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Abstract: Two dimensional flow of a non-Newtonian fluid through an asymmetric stenosed artery is analysed under the 

influence of body acceleration with an external magnetic field on the flow field. The Casson fluid model is considered to 

characterize the non-Newtonian behaviour of the blood. The flow is assumed to be unsteady, laminar, two-dimensional, 

asymmetric and of pulsatile nature. The artery wall has been treated as an elastic (moving wall) cylindrical tube. The un-

steady flow mechanics is influenced by externally imposed periodic body acceleration. An explicit finite difference 

scheme is applied to obtain the flow field.  The effect of body acceleration, magnetic field on the flowing blood is ana-

lyzed and these results are presented through graphs for the axial and radial velocities, flow rate and wall shear stress.  

Keywords: Casson fluid, periodic body acceleration, magnetohydrodynamics (MHD), asymmetric stenosis, moving wall.  

INTRODUCTION 

Atherosclerosis is a disease of large- and medium- size 
arteries which involve complex interactions between the 
artery wall and blood flow. Hemodynamics factors, such as 
wall shear stress levels, particle residence times, arterial wall 
shears and wall compliance play very important roles in 
maintaining normal vascular endothelial function which is 
directly related to the propagation and generation of the athe-
rosclerotic lesion [1-3]. The actual reason for formulation of 
stenosis is not known, but its effect over the flow character-
istics has been studied by many research workers [4, 5]. The 
formulation of stenosis, block the circulation of the blood in 
the heart which may cause of many cardiovascular diseases 
as myocardial infarction, angina etc. Externally imposed 
body acceleration also has major influence on the flow 
through the stenosed artery. In many situations in our life 
while fast body movements in sports activities, driving in 
fast moving vehicles we feel the body acceleration or vibra-
tion. Due to this body acceleration, different health problems 
such as headache, loss of vision, increase in pulse rate, ab-
normal pain etc occur.  On the basis of experimental results, 
it is observed that the body acceleration, might change the 
heart beat, and might have a negative impact on the circula-
tory system. Chakravarty and Mandal [6] studied the pulsa-
tile flow through the stenosed artery under the influence of 
the externally imposed body acceleration and discussed its 
influence on the circulatory system.     

Quite a good number of analytical studies pertaining to 
the blood flow through stenosed arteries [7-10] analyzing the 
arterial construction on the flow through larger arteries at 
high rate exist in the literature, where in blood is as-  
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sumed to behave like a Newtonian fluid. Chakravarty and 
Mandal [10] analyzed the blood flow through a bifurcated 
stenosed artery. They have pointed out that away from the 
flow divider, the flow rate becomes higher due to the for-
ward flow and gets reversed near the flow divider. While 
blood being a suspension of cells which behaves as a non-
Newtonian fluid at low shear rates and during its flow 
through small blood vessels, and especially in diseased states 
when clotting effects in small arteries are presents [11-13]. 
Many experiments [12-18] were conducted on blood with 
varying heamatocrit, anticoagulant, temperature, etc. sug-
gested that at low shear rates, blood behaves as Casson fluid. 
Aroesty and Gross [12] have analyzed the pulsatile flow of 
blood vessels with application to microcirculation. Dash and 
Mehta [16] have investigated the Casson fluid flow through 
a pipe filled with porous medium. They noticed that the plug 
flow radius increases with increase in the value of yield 
stress and this increases wall shear.  

In the bioengineering and medical technology, one of the 
promising methods to accomplish precise targeting is mag-
netic drug delivery [19] and cell separation [20] and exten-
sive research work [21-26] has been reported on the flow 
dynamics in the presence of magnetic field. It was estimated 
that the magnetic susceptibility of blood be 6

3.5 10 and -
7

6.6 10 for the venous and arterial blood respectively. Since 
the blood is an electrically conducting fluid, the magnetohy-
drodynamic (MHD) principle has been used to decelerate the 
flow of blood in human arterial system and treat of certain 
cardiovascular disorders. It is well established from the lit-
erature that a uniform transverse magnetic field can alter the 
flow rate of blood. Flow control is more important mainly to 
reduce bleeding during surgery [21]. It is also noticed that 
the heart rate decreases by exposing biological systems to an 
external magnetic field [27]. There are several studies [26, 
28, 29], the results of which are useful in devising biomedi-
cal tools which are useful in proper treatment of blood trans-
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port in tumor, brain tissue and soft connective tissue zones as 
well as in the stenosed artery. It is important to capture the 
drug particle near the stenosed portion in an artery particu-
larly in a deceased cardiovascular system. Magnetic nano-
particles are mingled with drug particles and these particles 
are captured near the tumor using an external magnetic field. 
So it is important to analyze the flow behavior near the tu-
mor to control the trajectory of the carrier particles [19, 20].   

