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Abstract: A gas-liquid interface involves complex physics along with unknown phenomena related to thermodynamics, 

electromagnetics, hydrodynamics, and heat and mass transfer. Each phenomenon has various characteristic time and space 

scales, which makes detailed understanding of the interfacial phenomena very complex. Therefore, modeling the gas-

liquid interface is a key issue for numerical research on multiphase flow. Currently, the continuum surface force (CSF) 

model is popular in modeling the gas-liquid interface in multiphase flow. However, the CSF model cannot treat the vari-

ous chemical and physical phenomena at the gas-liquid interface because it is derived based only on mechanical energy 

balance and it assumes that the interface has no thickness. From certain experimental observations, bubble coales-

cence/repulsion was found to be related to a contamination at the interface.  

The present study developed a new gas-liquid interfacial model based on thermodynamics via a mathematical approach, 

assuming that the interface has a finite thickness like a thin fluid membrane. In particular, free energy, including an elec-

trostatic potential due to the contamination at the interface, is derived based on a lattice gas model. Free energy is incorpo-

rated into the conventional Navier-Stokes equation as new terms using Chapman-Enskog expansion based on the multi-

scale concept. Using the Navier-Stokes equation with the free energy terms, we derived a new governing equation of fluid 

motion that characterizes mesoscopic scale phenomena. Finally, the new governing equation was qualitatively evaluated 

by simulating an interaction between two microbubbles in two dimensions while also accounting for electrostatic force. 
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1. INTRODUCTION 

A gas-liquid interface is geometrically characterized by a 
curvature at a macroscopic scale in which vortical fluid mo-
tion is dominant. This indicates that the interface is consid-
ered as a discontinuous surface without interfacial thickness. 
Hence, physical properties such as density, viscosity, and 
temperature have discontinuous values at the interface. On 
the other hand, at a microscopic scale such as that of molecu-
lar motion, the physical properties continuously vary from 
the gas phase to the liquid phase. Currently, there are no 
adequate experimental measurement techniques to clarify the 
complexity of the interface. Therefore, a numerical approach 
is a useful tool for studying gas-liquid interfacial phenom-
ena. However, modeling the interface while covering the 
wide range of scales from molecular motion to vortical fluid 
motion is very difficult. This has been the key issue of nu-
merical research on multiphase flow for many years. 

Numerical analysis of multiphase flow is generally per-
formed by combining an interfacial model with the Navier-
Stokes (NS) equation. The continuum surface force (CSF) 
model [1] is a popular interfacial model for the gas-liquid  
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interface. Surface tension is incorporated into the NS equa-
tion as a body force across the interface. The volume of fluid 
(VOF) method [2] is used with the CSF model as an inter-
face tracking method. In the VOF method, the interface is 
recognized by the fractional volume of fluid denoted by a 
fraction of density. Matsumoto et al. [3] performed a nu-
merical simulation of bubbly flow based on the VOF method 
with the CSF model. Their study reported that bubble coa-
lescence occurs easily. In experimental observations, it is 
known that the behavior of bubble coalescence is not as sim-
ple as predicted in numerical simulations. This non-realistic 
bubble coalescence may arise from the feature of the CSF 
model; the CSF model cannot consider the various physical 
and chemical processes at the gas-liquid interface because it 
is derived based only on mechanical energy balance and as-
sumes that the gas-liquid interface has no thickness (i.e., a 
mathematical interface). 

Tryggvason et al. [4] developed the front tracking 
method based on both Eulerian and Lagrangian concepts, 
which uses the fixed structured numerical grids in the flow 
field. Their approach treats the gas-liquid interface using an 
unstructured grid. In this model, the interface is represented 
by line segments in two dimensions or polygonal elements in 
three dimensions. Surface tension is evaluated using differ-
ential geometry; a tangential vector is defined on the inter-
face. The front tracking method is also based on the mathe-
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matical interface and cannot consider bubble coalescence or 
breakup naturally. Artificial criteria, in particular, are needed 
to account for the process of coalescence; however, much 
success has been achieved in simulating bubbly flow and 
bubble behavior [5].  

Although there are many models or methods for simulat-
ing interfacial behavior [6-8], these approaches face diffi-
culty in considering the physical and chemical processes at 
the interface because they are also based on the conventional 
mechanical approach. 

