 

a complete solution to this problem for Newtonian fluid us-
ing Blasius and Görtler series expansion methods along with 

an integral method and a finite difference scheme. The case 

of free convective boundary layers on cylinder of elliptic 
cross section over isothermal bodies had been considered, 

later, by Merkin [2]. In this investigation the heat transfers 

from isothermal cylinder of elliptic cross section of various 
eccentricities in both cases when the major axis is horizontal 

and vertical had been considered. Hossain et al. [3] investi-

gated the same problem posed above for steady free convec-
tion flow by bringing the effect of radiative heat transfer. In 

that work, they showed that the rate of heat transfer from the 

slender body is higher than from the blunt body due to in-
crease of radiation parameter. Saville and Churcill [4] and 

Lin and Chao [5] had also investigated free convection flow  
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from a horizontal cylinder and from axisymmetric bodies of 
arbitrary contours with isothermal surface condition.  

 In unsteady boundary layer theory, one area of study, has 
received much attention in the past deals with boundary  
layers responses to imposed oscillations. Lighthill [6] was 
the first to have studied the unsteady forced flow of a  
viscous incompressible fluid past a flat plate and a circular 
cylinder with small amplitude oscillation in the free stream. 
Also Glaurt and Lighthill [7] investigated the axisymmetric 
boundary layer flow past a long thin circular cylinder.  
Subsequent authors have extended Lighthill’s solution, but in 
general have retained the small-  approximations (0    1 
is the amplitude parameter). Gibellato [8] and Ghosh [9] 
restricted themselves to the case of the semi-infinite plate, 
and independently extended for small-  (= x/U0(x), the  
frequency parameter) expansion to several terms. Ghosh  
also extended the large-  expansion, but considered only the 
viscous not the thermal boundary layer. Verma [10] investi-
gated the fluctuating free convection fluctuating boundary 
layer on a horizontal plate subject to small amplitude oscilla-
tion about a constant mean in the surface temperature. These 
oscillatory flow and heat transfer problems are important in 
engineering because such flows occur often in practice. 
Similar analysis, using the Karman-Paulhausen approximate 
integral method, effect of surface temperature oscillation  
on the oscillating natural convection flow from a vertical 
surface had been made by Nanda and Sharma [11]. They 
consider skin friction and the rate of heat transfer for both 
low and high frequency. Harpole and Catton [12] considered 
the steady laminar natural convection flow over a heated 
blunt body for low Prandtl number. They applied the Blasius 
series expansion method to convert the partial differential 
equation into ordinary differential equation. The results were 
present for both the suitable surface heat flux and the  
suitable surface temperature case. Based on the linearized 
theory, Kelleher and Yang [13] have studied the heat transfer 
responses of a laminar free convection boundary layer along 
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a vertical heated plate to surface temperature oscillations, 
when the mean surface temperature w(x) is proportional to 
x

n
, where x is the distance measured from the leading edge of 

the plate. The results were presented in terms of skin friction 
and heat transfer for small , which measures the distribution 
of the frequency of oscillation in the surface temperature and 
buoyancy force. Later, Eshghy et al. [14] investigated the 
finite amplitude longitudinal oscillation on free convection 
flow of a viscous incompressible fluid from a vertical  
surface. Hossain et al. [15] investigate the buoyancy force 
arising from both thermal and mass diffusion in the unsteady 
natural convection flow from a vertical plate based on the 
linearization theory posed by Kelleher and Yang [13]. The 
surface is subjected to small amplitude temporal oscillations 
in both its temperature and species concentration with non-
zero means. In the study they employed the implicit finite 
difference method to obtaining the solution for intermediate 
frequencies. Numerical results are obtained for a wide range 
of the frequency of oscillation. The problem posed in [13] 
has further been investigated by Hossain et al. [16] for the 
electrically conducting fluid along a vertical plate in the 
presence of the variable transverse magnetic field assuming 
that the mean temperature assumed to vary as power of x that 
measure the distance from the leading edge. Very recently 
Jaman et al. [17] dealt with the problems encountered in the 
flow field at the free convection flow of a viscous incom-
pressible fluid along an infinite horizontal cylinder when the 
temperature of the cylinder is oscillating sinusoidically. In 
which they investigated the local skin friction and local rate 
of heat transfer in terms of amplitude and phase, respec-
tively. The flow patterns had also been shown graphically in 
terms of skin-friction and heat transfer coefficient with effect 
of Prandtl number, Pr, the Strouhal number, St, amplitude of 
oscillation, , and curvature parameter . 