Mandal et al. [30] analyzed the effect of body accelera-
tion on the power law fluid flowing through a symmetric 
stenosis.  In this investigation we aim at analyzing the influ-
ence of the externally imposed body acceleration on the flow 
of blood through an asymmetric stenosed artery by consider-
ing blood as Casson fluid. The artery is cylindrical in shape 
and the flow is axially symmetric. Also it is aimed at explor-
ing the influence of the externally imposed magnetic field on 
the non-linear Casson flow field.    

MATHEMATICAL MODEL   

Consider the unsteady, fully developed, axially symmet-
ric, laminar 2D pulsatile flow in presence of external im-
posed periodic body acceleration in an arterial segment 
which is treated as a long tube having an asymmetric mild 
stenosis in its lumen. The following assumptions are made: 
All the physical properties are constant. The artery wall mo-
tion is introduced into the local fluid mechanics but not on 
the stresses and the strains on the vascular wall.  The blood 
(fluid) is electrically conducting, and treated as Casson fluid.  
A uniform transverse magnetic field B0 acts along the radial 
direction of the artery. The periodic body acceleration 

( )tF applied in the axial direction.  

Let (r, , z) be the coordinates of the representative mate-
rial point in the cylindrical polar coordinate system, where 
the z-axis is taken along the axis of the artery while (r, ) are 
taken along the radial and the circumferential directions, 
respectively. The geometry of the artery (cf. Fig. 1) consider-
ing in the present investigation with a mild stenosis is repre-
sented as ( Sankar et al. [31]), 

1

0 1

0 1

( , ) [1 { ( ) ( ) }] ( )

( ), otherwise

ng ngR z t r l z d z d a t d z d l

r a t
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     (1) 

where 
1

0 ( 1)

ng

ng

m

ng

h ng

r l ng
= , where ng is the parameter represent-

ing the asymmetry of the stenosis, ng=2 represents that the 

stenosis is symmetric.   represent the shape of the stenosis. 

l is the length of the stenosis, 
m

h  is the maximum height of 

the stenosis, d  is the distance of the stenosis from the inlet, 

0
r  being the unconstricted radius of the stenosed vessel. The 

time-variant parameter 
1( )a t  is given by  

1( ) 1 cos( )R pa t k t= +                      (2) 

in which 
R

k is called the amplitude, which is a constant. 

The continuity and the momentum equations for the tohy-

drodynamics (MHD) flow are written as: 

. 0=V                 (3) 

   

D V

Dt
=

1
p + . + J B + F(t) ,         (4) 

the periodic body acceleration ( )tF in the axial direction is 
given by, 

0( ) cos ( ) ,
b

t a t= +F              (5) 

0
a is its amplitude, 2b bf= , fb is it’s frequency in Hz,  is 

its phase angle of ( )tF with respect to the heart action. The 

frequency of the body acceleration fb is assumed to be small, 

so that wave effects can be neglected. D

Dt

V is the material 

derivative, V , the velocity (u,0,w), J is the current density, p 

is the pressure, B=B0+B1 is the total magnetic field where B1 

is the induced magnetic field which is negligible in compari-

son with the external magnetic field B0 which is justified for 

MHD flow at small magnetic Reynolds number. is the 

shear tensor. 

By Ohm’s law, we have 

( )= +J E V B                             (6) 

Where  is the electrical conductivity and E is the electric 
field. The imposed and induced electrical fields are assumed 
to be negligible. The force J B can be simplified to  

2
=J B B V                           (7) 

The governing equations for the z and r components of 
momentums with the equation of continuity in the cylindrical 
coordinate system due to magnetohydrodynamics (MHD) 
interactions, may be written as 

( ) ( )
2

01 1 1
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Bw w w p
u w r w F t

t r z z r r z
+ + = + +  (8) 
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1 1 1
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u u u p
u w r

t r z r r r z
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0.
u u w

r r z
+ + =                       (10) 

Where w(r,z,t) and u(r,z,t) are the axial and radial compo-
nents of the velocity, respectively. 