Recently, the phase field theory [9] and the van der 
Waals theory [10], which assume the interface to be a diffuse 
interface with finite thickness, have been applied to numeri-
cal research on multiphase flow. The surface force is evalu-
ated using the free energy defined at the interface and de-
pends on both concentration (or density) and its gradient. A 
numerical method based on the phase field theory (called the 
“phase field method”) focuses on an analysis of mesoscopic 
phenomena and was originally used in studies on diffusivity 
of grain growth, or phase separation, in binary alloys [11-
14]. A chemical potential is associated with the free energy 
and a diffusion flux is assumed to be proportional to the 
chemical potential gradient [15, 16]. The time evolution of 
the concentration associated with the diffusion flux is im-
plemented using the Cahn-Hilliard equation. Jacqmin [17, 
18] applied the phase field method to two-phase flow analy-
sis. Various interfacial phenomena were simulated, such as 
interfacial interactions (coalescences and breakups), contact 
line movement, and interfacial instability. The phase field 
method based on the phase field theory is well constructed 
thermodynamically and holds potential for investigating 
physical and chemical phenomena, and heat and mass trans-
fer, at a gas-liquid interface. However, the phase field 
method is the fundamental numerical tool to investigate phe-
nomena such as diffusivity of metal alloys. Therefore, a cru-
cial issue arises in the application of the phase field method 
to multiphase flow analysis. The dynamic motion of the in-
terface in a fluid flow does not result from a diffusion proc-
ess characterized by mobility.  

A contamination involving electric charges at the inter-
face is significant to the interfacial interaction. Craig [19] 
and Henry and Craig [20] studied the effects of a specific ion 
on bubble interaction. They reported that bubble coalescence 
is affected by the adsorbed ions (combination of ions and 
electrolyte concentration) at the gas-liquid interface. Simi-
larly, other literature reports the importance of an electrolyte 
for bubble coalescence [21-24]. To elucidate the detailed 
mechanism of bubble coalescence/repulsion, we need a new 
gas-liquid interfacial model that can investigate the physical, 
chemical, and various other phenomena at the interface char-
acterized by different time and space scales. 

In the present study, the thermodynamic and mathemati-
cal interfacial model was developed based on the phase field 
theory [9] and a multi-scale concept. This model assumes 
that the interface has a finite thickness similar to a fluid 
membrane. Essentially, the free energy including the electric 
charge due to a contamination is derived at the microscopic 
scale. The free energy is incorporated into the NS equation 
as new terms, using Chapman-Enskog expansion [25]. A 
new governing equation of fluid motion is then derived. Fi-
nally, we qualitatively evaluate the new governing equation 

and its potential in the future realization of a multi-scale 
simulation by simulating an interaction between two micro-
bubbles in two dimensions while also accounting for the 
electrostatic force. 

2. FREE ENERGY WITH ELECTROSTATIC POTEN-

TIAL 

Free energy is considered at the microscopic scale, and 
the specific equation of free energy is derived by considering 
a Hamiltonian [26]. In the present derivation, an electrostatic 
potential due to a contamination at the interface is consid-
ered. 

2.1. Hamiltonian 

Although the Ising model explains a phase transition of a 
magnetic material in a magnetic field, this model is also ap-
plicable to a gas-liquid phase transition; it is called the “lat-
tice gas model.”  

Consider a three-dimensional cubic lattice in a binary 
system in which the lattice is l [m] in width. A variable 

i
 

(or j ) [-] is defined at the lattice point {i} (or {j}) and 
takes the value of 0 or 1; the value represents the existence 
of molecule A or B in the lattice gas model, respectively. 
Fig. (1) shows a schematic of a two-dimensional lattice for 
the sake of simplicity. The following two assumptions are 
considered in the lattice gas model: 

(a) 

 

(b) 

 

Fig. (1). Schematic diagram of lattice gas model. 
  i

= 0  Mole-

cule A, 
  i

=1  Molecule B, 
  
l = r

j
r
i

. (a) Molecular motion in 

physical space. (b) Mathematical model of molecular motion. 
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1. Only one molecule exists at a lattice point {i} (or {j}). 

2. Only two-body interaction is considered between 
molecules A and B. 

In addition, the molecule satisfies the following condi-
tions: 

3. The size and shape of both molecules A and B are the 
same. 

4. The intermolecular force is only a short-range force 
(i.e., van der Waals attraction). 

The liquid solution satisfying conditions 3 and 4 is called 
the “regular solution.” This study considers the electrostatic 
potential due to a contamination at the interface. However, 
the adsorption process of the contamination is ignored for 
the sake of simplicity.  