 In the present paper, we investigate the natural convec-
tion boundary layer flow of a viscous incompressible fluid 
over an isothermal cylinder of elliptic cross section of vari-
ous eccentricities in both cases when the major axis is hori-
zontal as well as vertical. The temperature of the cylinder is 
assumed to be oscillating about a mean temperature G0, with 
small amplitude, . The motion is caused by the action of 
oscillating buoyant body forces on the fluid near the cylin-
der. Using appropriate transformations, the governing equa-
tions reduced to local non-similarity equations for both the 
steady mean flow and for the oscillating flow, solutions of 
which are obtained numerically employing the finite differ-
ence method together with Keller-box elimination method. 

Here the heat transfer results for a range of values of the per-
tinent parameters have been represented. Effects of pertinent 
parameters, such as the frequency parameter, , and for the 
unit value of the Prandtl number, Pr, on the local skin-
friction as well as on the local heat transfer coefficients, ob-
tained for steady state situation, are shown graphically for 
the entire surface of the cylinder. The results are presented in 
terms of amplitude and phase in surface heat-flux coefficient 
temperature for the values of  lies in [0, ] radian which 
measure the eccentric angle. The flow patterns in terms of 
streamlines and isotherms has also been shown graphically 
with effect of Prandtl number Pr, the frequency of oscilla-
tion, , amplitude of oscillation, , and the different values 
of A0. 

2. MATHEMATICAL FORMULATION 

 We consider a two-dimensional unsteady laminar free 
convection boundary layer flow of a viscous incompressible 
fluid along a cylinder of elliptic cross section with a and b as 
the semi-major and semi-minor axis of the cylinder respec-
tively. It is assumed that the surface temperature of the  
cylinder is oscillating with small amplitude about a constant 
mean temperature. The mean surface temperature of the  
cylinder is maintained at T and the ambient temperature of 
the fluid assumed to be T . The physical configuration and 
the coordinate system for this flow are shown in Fig. (1).  

 Under the usual Boussinesq approximation the flow is 
governed by the following boundary layer equations:  
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where, ( )vu, are the velocity components along the ( )yx,  

axes,  is the kinematic viscosity,  the angle made by the 

outward normal from the cylinder, T being the temperature 

of the fluid in the boundary layer, g is the gravitational ac-

celeration,  is the density of the fluid,  is the coefficient of 

thermal expansion. It is worth mentioning that Bousinesqu 

approximation is valid for small temperature difference be-

 

 

 

 

 

 

 

 

 

 
Fig. (1). Physical model and coordinate system of (a) blunt and (b) slender elliptic cylinder. 
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tween the surface of the body and the ambient fluid. Hence 

the present investigation is valid for week buoyancy or 

smaller values of Grashof number. 

 The boundary conditions are to be satisfied by the equa-
tions (1) to (3) are 

( )0, 0, at y 0u v T T TF t= = = =  

  u 0, T 0 as y
 

  (4) 

 In Equation (4) F(t) is an oscillating function in t 

 We now introduce the following non-dimensional quanti-
ties 

1/2 1/4
, ,

2
1/4 1

, ,

3
2

T T
u Gr U Gr V G

L L
a a T

x a
Y Gr y X Gr t

L
a

g T
Gr a

L

= = =

= = =

=

v

 
  (5) 

 The equations then become 
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 The boundary conditions are then 

0, 0, ( ) 1 cosU V G F= = = = +  at 0Y =  

0, 0 asU G Y  

  (9) 

 In Equation (9)  is the frequency of oscillation,  (<1) is 
a positive real number that designates the amplitude of oscil-
lation in surface temperature and  is the time.  

 To deal with bodied with rounded lower ends for which 
sin /X  A0 (a constant) as X 0 . For circular cylindrical 
cross section sin  = sin X, we treat the surface as an elliptic 
cylinder of two orientations; namely: (i) a blunt elliptic  
cylinder and (ii) a slender elliptic cylinder. When the major 
axis is horizontal then the surface is blunt elliptic cylinder 
and for slender elliptic cylinder the major axis is vertical. X 
and sin  are given in terms of a parameter , as shown in 
Fig. (1), by 
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for a blunt elliptic cylinder and  
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for a slender elliptic cylinder. For both the cases ‘a’ is the 

length of the semi-major axis, ‘b’ is that of the semi-minor 

axis and  is the eccentric angle with eccentricity, 

( )2/1 abe = , so that A0 = b/a for the blunt orientation 

and A0 = (a/b)
2
 for slender orientation. 