 

Fig. (1). Geometry of the artery with asymmetric stenosis. 
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At the wall, axial velocity is zero and the radial velocity 
is equal to the velocity of the artery wall which is due to the 
wall motion, and these conditions are represented as, 

( , , ) 0 on ( , )

( , )
( , , ) on ( , ).

w r z t r R z t

R z t
u r z t r R z t

t

= =

= =

             (11.a) 

Along the axis of symmetry, axial velocity gradient and 
the radial velocity are zero, 

( , , ) 0 on 0

( , , ) 0 on 0.

w r z t r
r

u r z t r

= =

= =

         (11.b) 

Initially (t = 0) the flow velocity in the presence of the 
magnetic field is considered as: 

  

w(r, z,0) =
A

0
+ A

1

M
2

1
I

0
( Mr)

I
0
( MR)

, u(r, z,0) = 0,     (12) 

where 
0

I is the modified Bessel function of the first kind of 

order zero. 

In the absence of the magnetic field, the above initial 

condition reduces to 
2

0 1

2 2

0

( , ,0) 1 , ( , ,0) 0,
4

c

A A r
w r z u r z

k r
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= =     (13) 

which represents the Hagen-Poiseuille flow. 

Since the lumen radius is very small compared to the 

wavelength of the pressure wave, equation of motion in the 

radial direction reduced to 0
p

r
= , and hence equation (9) 

becomes ( , )p p z t= and the pressure gradient can be written 

as: 

( )0 1
cos , 0

p

p
A A t t

z
= + >                   (14) 

where, 
0

A  is the steady state part of the pressure gradient 

and 
1

A  is the amplitude of its oscillating part and 2p pf= , 

pf  being the heart pulse frequency.  

Following Fung [10], the rheological equation of state for 
an isotropic, incompressible flow of a Casson fluid can be 
written as: 
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 and 
2

c
k  are the apparent viscosity, the 

rate of strain tensor invariant,  yield stress and Casson’s co-

efficient of viscosity respectively. 
ij

,
ij

 are the Kronecker 

delta and stress component, respectively. 
1
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2
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the rate of strain tensor, where 
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represents the shear rate 
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and coordinate, respectively. The flow conditions are given 

by  

2
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 The following non-dimensional variables are used, in the 
governing equations and the boundary conditions. 
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where 
0

w is the average velocity at the axial direction. The 

other parameter like the Reynolds number (Re) and the 

Hartmann number (M) are defined as: 

2

0 0 0 0

0
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w r B r

M
w

= =             (18.b) 

The governing equations Eqns. (8) and (10) can be    
written in their non-dimensional form (ignoring the astrix 
‘*’) as: 
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Equations (1), (5) and (14) in its non-dimensional form 
look as: 

1
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METHOD OF SOLUTION 

Using the radial coordinate transformation 
( , )

r
x
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Equations (19) and (20) can be written as: 
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and the boundary become: 
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Multiplying continuity equation (27) by xR and integrat-
ing with respect to x, 
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2
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u x z t x w x dx xw
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This equation takes the following form using boundary 
condition (29) for u, 
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Taking the approximation of the equality between the 
integrals to integrands, we have from (31), 
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Solving Equation (23) based on the central difference ap-
proximations for all the spatial derivatives in the following 
manner:  
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while the time derivative is approximated by  
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Similar expression can also be obtained from other spa-

tial derivatives. Here ( , , )w x z t is discretised to 
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axial direction, radial direction and in time step, respectively. 
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And the corresponding boundary conditions, 
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also the corresponding initial conditions are in the presence 
of magnetic field and in the absence of magnetic field is re-
spectively, as 
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Now with the help of radial and axial velocity, one can 

easily determined the volumetric flow (Q) and the wall shear 

stress (
w

) from the following relations, 
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RESULT AND DISCUSSION 

The following values of the parameters are considered in 

the study which have a major physiological significance in 

the cardiovascular system, [20-22], 
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Fig. (2). Axial velocity .vs. radial coordinate x for Newtonian fluid 0= and 0M = .  

Fig. (3). Axial velocity .vs. x for different stenosis height hm at z =0.036m, ng = 6,  = /4, M = 0. 

Fig. (4). Axial velocity .vs. x for different value of M at z = 0.036m for  = /4, hm = 0.4a, ng = 6. 
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Fig. (5). Radial velocity vs. x for different stenosis height hm at z = 0.036m, ng = 6,  = /4, M = 0. 

Fig. (6). Radial velocity vs. x for different value of M at z = 0.0336m for  = /4, hm= 0.4a, ng = 2. 
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An explicit finite difference scheme which was used in 

Ikbal et al. [32] is applied here also, to solve the resulting 

equations along with the boundary conditions and the results 

are observed to converge with an accuracy of order 5
10 , for 

the time step 0.00001. To achieve the desired accuracy of the 

result, we considered the mesh containing the grid 60x40. 