The gas-liquid interface may be electrically charged by 
the contamination, such as specific adsorption of the solvent 
molecules. In the present study, the electrostatic potential 
created by the contamination at the interface is modeled as 
an electric double layer that may be formed near the inter-
face. Here, we assume that the electric effect on the solvent 
molecules in the electric double layer can be considered as 
similar to the effect of a spatially distributed electric poten-
tial on a point charge. Based on the above assumptions, a 
Hamiltonian H [J] can be defined at the lattice point {i} with 
the electrostatic potential E [J] as follows:  
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Here, N denotes the total number of lattice points; 
i

z  [-], e 

[C], and 
e

V  [V] are valence, elementary charge, and electric 

potential, respectively. Intermolecular potential is repre-

sented by ijW  [J] (positive value). The superscript of ijW  

represents a combination of interaction between molecules; 
AB

ijW  is an intermolecular potential between molecules A 

and B. Equation (3) reduces to the following equation under 

assumptions 1, 2, 3, and 4:  
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Now let ijU  be a net interaction potential; thus 
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Considering Equations (5) and (6), Equation (1) reduces to 
the following equation: 
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This is the Hamiltonian that includes the electrostatic poten-
tial due to the contamination. 

2.2. Selection of Free Energy 

Consider a system described by the exact Hamiltonian 
(Equation (7)); henceforth, such a system is called an “exact 
system.” It is impossible to get an exact partition function 
with respect to the exact Hamiltonian because of a multi-
body system. Instead we employ an approximation technique 
using the variational theorem of Bogoliubov and mean field 
theory as a general method to solve the problem in the multi-
body system [27]. To obtain the free energy equation in the 
exact system, the approximation technique needs a certain 
criterion; the Bogoliubov inequality criterion is stated as 
follows: 

  

F
Z

F
Z

0

+ H
Z

H
Z

0 0

,            (8) 

where, 
Z

F  and 
Z

H  are the Helmholtz free energy and the 

Hamiltonian, respectively, in the exact system. 
0

Z
F  and 

0
Z

H  

are the Helmholtz free energy and the Hamiltonian, respec-

tively, in a model system, where the free energy and partition 

function are known. 
Z

H
0

Z
H  in the second term on the 

right hand side of Equation (8) is averaged by the distribu-

tion function in the model system. Equation (8) states that 

the free energy 
Z

F  can be approximated by the solutions of 

an effective Hamiltonian 
0

Z
H . Here, the Helmholtz free en-
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F  and the partition function 
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where  d  is an infinitesimal volume in a phase space , 

which consists of a space coordinate p and a momentum q. 

In Equation (11), the value ( )
3

2 h  is the coefficient used to 

normalize the distribution function and represents a small 

volume in  space. This normalization is based on the con-

sideration of the quantum uncertainty 
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The free energy in the exact system is obtained by mini-

mizing the right hand side of Equation (8). The Helmholtz 

free energy 
0

Z
F  is determined using Equation (7) based on 

the mean field theory. This means that the bilinear form 

i j  in Equation (7) is replaced by the primary form 
i i
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i
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where 
B

k  [m
2
 kg/s

2
 K] and T [K] are the Boltzmann constant 

and temperature, respectively. By considering Equation (12) 

and 0 1
i

or= , Equation (10) is transformed into the fol-

lowing equation: 
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Substitution of Equation (13) into Equation (9) yields  
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Criterion (8) holds between the exact and the model systems. 
Thus, the substitution of Equations (7), (9), and (12) into 
Equation (8) yields 
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The second term on the right hand side of this equation is the 

linearized term with respect to 
i
 in the model system. 

Therefore, the interaction
0

i j
, which is the value of 

i j  averaged by the distribution function Z0 in the model 

system, can be decomposed to 
0 0

i j
. Eventually, 

Equation (16) reduces to the following equation: 
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where the parameter 
0i

 takes continuous values from 0 to 

1. By selecting the parameter 
i
 to minimize the right hand 

side of Equation (17), the best solution in the exact system 

can be obtained. The calculation of the functional derivative 

of Equation (17) keeping 
0i

 constant and / 0
Z i

F =  

yields 
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As
0i i
= , the specific formula of 

i
 is obtained from 

Equation (18) by considering Equation (14). Then, the sub-

stitution of 
i
 into Equation (17) yields 
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This is the free energy equation in the exact system and the 

discrete equation of free energy using the local continuous 

function 
i
. Using the thermodynamic procedures discussed 

above, the molecular state represented by 0 or 1 shown in 

Fig. (2a) becomes the local continuous state shown in Fig. 

(2b). However, the local continuous state is still at the mi-

croscopic spatial scale. Thus, a continuum limit is applied 

mathematically to Equation (19) for obtaining the free en-

ergy equation of the continuous spatial scale. Consequently, 

the discrete state shown in Fig. (2b), where the lattice width l 

is defined as a finite length, becomes the continuous state 

shown in Fig. (2c), where the finite length of l approaches 0 

infinitely. 