 The solution of the above system of differential equations 
will be obtained in terms of complex functions only, the real 
parts of which will have physical significance. We write U, 
V, and G as the sum of the steady and small oscillating com-
ponents as 

 The surface temperature conditions in (9) suggest the 
solutions of equations (6)-(8) of the form 
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where U0, V0 and G0 represent the steady mean flow satisfy-
ing the equations:  
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with boundary conditions 
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and for the unsteady flow, the components U1, V1 and G1 
satisfy the equations 
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 Following are the boundary conditions to be satisfied by 
the above equations 
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 It should be mention that our desired solutions are the 
real parts of the function.  

 To get the set of equations in convenient form for  
integration, we define the following one parameter group  
of transformation for the dependent and the independent 
variables:  

( ) [ ]),(),,(,,, 010 ffYX ===
 

( ) )],(),,([, 010 =GG
 

(21) 

 Where 0 and 1 are, respectively, the stream functions 
for the steady state flow and the oscillating part of the prob-
lem defined by 
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that satisfy equations (13) and (17) automatically.  

 Thus for the steady state flow, the set of equations (14)-
(15) are transformed to 
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 Here, Pr is defined to be the ratio of the kinematic viscos-
ity to the thermal diffusivity of the fluid and known as 
Prandtl number. 

 The appropriate boundary conditions to be satisfied by 
(22) and (23) are 
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 Here prime denotes the differentiation with respect to .  

 Now, we are in a position to get the fluctuating parts of 
the momentum and the energy equations from (18) and (19) 
using the transformations given in (21). The equations ob-
tained are as given below: 
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where  is the frequency parameter, that depends on the 
frequency of oscillation of the fluctuating flow. 

 The corresponding boundary conditions (20) becomes 

( )( ,0) ( ,0) 0, ,0 1f f= = =
 

( )( , ) 0, , 0f = =
 

(27) 

 One can see the set of equations (22), (23), (25) and (26) 
together with the boundary conditions (24) and (27) are cou-
pled and hence we need to get the solutions of these equa-

tions all at one time to get better results. 

3. METHOD OF SOLUTION 

 Now, we are at the position to employ the most efficient 
and accurate implicit finite difference method together with 
the Keller-box elimination technique (also known as Keller 
box method), introduced by Keller [18] and described in 
more detail in Cebeci and Bradshaw [19] in finding the solu-
tions of the parabolic system of equations (22)-(33) and (25)-
(26) that represents the steady and oscillatory components of 
the velocity and temperature fields. To apply the aforemen-
tioned method, the system of equations (22)-(23) and (25)-
(26) are, first, written in terms of a system of first order 
equations as follows: 

0
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where p1=1, p2=2, 
sin

3
p =  and p4=  then corresponding 

boundary conditions becomes 
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 In the above equations functions fr, fr , fr , r, r  and fi, 

fi , fi , i, i  are the real and imaginary parts of the functions 

f, f , f ,  and , respectively. 

 The above equations are then expressed in finite differ-

ence form by approximating the functions and their deriva-

tives in terms of the central differences in both co-ordinate 

directions. Denoting the mesh points in the ( , ) plane by  

i and j, where 
   i = 1,2,3,K, M and j = 1,2,3,K, N , central 

difference approximations are made such that the equations 

involving X explicitly are centered at ( i-1/2, Yj-1/2) and the 

remainder at ( i, j-1/2), where j-1/2 = ( j+ j-1)/2, etc. This 

results in a set of non-linear difference equations for the  

unknowns at i in terms of their values at i-1. These  

equations are then linearized by the Newton’s quasi-

linearization technique and solved using block-tridiagonal 

algorithm, introduced by Keller [18] taking as the initial  

iteration of the converged solution at = i-1. To initiate  

the process at  = 0, we first prescribe the profiles for the 

functions f0, f0 , f0 , 0, 0
 and fr, fr , fr , r, r  and fi, fi , fi , 

i, i , from the solutions of the equations (35)-(40) that are 

obtained numerically using the Newton-Raphson iteration 

technique together with the sixth-order implicit Runge-Kutta 

initial value solver. 
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for pertinent parameters, such as, Pr,  and A0. 

 These profiles are then employed in the Keller box 

scheme, which has second-order accuracy to march stepwise 

along the boundary layer. For any given value of , the itera-

tive procedure is stopped to obtain the final velocity and 

temperature distributions when the difference in computing 

the velocity, the temperature and the species concentration in 

the latest iteration is less than 10
6
, i.e., f 

i
10 6, where the 

superscript i denotes the number of iterations. Throughout 

the computations a non-uniform grid has been used by con-

sidering j = sinh ((j-1)/d), with j = 1,2,......, 301  and d = 100.  