The computation code based on the following algorithm has 

been successfully programmed using C-language. The algo-

rithm is presented below in terms of the variables used in the 

equations: 

i. Set the initial velocity profile as given in the equation 
(39.a) for the problem with magnetic field and as given in 
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netic field at a particular position z = 0.036m of the artery 
and at a particular instant of time, t = 4s. With increase in the 
height of the stenosis, the radial velocity also decreased. The 
radial velocity increased along the radial direction up to a 
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point near the wall, after which it decreased due to moving 
wall boundary condition at the wall.  The effect of magnetic 
parameter is not much significant on the radial velocity, this 
can be noticed from Fig. (6) which is plotted for the case of 
symmetric stenosis.  

The effect of the phase angle of the externally imposed 

body acceleration on the flow field is shown in (Figs. 7 and 

8). Due to the change in the phase angle, the external body 

forces changes and this has a significant effect on the flow 

characteristics. Several plots have been made in (Fig. 7), to 

characterize the axial velocity at a specific location z = 

0.0336m, of the symmetric (i.e., ng = 2) stenosed artery, for 

Reynolds number Re = 300 at instant t = 4s. A backflow oc-

curs for the cases / 2, 3 / 4 and= . For all the cases 

the velocity profile is of parabolic nature, the absolute value 

of the axial velocity start from its maximum at the axis and 

then it decreases and finally reaches to zero at the wall to 

follow the no-slip condition. The velocity maximum is 

achieved for the case 0= . 

The radial velocity is calculated for different phase an-
gles at a specific location z =0.0336 m, at the instant t =4s. 
From the Fig. 8, it is observed that the radial velocity pro-
files are totally negative for / 4, / 2 and 3 / 4= while 
the nature of all these curves is same. All the curves initially 
start form zero and their magnitude increases with the axis 
and finally reach a maximum value near the artery wall and 
then decreases a little and attain the wall velocity. The pro-

files are positive for the values 0 and= . There is        
a little difference in the velocity profiles between 

/ 4and 3 / 4= = . The velocity is maximum for 0=  
and for / 2= , is minimum and completely negative. 

The presence of the stenosis, restricts the flow of blood in 

the narrow artery, which leads to variations in the wall shear. 

The wall shear for different geometric parameter (ng) is 

shown in Fig. (9a), which is plotted for t = 4s with phase 

angle / 4= , 0.4
m

h a= in the absence of magnetic field. It 

is worth mentioning that the starting point of the stenosis is z 

= 0.025m and its length is l = 0.015m. These numbers are 

same for the asymmetric stenosis also. From the Fig. (9a) it 

is evident that there is a region both before and after the 

stenosis where the change in the wall shear is seen for both 

the symmetric and asymmetric stenosis. Sharp symmetric 

peaks are seen about the axis of the flow for the case of the 

symmetric stenosis. It is interesting to note that the change in 

the wall shear is symmetric for the case of symmetric steno-

sis and is asymmetric for the asymmetric one. For the case of 

asymmetric stenosis, the wall shear curve is flat for the pre 

peak position of the stenosis while a sharp peak is noticed 

near the peak of this asymmetric stenosis. This character 

becomes more prominent as the value of ng increases. Also, 

a comparison is made with the Newtonian fluid wall shear 

stress for both the symmetric and asymmetric ones in (Figs. 

9b and 9c). These plots show similar behavior as mentioned 

above for the Newtonian fluid structure also, while the wall 
shear is more for the Casson fluid than the Newtonian fluid.   

Fig. (7). Axial velocity vs. x for phase angle  at z=0.0336m, ng = 2, hm = 0.4a, M = 0. 

Fig. (8). Radial velocity vs. x for phase angle  at z= 0.0336m, ng = 2, hm = 0.4a, M = 0. 
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Fig. (9a). Wall Shear vs. z for different geometric parameter ng with phase angle  = /4, hm= 0.4a, M = 0.  

Fig. (9b). Wall Shear vs. z for different
y

 with ng =2, phase angle  = /4, hm= 0.4, M = 0. 

Fig. (9c). Wall Shear vs. z for different
y

 with ng = 6, phase angle  = /4, hm= 0.4a, M = 0. 
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Fig. (10a). Wall Shear vs. yield stress y for different M at z = 0.0336m with ng = 2,  = /4, hm= 0.4a.  