(a) 

 

(b) 

 

(c) 

 

Fig. (2). Schematic diagram of space scale from discrete points to 

continuum: (a) shows lattice points (distribution of 
i
) in which 

filled circles denote molecule A and empty circles denote molecule 

B; (b) shows local continuum (distribution of 
 i

); and (c) shows 

continuum limit (distribution of ). 

 

The third term on the right hand side of Equation (19) is 

the interaction between the lattices i and j. In particular, the 
third term is transformed as follows: 
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If the interaction between the nearest neighboring molecules 

is just the short-range interaction, assuming that the distance 

of the closest approach is l , the first term on the right hand 

side of Equation (20) is transformed by the continuum limit 

(  l 0 ) as follows: 
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, and n is the unit vector between 

lattice {i} and {j}. In addition, by the continuum limit 

( N , 0l ) we obtain 
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Consequently, by considering Equations (20), (21), and (22), 
Equation (19) becomes 
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This is the free energy equation of the continuous scale in an 
infinitesimal volume, dV [m

3
]. In a narrow sense, this equa-

tion is called the “free energy functional.” The first and sec-
ond terms on the right hand side of Equation (23) are the free 
energies in a homogeneous and an inhomogeneous system, 
respectively. Here, the fourth-order Taylor expansion of 
Equation (23) around 1/ 2=  (
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This expansion of free energy is called Ginzburg-Landau 
expansion and is generally applied to the critical state 
( 1/ 2= ). However, we assume that the same expansion can 
be applied to a state of 

 
=1/ 2  in the interface, even if the 

system is at room temperature.  is an order parameter that 
characterizes the exact system, and is mainly characterized 
by the concentration or density. 

3. INTERPRETATION OF FREE ENERGY IN THE 

NAVIER-STOKES EQUATION 

An interpretation and a treatment of the free energy equa-
tion in the NS equation are discussed here. In general, sur-
face tension is evaluated by the Young-Laplace equation, 
which consists of the surface tension coefficient and the cur-
vature characterizing the macroscopic shape of the interface 
(Fig. (3a)). However, at the microscopic scale, molecular 
motion is continuous in the interface. The present model 

assumes that the interface has a finite thickness similar to a 
fluid membrane. This assumption suggests a mesoscopic 
interface, as shown in Fig. (3b). For a finite-thickness inter-
face, it is difficult to evaluate surface tension because the 
curvature cannot be determined geometrically. Therefore, 
surface tension should be evaluated not from the geometrical 
curvature but from the energy at such a mesoscopic scale 
[28, 29]. Furthermore, we cannot simply incorporate free 
energy into the NS equation as an external force because 
many physical and chemical processes characterized by dif-
ferent time and space scales occur at the interface. These 
cross-scale interactions may arise among interfacial phe-
nomena. Thus, the multi-scale concept must be considered 
when free energy is incorporated into the NS equation. Bear-
ing this in mind, Chapman-Enskog expansion is applied to 
the NS equation. Here, the original NS equation is expressed 
as follows: 

(a) 

 
(b) 

 

Fig. (3). Concept of gas-liquid interface. (a) Macroscopic image. 

(b) Mesoscopic image of Area A. 
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3
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2
], and t [s] 

represent fluid density, velocity, stress tensor, acceleration 

due to gravity, and time, respectively. The operators of 

  D / Dt  and  have to include various time and space scales 

(this is a multi-scale concept). Therefore, to discriminate 

their scales, Chapman-Enskog expansion is applied to 

D / Dt  and . The operators D / Dt  and  are transformed 

into the following expressions using a small parameter : 
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where superscript (k) (k = 0, 1, 2...) represents the scale of 
the phenomena. The scale decreases as the value of (k) in-
creases; e.g., the superscript (0) denotes the macroscopic 
scale. The parameter  is defined as follows: 
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Here,  [m] and L [m] represent the characteristic length of 

the interface and that of the vortical fluid flow, respectively. 

The substitution of Equations (34) and (35) into Equation 
(33) and consideration of  up to the first order yields 
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where the fluid velocity and the stress tensor in the macro-

scopic scale are represented by  u  and  T , respectively. On 

the other hand, the physical values in the mesoscopic scale 

are represented by  u  and  T , respectively. The stress tensor 

 T  is defined as follows: 

P=T I .          (38) 

In this equation, the shear stress is [N/m
2
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P . The velocity u  and the stress tensor T  in Equa-

tion (37) correspond to the physical values at the interface. 