 Numerical values of the local mean heat transfer coeffi-

cient, 0 ,0( ) , obtained from the above solutions for Pr = 

1.0 with A0=0.25 and 0.50 against the eccentric angle , are 

entered in Tables. 1-2 for two types of cylindrical forms, 

known as blunt and slender elliptic cylinder. The results are 

compared and found in excellent agreement with the corre-

sponding solutions obtained by Merkin [2] and Kumar et al. 

[20]. 

 Now from the set of relation (12) together with the trans-
formation given in (21), we have the following expressions 
for dimensionless axial velocity and the temperature func-
tions as given below: 

( )( , , ) ( , ) cos ( , ) sin ( , )
0

U f f fri= +  

( )( , , ) ( , ) cos ( , ) sin ( , )
0

G ri
= +    (46a,b) 

 In equation (46a,b) fr , fi  and
ir

,  are respectively, 

the real and imaginary parts of the velocity function, 

( ),f , and the temperature function, ( ), . 

 The physical quantities that are important from applica-
tion point of view are the shear stress, w, and the surface 
rate of heat transfer, qw. These can be measured from the 
non-dimensional relations (47) and (48). 

  w = f0( ,0) + A1 cos t + 1( )  (47) 

and  
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Table 2. Numerical Values of the )0,(0
 (Mean Flow)for 

Different Values of  While Pr = 1.0 and b/a= 0.25 fora 

Slender Elliptic Cylinder 

 Present IFDM Kumer et al. [20] Merkin [02] 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

 

0.8426 

0.7706 

0.6619 

0.5781 

0.5175 

0.4729 

0.4392 

0.4132 

0.3929 

0.3768 

0.3641 

0.3538 

0.3451 

0.3370 

0.3270 

0.3062 

0.2780 

0.8428 

0.7722 

0.6632 

0.5794 

0.5191 

0.4747 

0.4410 

0.4150 

0.3944 

0.3779 

0.3646 

0.3537 

0.3446 

0.3362 

0.3262 

0.3070 

 

0.8359 

0.7682 

0.6617 

0.5788 

0.5187 

0.4745 

0.4409 

0.4149 

0.3943 

0.3779 

0.3646 

0.3538 

0.3447 

0.3363 

0.3266 

0.3084 

0.2785 

 

qw = 0 ( ,0)+ A2 cos t + 2( )  (48) 

 Here prime denote differentiation with respect to  and 
|A1| and |A2| are the amplitudes and the 1 and 2 are the 
phase angles, respectively, for the local skin friction and the 
local heat transfer for the fluctuating flow and temperature 
field which readily available from the following relations: 

  
A
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1
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1
= tan

1 fi
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,
2
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where fr , fi and r , i  are respectively the real and imagi-

nary parts of the coefficients 
  
f ,0( )  and 

 
,0( ) . 

 Numerical vales of the amplitudes, |A1| and |A2|, and the 

phase-angles, 1 and 2, of the oscillating shear stress and 

heat transfer rate, respectively, are obtained for different 

values of the pertinent physical parameters, , the frequency 

parameter, Pr, the Prandtl number and A0, against eccentric 

angle . The results presented and discussed in the following 

section are based on the solution obtained by the above 

methods. 

 It’s worth mentioning that, the present problem for the 
case a = b (circular cylinder) represents the oscillatory flow 
along circular cylinders that has recently been discussed by 
Jaman et al. [17].  

4. RESULTS AND DISCUSSION 

 Consideration is hereby given to the implicit finite differ-
ence method being employed in finding the solutions of the 
equations that govern the oscillating free convection flow 
along a heated blunt and slender elliptic cylinder, for differ-
ent values of , the frequency parameter, , amplitude of 
oscillation, and various values of A0 for a fluid having the 
value of Prandtl number, Pr=0.1. Although the quantities 
such as surface heat flux and shear stress are very important, 
here we present only the surface heat flux to compare with 
those of other authors for the steady state flow. 

 We begin by representing some results obtained from the 

present analysis for elliptic cylinders since experimental data 

and results from other authors are available for comparison. 

