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Abstract: In this study the lattice Boltzmann method (LBM) is used to simulate Stokes flow through unimodal fibrous 

porous media. A systematic analysis is carried out to determine the suitability of the LBM to predict the permeability of 

such porous media using relatively coarse numerical lattices. The discretization of fibres using the LBM is discussed in 

detail with respect to the introduced errors. Subsequently the LBM is calibrated with the aim of compensating for the 

dominant error terms. For this purpose, simulations of the flow through simple square arrays of parallel cylinders are 

carried out for fibre-discretizations up to a radius of six lattice units and for solid volume fractions (SVFs) ranging from 

0.1 to 0.4. The results obtained are compared to literature data to obtain an estimate for the dominant error terms. 

Employing the idea of an effective hydrodynamic radius, the error estimates can be taken into account when modeling 

fibrous porous media. To assess the suitability of this approach, computations for the flow through random arrays of 

parallel fibres and for random disordered fibrous media are carried out and the predicted permeabilities are compared with 

literature data. For small SVF,  0.2, the LBM predictions are found to agree well with literature data even for very 

coarse lattices. At higher SVF the accuracy of the method quickly deteriorates.  
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1. INTRODUCTION 

 The problem of determining the hydraulic permeability 
of microstructured fibrous porous media is common to many 
different application areas such as fuel cells, textiles, 
composite materials or filtration processes (e.g. [1-3]). The 
existing approaches vary greatly with respect to the required 
input data, flexibility with regard to the considered micro 
structure, accuracy and required computational effort. In 
general one can distinguish between analytical methods that 
describe the permeability of a porous medium as a function 
of other, usually geometric, properties of the medium, and 
numerical methods that solve for some type of transport 
equation to obtain an estimate for the permeability. 
Analytical expressions are usually limited in their validity to 
specific types of porous media, such as beds of spheres or 
fibrous porous media. Numerical methods on the other hand 
are usually very flexible and can predict the permeability 
over a wide range of porous media. The major drawbacks of 
numerical methods are the relatively complex procedure of 
carrying out the analysis and the generally high 
computational costs. The lattice Boltzmann method (LBM) 
considered in this study is a common numerical method to 
simulate the flow through fibrous porous media (e.g. [4-6]). 
The LBM does not directly solve for the governing 
macroscopic transport equations. Instead, it employs a gas 
kinetic approach which allows to recover the macroscopic  
transport equations. One advantage over other numerical 
methods is that the gas kinetic approach can be implemented 
using a numerical lattice and nearest neighbour dynamics. 
This results in the computational costs of LBM simulations 
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to scale practically linearly with the number of lattice nodes. 
The computational cost of other methods such as finite 
volume or finite element methods, usually increases at a 
much higher rate with increasing domain size [7]. The LBM 
is therefore especially suited for computations involving 
very large domains. Furthermore, in contrast to many other 
numerical methods, the LBM does not require a geometry-
fitted mesh. Instead it uses a regular lattice for spatial 
discretization. Using the so-called full bounce-back (FBB) 
algorithm to model no-slip boundaries (see for example [8]), 
the geometry definition is reduced to defining nodes as being 
either solid or fluid. This allows complex geometries to be 
modeled with ease and allows for a fully automated 
simulation procedure, reducing the previously mentioned 
drawback of complex procedures usually required when 
using numerical methods. At the same time, the LBM is 
computationally expensive. To accurately simulate the flow 
through fibrous porous media the mesh has to be sufficiently 
fine and this can easily result in the computational cost being 
prohibitive. It would therefore be desirable to be able to 
achieve a sufficient accuracy of the LBM on relatively 
coarse lattices. More sophisticated no-slip boundary 
conditions have been developed ([9] and references therein) 
that are more accurate than the FBB boundary condition but 
at the cost of a more complicated geometry definition. 
Instead, the FBB boundary condition is employed in this 
paper and the suitability of calibrating the LBM for the 
special case of fibrous porous media to increase its accuracy 
is assessed. 

2. DESCRIPTION OF THE MRT LATTICE-
BOLTZMANN METHOD 

 Lattice Boltzmann methods can be seen as discrete 
methods to solve the Boltzmann equation [10], based upon a 
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simplified phase space. The LBM used in this study 
furthermore approximates the unsteady, incompressible 
Navier-Stokes equations. In contrast to many other CFD 
methods, the LBM is based on kinetic theory rather than 
continuum theory. The LBM is an inherently unsteady 
method and each time step is usually divided into a collision 
step and a streaming step. The collision step is completely 
local while the streaming step involves nearest neighbours 
where information is passed on from one node to the next 
along the so called lattice links. While the streaming step is 
the same for most LBMs, there exist many different forms of 
the collision step, called collision operators. The LBM 
employed in this study is described in the next paragraph, 
including the relevant boundary conditions.  

2.1. Discrete Phase Space 

 Usually a regular lattice is used to discretizise the lattice 

Boltzmann equation (LBE) in space, with a uniform lattice 

spacing of x . A set of vectors, called lattice links, connect 

each lattice node with some or all of its neigbouring nodes 

and these are denoted e . At each time step t , information 

is passed from each node to the nodes it is connected to. On 

each lattice site the velocity space is discretizised using a 

finite set of Q  velocity vectors i ,     i = 1, ...Q . In the scope 

of the LBM, the velocity space discretizations are usually 

denoted DxQy , where x  stands for the number of spatial 

dimensions and y  for the number of discrete velocity 

vectors Q . In this work a D3Q19  model is used. With the 

exception of the zero velocity vector, the i  and ei  have the 

same spatial orientation and the magnitude of the velocity 

vectors is determined by the length of the corresponding 

lattice link divided by the time step size. Both the lattice 

links and the non-zero velocity vectors are identified by the 

index i  which ranges from 1  to Q 1 . 