In the present study, the stress tensor is represented by the 

Maxwell relation. Therefore, thermodynamic pressure 
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In Equation (39), F is the Helmholtz free energy. Assuming 

that Equation (39) corresponds to T , Equation (39) be-
comes the following equation using Equation (27):  
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Then, Equation (40) is substituted into Equation (37). After 

the simple tensor analysis of the term (1)
T , the follow-

ing equation is obtained:  
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In Equation (41), term (a) denotes the free energy in a ho-

mogeneous system. This term is concerned with changes of 

state and is important when a phase change is considered. 

Term (b), ( )(1) (1)

int d= , is taken as the shear stress 

in the interface. The additional term (c) represents surface 

tension. Here, we assume that the non-diagonal components 

of 
int

 are negligible in the interface because the thickness of 

the interface is significantly small compared to a minimum 

scale of an eddy such as the Kolmogorov scale. In addition, 

the diagonal components of 
int

 are negligible because a 

mean pressure balances out at the interface. Eventually, after 

the substitution of Equation (41) into Equation (37), a new 

governing equation of fluid motion considering the multi-

scale concept is obtained as follows: 
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We call this equation the multi-scale multiphase flow equa-
tion. The surface tension formalism involves the combina-
tion of coefficient d and the interfacial gradient. The surface 
tension formalism in the present model resembles that of the 
CSF model. However, the interpretations of the surface ten-
sions of the CSF model and the present model are a little 
different. The difference is explained by a simple considera-
tion of term (c) in Equation (41). The surface tension of the 
CSF model is estimated by the Young-Laplace equation, in 
which the interface has no thickness (i.e., a mathematical 
interface). In the CSF model, the coefficient corresponds to 
the surface tension coefficient measured experimentally. On 
the other hand, in the present model, term (c) is derived 
based on the thermodynamic approach in which the interface 
has a finite thickness. The microscopic coefficient d in term 
(c) is derived at a microscopic scale and is related to the in-
termolecular interaction. Here, we assume that the intermo-
lecular interaction can be estimated approximately by the 
following equation [30]: 

  

U
ij
=

A

6h
ij

r
i
r

j

r
i
+ r

j

.         (43) 

Here, A, ri or rj, and hij are the Hamaker constant, radius of 
molecules, and distance between two molecules, respec-
tively. The order of magnitude of coefficient d is very small 
(about 10

11
 [N]). In thermodynamics [9, 10], the surface 

tension coefficient is obtained by integrating the free energy 
through a flat interface with a finite thickness. The gradient 
of free energy at the interface is very large. Therefore, term 
(c) can act as surface tension by considering both the gradi-
ent and coefficient d through the interface even if coefficient 
d is very small in term (c). On the other hand, the surface 
tension in the CSF model is estimated using the surface ten-
sion coefficient, for which the value is considerably larger 
than coefficient d. Thus, when considering a numerical simu-
lation, the surface tension in the CSF model is larger than 
that of term (c).  

The chemical potential μ  [J/mol], which is important in 
investigating mass transfer, is defined by the functional de-
rivative on the concentration  [mol/m

3
] with respect to the 

free energy F as follows: 

 

μ =
F
=

F
.         (44) 

In the present study, the term 
i e

z eV , which corresponds to 

the electrochemical potential, is derived from the variation 

/F . Equation (44) is important not only in fluid motion 

but also in diffusion of mass. 

3. NUMERICAL SIMULATION 

3.1. Governing Equation 

An interaction between two microbubbles was simulated 
while also accounting for the electrostatic potential. In the 
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simulation, the validity of the multi-scale multiphase flow 
equation was qualitatively evaluated for the future realization 
of multi-scale simulations. If a chemical reaction and phase 
change are considered in two-phase flow analysis, the scale 
interactions of time and space among each phenomenon 
must be considered. However, such phenomena were not 
considered in this qualitative simulation for the sake of sim-
plicity. Therefore, the simulation of the microbubble behav-
ior focused on the local regions around the microbubble and 
was based only on the mesoscopic scale ( (1) ) using Eq. 
(42). For this assumption, we did not distinguish the velocity 
vectors and substituted the two terms on the left-hand side of 
Eq. (42) into    DU / Dt . Finally, the following simplified 
equations were applied to the qualitative numerical simula-
tion. 