The rate of heat transfer coefficient, 0 ,0( )  are obtained 

for different values of the physical parameters A0 = 0.25, 

0.50 and Pr =1.0 which are summarized in Table 1 against 

eccentric angle  in the interval [0, ]. In this table we also 

Table 1 Numerical values of ( , 0)0 , for Different Values of  While Pr = 1.0 and A0 = 0.25, 0.50 for a Blunt Elliptic Cylinder 

A0 0.25 0.50 

 Present IFDM Kumer et al. [20] Merkin [02] Present IFDM Kumer et al.[20]  Merkin [02] 

0.0 

0.2 

0.6 

1.0 

1.4 

1.8 

2.2 

2.6 

3.0 

   

0.2979 

0.2994 

0.3120 

0.3424 

0.4020 

0.4062 

0.3231 

0.2467 

0.1780 

 0.1501 

0.2980 

0.2994 

0.3119 

0.3420 

0.4012 

0.4070 

0.3238 

0.2473 

0.1788 

 

0.2979 
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0.3118 
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0.4070 

0.3241 

0.2476 

0.1791 

 0.1504 

0.3543 

0.3556 

0.3659 

0.3864 

0.4085 

0.3954 

0.3399 

0.2744 

0.2046 

 0.1747 

0.3543 

0.3556 

0.3658 

0.3863 

0.4085 

0.3959 

0.3406 

0.2750 

0.2054 

 

0.3543 

0.3556 

0.3658 

0.3863 

0.4084 

0.3959 

0.3406 

0.2750 

0.2054 
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compare the results with that obtained by Merkin [2], Kumer 

et al. [20] for the blunt cylinders. In Table 2, numerical val-

ues of the 0 ,0( )  (mean flow) for different values of  

while Pr = 1.0 and b/a=0.25 for a slender elliptic cylinder 

being compared with obtained the above mentioned authors. 

Considering all factors, it seems reasonable to conclude that 

the agreement is good as one may hope for. 

 The implicit finite difference method together with 
Keller-box elimination scheme for the entire range of  
frequency are employed in finding the solutions of the  
equations governing the unsteady free convection flow along 

uniformly heated blunt and slender elliptic cylinders. 

 The foregoing coupled differential equations (25) and 
(26), representing the fluctuating parts of the flow and  
temperature fields together with the boundary conditions 
(27) have, numerically, been integrated by the methodology 
discussed above. We can see that the fluctuating parts of the 
flow and the temperature fields are not only dependent on 
the eccentric angle but also on the other physical quantities, 
like the Prandtl number, Pr, and the frequency of oscillation 
on the surface temperature, , the amplitude of oscillation,  
. Thus obtained the simulated results are displayed in terms 

of amplitude and phase of the skin-friction, x, and the rate  

of heat transfer, qx, for values of the ratio of the semi-minor 
and semi-major axis for both the blunt and slender bodies, 
b/a=0.5, 0.75 and 1.0, for fluid having Prandtl number, 
Pr=0.1. Effects of the aforementioned parameters are  
discussed in details in the following paragraphs. 

 The numerical values of the amplitude and phase, (|A1|, 

1), of the local shear stress and that of rate of heat transfer, 

(|A2|, 2), for the fluctuating flow are depicted in Figs. (2-5) 

for both blunt and slender bodies. We shall embody from 

presenting the details. 

Effect of Physical Parameters on Amplitude and Phase of 
Skin-Friction and Heat Transfer 

 The numerical values of the amplitude and phase, (|A1|, 

1), of the local shear stress and that of rate of heat transfer, 
(|A2|, 2), for the fluctuating flow are depicted in Figs. (2-5) 
for both blunt and slender bodies. We shall embody from 
presenting the details. 

 For blunt and slender orientation, numerical values of 

amplitude, |A1|, for shear stress are shown, respectively, in 
Figs. (2a) and (3a) for values of b/a =0.5, 0.75, 1.0 while 

=0.5 and = /4. From these Figures one can see that the 

amplitude, |A1|, of the shear stress for both the cylindrical 
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Fig. (2). Amplitude and phase of skin-friction from a blunt surface at Pr=0.1, =0.5, = /4 while  b/a=0.50, 0.75 and1.0. 
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Fig. (3). Amplitude and phase of skin-friction from a slender surface at Pr=0.1, =0.5, = /4 while b/a=0.50, 0.75 and 1.0. 
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surfaces are strictly decreasing when b/a=1.0. It is also no-

ticeable that when the ratio of the semi-minor and semi-

major axis of the cylinder is equal to 1, i.e., A0 =1, the cylin-
ders becomes circular and different figures in blunt and slen-

der configuration indicate the same point for initial and end 

the curve. For an increase of the value of b/a, the amplitude 
of skin friction increases for blunt and slender cylinders. But 

for both the cylinders at b/a=0.50, at the beginning ampli-

tude increases with the increase of  and then decreases with 
further increase in its value. The behavior of this change due 

to eccentric angle is similar to that happed in case of steady 

state flow (see Merkin [2]). 