 

Fig. (10b). Volumetric flow Q vs. yield stress y at different M at z = 0.0336m with  = 0, hm= 0.4a, ng = 2. 
 

The volumetric flow and the wall shear are calculated us-
ing the formulae given in equation (40 - 41), its variation 
against the yield stress is plotted in (Figs. 10 and 11) for dif-
ferent values of the Hartmann number and the phase parame-
ter of the body acceleration. The wall shear is increasing 
with increase in the Hartmann number. This feature is shown 
for the symmetric stenosis in the (Fig. 10a). Also, the wall 
shear is increasing non-linearly with the yield stress parame-
ter. From the (Fig. 10b), it is evident that the volumetric flow 
decreases with the Hartmann number, and also with the yield 
stress parameter. A close observation of this figure indicate 
that with the increase in the Hartmann number there is a sig-
nificant reduction in the volumetric flow rate, and this reduc-
tion increases with the increase in the phase of the body ac-
celeration parameter, this is also noticeable from (Fig. 11a). 
Variation of the volumetric flow and wall shear for different 
values of phase parameter of the body acceleration is plotted 
in (Figs. 11a and 11b) indicate that there is intense backflow 
in the tube near the peak of the stenosis.  

A substantial reduction is noticed for the volumetric flow 
rate as the height of the stenosis increases, this is shown for 
different values of height of the symmetric stenosis in (Fig. 
12a). A substantial increment is noticed for wall shear as the 
height of the stenosis increases and this is shown in (Fig. 
12b.  

The radial and axial velocities for three different values 
of the asymmetry parameter ng of the stenosis is tabulated at 
the pre stenosis, peak of the stenosis and post stenosis posi-
tions (the value of the axial position is indicated therein) of 
the artery at different radial locations. It is worth mentioning 
that the peak of the stenosis changes with the value of the 
asymmetry parameter. From the Table 1, it is clear that the 
radial velocity is same for the pre and post stenosis positions 
while it is different at the peak of the stenosis in all the three 
cases considered. This can be seen from the equation (34). 
The expression for R is independent of z for the pre and post 
stenosis positions, hence the radial velocity remains a con-
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stant for a fixed x and time t. Since R depends on z for the 
stenosis region, the radial velocity varies with the axial dis-
tance.  

It can be seen from the Table 2, that the axial velocity in-

creases with the axial distance from the pre stenosis region to 

post stenosis region. It decreased with the non-dimensional  

Fig. (11a). Volumetric flow Q vs. yield stress y for different  at z = 0.0336m with hm = 0.2a,  = /4, M = 0, ng = 2. 

Fig. (11b). Wall Shear vs. yield stress y for different phase angle  at z = 0.0336m with hm= 0.4a, ng = 2, M = 0. 

Table 1. Radial Velocity vs. x for Different Position of z and ng = 2, 4, 6 with  = /4, hm = 0.4a, M = 0 
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0.2 0.010536 0.010536 0.010536 0.006464 0.007920 0.007658 0.010563 0.010563 0.010563 
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Fig. (12a). Volumetric flow Q vs. yield stress y for different hm at z = 0.0336m with  = /4, M = 0, ng = 2. 

Fig. (12b). Wall Shear vs. yield stress y for different hm at z = 0.0336m with ng = 2, M = 0,  = /4. 

 

Table 2. Axial Velocity vs. x for Different Position of z and ng = 2, 4, 6 with  = 0, hm= 0.4a, M = 0 
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Table 3. Volumetric Flow Q vs. Yield Stress y at Different Position z for ng = 2, 4, 6 with  = /4, hm = 0.4a 

Pre Peak Post Qx10
-8

 

(m
3
/s) 

 

        y 

ng=2 

z=0.024 

    (m) 

ng=4 

z=0.024 

    (m) 

ng=6 

z=0.024 

    (m) 

ng=2 

z=0.033 

    (m) 

ng=4 

z=0.0348 

    (m) 

ng=6 

z=0.036 

    (m) 

ng=2 

z=0.042 

    (m) 

ng=4 

z=0.042 

    (m) 

ng=6 

z=0.042 

    (m) 

0.00024 -0.2125 0.14653 0.329308 0.495661 0.863551 0.652556 2.945853 2.657284 2.657585 

0.00096 -0.3319 0.019384 0.200052 0.458874 0.790123 0.579173 2.880234 2.562264 2.562372 

0.00168 -0.5372 -0.21277 -0.01892 0.413276 0.68534 0.459611 2.852723 2.472158 2.467795 