   

DU

Dt
= (1)

T + (1) f
e
( )I( )

d (1) (1) (1)( )+ g,

        (45) 

  
(1)

U = 0 .          (46) 

For the second term on the right hand side of Eq. (45), only 

the electric term
 
f

e
= cz

i
eV

e
 was considered; the first and 

second terms in Eq. (28) were omitted because phase change 

was not considered. Equations (45) and (46) were solved by 

the projection method [31]. The volume tracking method 

used for capturing the gas-liquid interface is based on the 

Multi-interface Advection and Reconstruction Solver 

(MARS) method [32]. This method is similar to the Piece-

wise Linear Interface Construction (PLIC) [33] algorithm 

and is based on the VOF method [34]. 

3.2. Treatment of Order Parameter 

In the derivation of Eq. (42), the free energy was applied 
to the NS equation as the thermodynamic pressure, which 
corresponds to the surface tension. In Eqs. (27) and (28), 
parameters a, b, c, and d are related to microscopic informa-
tion such as intermolecular interaction.  is an order pa-
rameter related to the concentration/density. For transporta-
tion of an interface with a finite thickness, using the profile 
function of the concentration or density as an a priori known 
function is the best way to characterize the system. However, 
in this study, transportation of the concentration/density pro-
file function was not considered because this would make 
the numerical simulation complicated, especially when using 
an Eulerian approach. Our interfacial model was based on a 
lattice gas model, in which random molecular motion is 
modeled by a variable defined at a lattice point in a cubic 
lattice; the variable represents the existence of the molecules. 
Thus, the order parameter  can be represented by the VOF 
in each bulk phase. The interfacial tracking method, MARS, 
tracks the interface by transporting the VOF. MARS has 
previously performed well using volume conservation as a 
macroscopic interfacial tracking method. Therefore, this 
method can also be a powerful tool for tracking the 
mesoscopic interface.  

In the numerical simulation for this study, the 
mesoscopic interfacial tracking was performed by the order 
parameter  in the third term on the right-hand side of Eq. 
(45). Concrete treatment of the parameter was modeled 

based on an analytical solution of the order parameter. The 
analytical solution of the order parameter was obtained by 
minimizing the free energy of Eq. (27) without the electric 
term. This analytical solution is known as a kink solution 
and is as follows. 

  

0
n( ) = e

tanh
n

0

:
0
=

2d

a
,

e
=

a

b
       (47) 

where 
0

 is a correlation length corresponding to an interfa-

cial thickness. This equation takes 
 
=±

e
 at n = ± . In 

the present simulation, the order parameter was associated 

with the VOF based on the characteristics of Eq. (47).  

 
=

e
F

A
F

B( ) or
e

F
B

F
A( ) ,       (48) 

where Fi (i = A, B) is the VOF defined in a numerical cell. 

Here, FA and FB satisfy the relation 1
A B

F F+ = ; 0 1
A

F  

and 0 1
B

F . In a strict sense, the order parameter mini-

mizing Eq. (27) should be used in the present simulation by 

considering that energy is conserved. However, we assumed 

that Eq. (48) minimizes Eq. (27), and we used Eq. (48) in the 

simulation. The microscopic parameters a and d in Eqs. (27) 

and (28) include both the lattice width l and the intermolecu-

lar potential. In this numerical simulation, the physical prop-

erties of the liquid were assumed to match water. Detailed 

discussion on the specificity of the water molecule is omitted 

here for the sake of brevity. The intermolecular potential was 

briefly evaluated using Eq. (43).  

3.3. Thermodynamic Pressure and Surface Tension 

Coefficient 

The third term on the right-hand side of Eq. (45) is ex-
pressed as follows: 

  
f

s
= d

(1) (1) (1)( ) .        (49) 

The force fs surface tension. In this simulation, 
(1) (1)

, 

which was derived theoretically, was linearized for applica-

tion in the numerical simulation as follows:  

  
f

s
d

(1) (1) (1)
n( ) ,        (50) 

where the vector n  is a unit normal vector. A simple aver-

age method was considered with respect to (1)  by using 

(1)  defined at a numerical grid point (i, j) and grid points 

around it. For example, in 2D simulations, (1)  is calcu-

lated by averaging the magnitude of (1)  defined at (i, j), (i 

+ 1, j), (i  1, j), (i, j + 1), and (i, j  1). In 3D simulations, 

(1)  is calculated by averaging (1)  defined at (i, j, k), (i 

+ 1, j, k), (i - 1, j, k), (i, j + 1, k), (i, j  1, k), (i, j, k + 1), and 

(i, j, k  1).  

The parameter d is related to the macroscopic surface tension 
coefficient through the following equation: 
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= d
0

n

2

dn
+

d
0

n

2

dn
0
/2

+
0
/2

       (51) 

The macroscopic surface tension coefficient is defined under 

the condition of a flat interface and is estimated by integrat-

ing the gradient of the free energy along the normal direction 

perpendicular to the interface [10]. The parameter d includes 

both the lattice width l and the intermolecular potential. 
Equation (51) is calculated by using Eq. (47) analytically.  