 The numerical values of the phase angle, 1, of the shear 
stress are designed in Figs (2b) and (3b). Phase angle 1 de-
creases owing to increase in the value of b/a with the dis-
tance of the eccentric angle  for slender cylinder. In the 
small frequency region the results show that the periodic 
component of shear stress decreases in its amplitude with 
increasing frequency and always has a phase lag. For blunt 
cylinder this trend initially increases when A0=0.50 and then 
decreases but supplementary numerical values of A0 it is 
decreases with the increase of eccentric angle and there is 
also phase lag. For both type of cylinder in the region near  
= 0 decreases slowly in the downstream region upto  = 2 
and rapidly tends to the upper stagnation point. We are not 
aware of any experimental or analytical information which 
may be available for comparison but we mention that as the 
parameter A0=1, in that case both type of cylinders becomes 

circular and graphically blunt and slender body represents 
the identical manner. 

 The variation of the amplitude and the phase of the fluc-

tuating surface rate of heat transfer over the periphery of 

elliptical cylinders of aspect ratio b/a=0.5, 0.75 and 1.0 are 

shown in Figs. (4-5). It can be seen from Figs. (4a), (5a) that 

the amplitude |A2|, of the fluctuating rate of heat transfer for 

blunt ellipse increases initially with the increase of the ec-

centric angle  and then it leads to decrease; on the other 

hand, for slender ellipse the value of amplitude of the skin 

friction has alike manner as for blunt body. For increasing 

the fractional values of b/a, initially amplitude is increasing 

and then decreasing in haste for blunt surface and constantly 

decrease for other surface. We further notice that the relative 

maximum value of the amplitude occurs at the lower stagna-

tion point for both cylinder surfaces.  

 In Figs. (4b), (5b), the computed phase of fluctuating rate 
of heat transfer are plotted for elliptic cylinders over a 
Prandtl number Pr=0.1 in the effect of the partial values of 
b/a. One finds that phase of oscillation 2 in the fluctuating 
rate of heat transfer are decreasing for A0=0.50 upto the ec-
centric angle  = 1.8 radian and then it start to increase for 
blunt body and similar approach shows the slender body. In 
favor of increasing values of b/a phase angle is decreasing in 
mixing order for blunt surface and continuously decreasing 
for slender surface. Continually there is a phase lead for both 
cylinders. In the above discussion for amplitude and phase 
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Fig. (4). Amplitude and phase of heat transfer from a blunt surface at Pr=0.1, =0.5, = /4 while b/a=0.50, 0.75 and 1.0. 
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Fig. (5). Amplitude and phase of heat transfer from a slender surface at Pr=0.1,  = 0.5, = /4 while  b/a=0.50, 0.75 and 1.0. 
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for different cylindrical surface, we conclude that both sur-
faces represent the similar behaviors when they divert from 
circular cylinder. 

Effect of Physical Parameter on Streamlines and  
Isotherms 

 Now we see the effects of physical parameters, such as, 
b/a and , controlling the present problem on the flow pat-
tern and the temperature distribution in terms of the stream-
lines and isotherms in the boundary layer regime for both 
blunt and slender cylinder through Figs. (6 to 9). Following 
relations are considered to measure the values of oscillating 
stream-function and the oscillating temperature in the 
boundary layer regime:  

  

( , , ) = f0( , ) +
fi ( , ) cos +

fr ( , ) sin
 

(51) 

and  

  

( , , ) = 0( , ) + i
( , ) cos +

r
( , ) sin

 
(52) 

 In these figures, the left column of graphs isotherms are 
shown and in the right column streamlines. Numerical solu-
tions are obtained for different eccentricity, e while  = /4 
and  = 0.05 and for a unit value of Prandtl number.  

 A comparisons of streamlines and isotherms for values of 
b/a =1.0,  and 1/3 are shown in Figs. (6 and 7). From these 
figures one can observe that there is relatively little change 
in the streamlines for slender body but conspicuous changes 
happens for blunt body while the eccentricity increases. Be-
cause of increase of the eccentricity value of  decreases for 
blunt cylinder (having max=5.20); on the other hand its 
value increases in case of slender cylinder (for which 

max=5.57). This implies that for blunt surface, the momen-
tum boundary layer becomes thinner and the flow is weaker 
and for slender surface it becomes thicker and the flow be-
comes stronger because of increasing eccentricity of the cyl-
inders. From the given isotherms one can see that, the fluid 
temperature is higher near the lower boundary and lower 
near the upper boundary and this is the region of lowest vis-
cosity. Nearly parallel isotherms in the upper part of the cell 
indicate that heat transport is almost entirely by conduction.  