0.0024 -0.8913 -0.63586 -0.42761 0.31723 0.470337 0.218112 2.732478 2.242174 2.227446 

0.00312 -1.0383 -0.92308 -0.71808 0.210706 0.258673 0.005142 2.303048 1.790533 1.762 

 

Table 4. Wall Shear vs. Yield Stress y at Different Position for ng = 2, 4, 6 with M = 0,  = /4, hm = 0.4a 

Pre Peak Post w 
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    (m) 
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z=0.024 

    (m) 

ng=2 
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    (m) 

ng=4 

z=0.0348 

    (m) 

ng=6 

z=0.036 

    (m) 

ng=2 

z=0.042 

    (m) 

ng=4 

z=0.042 

    (m) 

ng=6 

z=0.042 

    (m) 

0.00024 2.30305 1.79053 1.762 0.21071 0.25867 0.00514 -1.03827 -0.7180 -0.9230 

0.00096 2.73248 2.24217 2.22745 0.31723 0.47034 0.21811 -0.8913 -0.4276 -0.6358 

0.00168 2.85272 2.47216 2.4678 0.41328 0.68534 0.45961 -0.53724 -0.0189 -0.2127 

0.0024 2.88023 2.56226 2.56237 0.45887 0.79012 0.57917 -0.33185 0.20005 0.01938 

0.00312 2.94585 2.65728 2.65759 0.49566 0.86355 0.65256 -0.21251 0.32931 0.14653 

 

radial position in all the regions. It also indicates that there 

exists a back flow for the case of symmetric stenosis near the 

pre-stenosis region while this back flow disappears as the 

value of the asymmetry parameter ng is increased. This is 

because of the favorable pressure gradient develops near the 

wall with the increase in the value of ng.  

Tables 3 and 4 give a detailed description about the volu-
metric flow rate and the wall shear against the yield stress 
parameter at the three different positions for the three types 
of stenoses considered in the present investigation, the 
description of which is already presented in the correspond-
ing figures.  

CONCLUSION  

The present analysis investigates the effect of the mag-

netic field and externally imposed body acceleration on the 

blood flow (Casson model) in the presence of asymmetric 

stenosis in an arterial segment. Results indicate that the 

magnetic field (M), yield stress (
y
), phase angle ( ) and the 

geometric parameter of the stenosis (ng) have significant 

effect on the flow characteristics. With the increase in the 

strength of the magnetic field, both the radial and axial ve-

locities decreased. In all the cases a back flow occurs at the 

upstream zone of the constricted site. The recirculation zone 

increases in the upstream position of the stenosis with the 

geometric parameter. Due to body acceleration, the flow 

characteristics change drastically. Flow reversal is seen for 

the phase angles ( ) / 2,3 / 4 and . With the narrowing 

of the constricted zone (increasing the height of the stenosis), 

both the axial and radial velocities decreased. A sudden fall 

in wall shear is noticed at the starting point of the stenosis 

due to the formation of vorticity which occur at the upstream 

position of the stenosis. Increase in the value of yield stress 

reduced the volumetric flow. The value of the wall shear 

stress increases with increase in the value of yield stress. 

Thus, the flow field and the volumetric flow are significantly 

affected due to the body acceleration term.  
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NOMENCLATURE 

0
a  = amplitude of the body acceleration 

0
A  = the steady state part of the pressure gradient 
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1
A  = the amplitude of its oscillating part of pressure 

gradient 

B0 = external magnetic field  

B1 = the induced magnetic field 

d  = distance of the stenosis from the inlet 

E = the electric field 

fb  = frequency of body acceleration  

pf  = being the heart pulse frequency 

m
h  = the maximum height of the stenosis 

0
I  = modified Bessel function of the first kind of 

order zero 

J  = the current density 

l  = the length of the stenosis 

M  = Hartmann number 

ng  = the parameter representing the asymmetry of 

the stenosis 

0
r  = the unconstricted radius of the stenosed vessel 

p = pressure 

Re = Reynolds number 

u(r,z,t) =  radial components of the velocity 

w(r,z,t) =  the axial velocity 

0
w  = the average velocity at the axial direction 

Greak Symbol 

 = the shape of the stenosis 

 = phase angle 

 = electrical conductivity 

y
 = yield stress  

2

c
k  = apparent viscosity 

ij
 = Kronecker delta 

ij
 =  stress component 

ij
 = the shear rate 

x  = increment at the axial direction 

z  = increment radial direction 

t  = increment in time step 
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