3.4. Electrostatic force 

In our interfacial model, the existence of a contamination 

at the interface is represented by the existence of molecule A 

or B. In other words, the electric potential due to a 

contamination at the interface in bulk phase A (or B) is 

present when FA = 1 (or FB = 1). The specific formula of fe is 
expressed as follows:  

 
f

e
= cz

i
eV

e i e
.          (52) 

Strictly speaking, the Maxwell equations must be considered 

in Eq. (52) for the relationship between the electric charge 

and electric potential to hold. However, the law of conserva-

tion of charge was not considered in this study for the sake 

of simplicity. Therefore, the electrostatic potential 
e i

V  in the 

bulk phases A and B through the interface was determined 

independently. The electrostatic potential of 
e i

V  was esti-

mated by the following exponential function: 

   

V
e

x( ) =V
e0

exp
x x

surface

2

C
e

2
.        (53) 

In this equation, Ce is an arbitrary parameter that determines 

the effective region of the electrostatic potential, such as the 

Debye length. Position x  is an arbitrary position of the bulk 

phase around a bubble. surfacex  is the surface position of the 

bubble. The surface position was determined by the labeling 

method [3]. Substitution of Eq. (52) into the second term on 

the right-hand side of equation (45) gives the electrostatic 

force Fe as follows: 

   
F

e
= cz

i
e

e

(1)
V

e
i

( ) ,         (54) 

where zie is the electric charge of the contamination ab-
sorbed at the interface. zie is defined at the surface position. 
When an interfacial interaction was considered between 
bubbles 1 and 2, the electrostatic force was calculated by 
using the charge zie and electrostatic potential Ve. For exam-
ple, the electrostatic force at the interface of bubble 1 was 
estimated by the charge zie defined at the surface position of 
bubble 1 and the electrostatic potential Ve from bubble 2.  

3.5. Numerical Condition 

A microbubble interaction was simulated in two dimen-

sions (2D). The physical values used in this simulation were 

for water and air. Fig. (4) shows the numerical domain (301 

 301 in the x-y directions). Pressure-free conditions were 

taken as the boundary conditions at X  and X+. At Y  and 

Y+, the velocities were constant: (
Y

x
U , 

Y

yU ) = ( 0 , 

3
2.0 10+ ) at Y  and (

Y

x
U

+
, 

Y

yU
+

) = ( 0 , 3
2.0 10 ) at Y+. 

The bubble radius, numerical mesh size, and time interval 

were r = 6
1.5 10 [m], dx = dy = 7

1.0 10 [m], and dt = 
5

0.5 10 [s], respectively. In this simulation, two conditions 

were considered. In condition 1, two microbubbles interacted 

with each other and the electrostatic potential was not con-

sidered. In condition 2, the electrostatic potential (Ve = 
5

1.0 10 [V]) was considered.  

 

Fig. (4). Computational domain of microbubble interaction (2D). 

In the present simulation, the microscopic parameters 

were set to a = 8
4.57 10 [J/m

3
], b = 8

5.74 10 [J/m
3
], c = 

28
1.33 10 [1/m

3
], and d = 11

4.98 10 [J/m]. The small pa-

rameter  was set to  = 0.055 [-]. Parameter  consists of 

the characteristic lengths L and  in Eq. (36). L was set to 1 

[ μ m], corresponding to the order of the Kolmogorov scale. 

 was set to the averaged value of 10 and 100 [nm]; these 

values were from the van der Waals region and corresponded 

to the limiting thickness for film rupture [35, 36]. 

4. RESULTS AND DISCUSSION 

Fig. 5 shows the results of 2D microbubble interaction. 
Figs. 5 (a) and (b) correspond to conditions 1 and 2, respec-
tively. In Fig. 5 (a), the electrostatic potential of the bubble 
interface is not considered. Thus, the two microbubbles ap-
proach each other and coalesce immediately after coming in 
contact. Fig. 5 (b) shows the interaction of two microbubbles 
where the electrostatic potential is considered. The two mi-
crobubbles approach each other due to the hydrodynamic 
forces from the Y+ and Y  directions and then interact with 
each other. However, the two microbubbles flow separately, 
maintaining a constant distance between them, and they do 
not coalesce.  