 Figs. (8 and 9) depict the isotherms and streamlines in the 
same model for the values of  = 0.0, 1.0 and 2.0 while 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Isotherms and streamline along blunt elliptic cylinder at  =10while =2.0, Pr=0.1 and =0.05 for (a) b/a=0.25 and (b) b/a=0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Isotherms and streamline along slender elliptic cylinder at =10.0while =2.0, Pr=0.1 and =0.05 for (a) b/a=0.25 and (b) b/a=0.5. 
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b/a=0.5. In this case it is found that for blunt surface 

max=3.77 and for slender surface max=5.50. For both cylin-
ders the viscosity is minimum at the upper boundary and 
maximum at the lower boundary. For  = 0.0, the momen-
tum boundary layer becomes higher and we have a stronger 
flow, on the other hand, for increasing the frequency of os-
cillation i.e., for  =1.0 and  =2.0, the momentum bound-
ary layer becomes thinner and we have a weaker flow in the 
downstream region. This case is designed mutually for blunt 
and slender orientations. From these figures one can also see 
that, the thermal boundary layer become thinner with the 
increasing value of .  

Effect of Physical Parameter on Transient Shear Stress 

and Heat-Transfer 

 Numerical values of the transient shear stress, w, and 
heat-transfer, qw, against  obtained from the expressions 
(47) and (48), which are shown graphically in figures 
through (10)-(13). Effect of the frequency parameter,  and 
the values of b/a on the development of transient skin-
friction and heat-transfer coefficients, for Pr = 0.1, = /4 
and =0.05 at = /2, are shown in Figs. (10 and 13). Here 
numerical values of the oscillating skin-friction and heat-
transfer coefficient against the dimensionless time variable  
have been shown in Figs. (10 and 11) for values of  = 1.0, 

2.0 and 3.0. From these figures, it is observed that at every 
station of , owing to increase in the value of , for both  
the blunt and slender cylinders, there is a decrease in the 
amplitude of oscillation in the fluctuating shear stress and an 
increase in the fluctuating heat transfer coefficients. But 
there is decrease in the phase of oscillation in both phases 
coefficients due to skin friction and heat transfer. This is 
expected since increase of frequency of the surface tempera-
ture should lead to increase the frequency of oscillation of 
the shear-stress and temperature of the fluid in the vicinity of 
the surface of the cylinders.  

 Now we are looking into the effect of change in blunt-
ness and slenderness on the fluctuating skin-friction and heat 
transfer from the surface. Effect of these geometric changes 
taking the value of b/a to be 0.25, 0.5 and 0.75 on the  
skin-friction and heat transfer are shown, respectively, in 
Figs. (12 and 13). In this regards Pr = 0.1, =2.0 and =0.05 
at = /2 have been taken. In Fig. (12), one can see that when 
the value of b/a, is increased magnitude of the skin friction 
get increased for blunt cylinder and decreased for slender 
cylinder at every  station. The rate of increase in the magni-
tude of the skin-friction for slender cylinder with the in-
crease of b/a considerably is higher than that of blunt cylin-
der. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (8). Isotherms and streamline along blunt elliptic cylinder at =20 while = /2, Pr=0.1, =0.05 and b/a=0.5: (a) =1.0 and (b) =4.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (9). Isotherms and streamline along slender elliptic cylinder at =20 while = /2, Pr=0.1, =0.05 and b/a=0.5: (a) =1.0 and (b) =4.0. 
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 Finally, from the numerical values of the fluctuating sur-
face heat-transfer coefficient, obtained for values of b/a = 
0.50, 0.75 and 1.0 shown in Fig. (13) that the amplitude of 
oscillation of the surface heat-flux has a small change for 
both kind of the cylinders. The comparison between the three 
curves for b/a =0.25, 0.5 and 0.75, it can be seen that in-
crease in the values of b/a leads to increase in the magnitude 
of the surface heat flux, qw, for both the blunt and slender 
cylinders. 

5. CONCLUSIONS 

 The investigation carried out here is concerned with two-
dimensional oscillatory natural convection boundary-layer 
flow of a viscous incompressible fluid past an elliptic cylin-

der. Using the appropriate transformation, we have derived 
the governing equations in the form of stream-function for-
mulation (SFF) and the free variable formulation (FVF). The 
equations of SFF are then integrated numerically employing 
the finite difference method together with Keller-box elimi-
nation technique and that of FVF by the direct finite differ-
ence method together with Gauss elimination technique. The 
steady state problem that was investigated by Merkin [2] and 
Kumar et al. [20] has been revisited by the aforementioned 
methods. It is found that our results are in excellent agree-
ment with these authors.  

 The results of oscillating flow have been obtained in 
terms of amplitude and phase of local skin friction and rate 
of heat transfer with the effect of the physical parameters, 

 

 

 

 

 

 

 

 

 

 
 

Fig. (10). Transient skin-friction coefficient against  = 20 at = /2, Pr=0.1, b/a=0.5, =0.05 for =1.0, 2.0, and 3.0 for (a) blunt elliptic 

cylinder (b) slender elliptic cylinder. 

 

 

 

 

 

 

 

 

 
 

Fig. (11). Transient heat-transfer coefficient against  = 20 at = /2, Pr=0.1, b/a=0.5, =0.05 for =1.0, 2.0, and 3.0 for (a) blunt elliptic 

cylinder (b) slender elliptic cylinder. 

 

 

 

 

 

 

 

 

 

 
 

Fig. (12). Transient skin-friction coefficient against =20 at  = /2, Pr=0.1, =2.0, =0.05 for b/a=0.25, 0.5, 0.75 for (a) blunt elliptic  

cylinder (b) slender elliptic cylinder. 
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namely, Pr, ,  and b/a. Effects of the same parameters  
are also shown on the fluctuating shear stress and surface 
rate of heat transfer as well as on the fluctuating streamlines 
and isotherms. The conclusions that may be taken from the 
present numerical solutions are given below:  

1. For an increase of the numerical values of b/a, the ampli-

tude of skin friction increase for blunt and slender  

surface. Amplitude of the skin-friction for both the blunt 

and slender cylinders are strictly decreasing when 

b/a=1.0.  

2. The phase of oscillation in the skin-friction, 1 decrease 

owing to increase in the ratio b/a with the distance of the 

eccentric angle  for slender cylinder. For blunt cylindri-

cal surface this trend of 1 decreases with the increase of 

eccentric angle and there is a phase lag. For both type of 

cylinder the phase 1 decreases faster in the downstream 

region near the upper stagnation point.  

3. There is always lag in the phase, 1 of the skin friction 

for blunt and slender surface. Whereas, the phase, 2 of 

the local rate of heat transfer is always in lead for both 

type of cylinders.  

4. Amplitude, |A1| of the skin friction and |A2| of the rate of 

heat transfer for blunt and slender orientation increase 

owing to increasing value of b/a. 

5. The fluid temperature is highest near the lower boundary 

and decreasing to the upper boundary and this is the re-

gion of lowest viscosity. 

6. For blunt body the momentum boundary layer becomes 

thinner and have a weaker flow, on the other hand for 

slender body it becomes thicker and have a stronger flow 

intended for decreasing the values of b/a. 

7. There is a decrease in the amplitude of oscillation in the 

fluctuating shear stress and an increase in the fluctuating 

heat transfer coefficients owing to increase in the  

frequency of oscillating surface temperature. 
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NOMENCLATURE 

a  = semi-major axis of the cylinder 

b = semi-minor axis of the cylinder 

A0  = constant define in Eq. (10) and (11) 

e  = eccentricity of the cylinder 

Cp  = specific heat at constant pressure 

f = dimensionless stream function 

g  = acceleration due to gravity 

Gr  = Grashof number 

Pr  = Prandtl number 

qw = surface rate of heat transfer 

T  = temperature of the fluid 

Tw  = temperature of the heated surface 

T   = temperature of the ambient fluid 

G  = dimensionless temperature function 

G0  = mean temperature 

u, v  = the dimensional x and y component of the ve-
locity 

U ,V = the dimensionless X and Y component of the 

velocity 

x, y  = coordinates measuring distance round and nor-

mal to the cylinder 

t  = time 

Greek Symbol 

  = eccentric angle 

  = coefficient of thermal expansion  

 = thermal conductivity 

μ  = dynamic viscosity 

 = kinematic viscosity 

 = angle made by the outward normal 

  from the cylinder 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (13). Transient heat-transfer coefficient against =20 at  = /2, Pr=0.1, =2.0, =0.05 for b/a=0.25, 0.5, 0.75 for (a) blunt elliptic  

cylinder (b) slender elliptic cylinder. 
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 = the angle made by the outward normal from 
the cylinder 

 = dimensionless temperature function 

 = density of the fluid 

 = amplitude of oscillation 

 = frequency of oscillation 

 = stream function 

 = dimensionless time 

w = shear stress 

 = similarity variable 

 = dimensional distance measured along the  
surface 

Subscripts & Superscripts 

Surface Conditions 

w = ambient temperature 

 = differentiation with respect to  
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