Fig. (6) shows microbubble interaction at an interfacial 
electrostatic potential of Ve =  1.0 10

4 [V]. A liquid film is 
observed between the two microbubbles, as shown in Fig. 6 
(a). Fig. 6 (b) shows the pressure distribution at the same 
time step. This figure shows that the pressure in the liquid 
film is lower than the bulk pressure around the microbub-
bles. This result indicates that the liquid in the bulk phase 
flows into the liquid film to conserve the continuity equation 
and maintain the thickness of the liquid film. The upper mi-
crobubble flows downwards and the lower microbubble 



Multi-Scale Modeling of the Gas-Liquid Interface The Open Transport Phenomena Journal, 2010, Volume 2    77 

flows upwards due to the hydrodynamic force; i.e., the hy-
drodynamic force causes the two microbubbles to approach 
each other. In contrast, the electrostatic force at the interface 
causes the two microbubbles to separate. Eventually, a liquid 
film is formed between the two microbubbles due to force 
balance. The present numerical results may indicate that lu-
brication theory [37] based only on hydrodynamics cannot 
explain the presence of a liquid film between two microbub-
bles. That is to say, contaminations at the interface are im-
portant when interfacial interaction is considered. 

(a) 

 
(b) 

 

Fig. (6). Liquid film between two microbubbles (Electrostatic po-

tential 
  
V

e
= 1.0 10

4 [V]). (a) Microbubble interaction. (b) Pres-

sure distribution in Area 1 in (a). 

CONCLUSIONS 

In this study, a new mathematical model of the gas-liquid 
interface based on thermodynamics is developed using the 

assumption that the gas-liquid interface has a finite thickness 

similar to a thin fluid membrane. In particular, free energy is 
derived based on a lattice gas model that accounts for the 

electrostatic potential due to a contamination at the interface. 

Then, the free energy is incorporated into the NS equation 
using Chapman-Enskog expansion based on the multi-scale 

concept. The new governing equation proposed in this study 

has a theoretical multi-scale basis from the micro to the 
mesoscopic scales. In the numerical simulation, the 2D mi-

crobubble interaction was simulated to qualitatively evaluate 

the applicability of the multi-scale multiphase flow equation 
for the realization of a multi-scale simulation in the future. 

The following results were obtained: 

[1] The microbubbles simply coalesced with each other 
when the electrostatic potential was not considered. In con-

trast, when the electrostatic potential was considered, a liq-

uid film was formed between the two microbubbles, and the 
microbubbles flowed while maintaining a constant distance. 

The microbubbles did not coalesce. 

[2] A liquid film was observed in our numerical simula-

tion. The pressure in the liquid film was lower than the bulk 

pressure around the microbubbles. This implies that the liq-
uid in the bulk phase flowed into the liquid film to conserve 

the continuity equation and maintain the thickness of the 

liquid film. This result may show that lubrication theory, 
based only on hydrodynamics, cannot explain the presence 

of a liquid film between two microbubbles. In other words, 

contaminations at the interface are important when interfa-
cial interaction is considered.  

Although the 2D numerical simulation performed in the 
present study serves only as a qualitative evaluation, we may 
be able to conclude that the multi-scale multiphase flow 
equation can be potentially used to simulate microbubble 

(a) 

 
(b) 

 

Fig. (5). Comparison of microbubble interaction. (a) Case 1: Electrostatic potential 
  
V

e
= 0

[V]. (b) Case 2: Electrostatic potential 

  
V

e
= 1.0 10

5 [V] 
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interaction. However, careful consideration of the time and 
space scales for the actual application in numerical simula-
tions is essential when modeling both fluid motion and diffu-
sion processes in the future.   

NOMENCLATURE 

E = Electrostatic energy [J] 

e = Elementary charge [C] 

F = Free energy [J] 

g = Acceleration due to gravity [m/s
2
] 

H = Hamiltonian [J] 

h = Plank’s constant [ J s ] 

kB = Boltzmann constant [m
2
kg/s

2
K] 

L = Characteristic length of fluid motion [m] 

l = Lattice width in lattice gas model [m] 

N = Total number of lattice points [-] 

P = Pressure [N/m
2
] 

T = Temperature [K] 

t = Time [s] 

u = Velocity vector [m/s] 

Ve = Electrostatic potential [V] 

Wij = Intermolecular potential [J] 

zi = Valence [-] 

  = Characteristic length of the interface [m] 

 = Order parameter [mol/m
3
] 

μ  = Chemical potential [J/mol] 

  = Density [kg/m
3
] 

i  = Existence of molecule A or B [-] 

  = Surface tension coefficient [N/m] 

 = Shear stress [N/m
2
] 

i = Local continuous function [-]  

   = Macroscopic continuum function [-] 

 = Order parameter [-] 

Subscripts 

i, j = Lattice points 

int = Interface 
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