2.2. Discrete Boltzmann Equation 

 For the LBM, the Boltzmann equation requires to be 

discretized on each lattice node. With r  being the position 

vector of a certain lattice node and with t  being a specific 

point in time, the resulting lattice Boltzmann equation can be 

written as follows:  

fi (r+ i t,t + t) = fi (r,t)+ t Fi (r,t) fi (r,t)( ),  (1) 

where fi  represents the discrete velocity distribution 
function and  denotes the collision operator. The collision 
operator describes the relaxation of the fi  towards 
equilibrium.  is a function of the discrete equilibrium 
velocity distribution function Fi : 
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Here  denotes the fluid density, u  the macroscopic 
velocity vector, 

S
c  the lattice speed of sound and 

i
w  are 

weighting factors. For the three-dimensional 19-velocity 
(D3Q19) model used in this study, ei  and 

i
w  are given as 

follows:  

ei =

(0, 0, 0) for i = 0

( 1, 0, 0), (0, 1, 0), (0, 0, 1) for i = 1 6

( 1, 1, 0), ( 1, 0, 1), (0, 1, 1) for i = 7 18

    (3) 

wi =

1 / 3 for i = 0

1 /18 for i = 1 6

1 / 36 for i = 7 18

          (4) 

 From the velocity distribution functions fi , all 

macroscopic properties of the fluid can be derived ([10]). 

The macroscopic properties can be defined as so called 

moments of the velocity distribution functions. In general, a 

moment m  is defined using an arbitrary function ( )  :  

m =
i=0

i=Q

fi (r, t) ( )  (5) 

 By choosing the appropriate functions ( ) , the 

according moments yield different macroscopic quantities. 

The two basic moments for mass and momentum can be 

written as follows:  

      
(r, t ) =

i =0

i =Q

f i (r, t )  (6) 

u(r, t) =
i=0

i=Q

i fi (r, t)  (7) 

 For incompressible flow, in LBM notation, the pressure 
p  is calculated using an equation of state [11], that in the 

case of the lattice considered here reduces to the following 
expression:  

    
p =

3
 (8) 

 The viscosity of the simulated fluid in LBM notation is 
given by the following expression [11]:  

  
=

(2 1)

6
 (9) 

where  is the relaxation rate or relaxation frequency. 

2.3. MRT/TRT Collision Operator 

 The collision operator models the interactions between 

the molecules of the fluid and determines at which rate the 

distribution functions fi  relax towards their local 

equilibrium Fi . A very popular collision operator is based on 

the assumption of a constant relaxation rate that applies to all 

fi . This collision operator is known as the single-relaxation 

time (SRT) or Baghnar-Gross-Krook (BGK) operator. One 

major drawback of this operator with respect to the 

prediction of the permeabilities of porous media is that the 

exact position of the modeled fluid/solid interface changes if 

the lattice viscosity changes. This results in an apparent 

viscosity dependence of the predicted permeability ([9]). 

This shortcoming of the LBM can be overcome by using 

different relaxation rates for the different fi  ([9-12]). This 
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can be achieved in many different ways and is still the 

subject of intensive research. As has been shown ([9]), the 

two-relaxation time (TRT) model yields results which are 

practically independent of the chosen viscosity. The TRT 

model used here can be seen as a derivative of the more 

general multi-relaxation time (MRT) model. The basic idea 

of the MRT model is to transform the distribution functions 

from the velocity space into the momentum space, carry out 

the collision step in the momentum space and afterwards 

transform the relaxed moments back into the velocity space. 

A LBM with a velocity space discretization of Q  discrete 

velocities i  has Q  linearly independent moments (compare 

equation (5)). Since the moments are linearly independent, 

they can be relaxed at individual rates. If the function ( )  

in equation (5) is chosen so that the corresponding moment 

represent a macroscopic property of the fluid, the relaxation 

time for this moment represents a physical property of the 

fluid. The density for example would not be relaxed at all in 

the case of an incompressible fluid. If the number of discrete 

velocities Q  is higher than the number of linearly 

independent physical moments (13 in three dimensions) this 

can clearly not be done for all moments. The moments not 

representing a macroscopic property of the fluid can then be 

relaxed at a rate which can be freely tuned as to improve the 

numerical behaviour of the LBM. In the following, the 

MRT/TRT operator is described in detail.  

 If R  is the vector containing Q  linearly independent 
moments and f  is the vector containing all the velocity 
distribution functions, a transformation matrix M  exists 
which fulfils the following:  

    R = Mf  (10) 

 The momentum vector used in this paper is taken from 

[12] for the D3Q19  model and reads:  

R = ,e, , jx ,qx , jy ,qy , jz ,qz , 3pxx , 3 xx ,

, pww , ww , pxy , pyz , pxz ,mx ,my ,mz

T
 (11) 

where a Gram-Schmitt orthogonalization procedure was used 

to derive the 19 moments. The physical moments are the 

density , the part of kinetic energy that is independent of 

the density e , the part of the kinetic energy square that is 

independent of the density and the kinetic energy = e2 , the 

momentum in the three spatial directions j , the energy flux 

independent of the mass flux q  and the symmetric viscous 

stress tensor 3pxx , pww = pyy pzz , pxy , pyz , pxz . Given the 

lattice links ei  according to (3), the transformation matrix 

M  reads:  

 Using a diagonal matrix S  with the diagonal elements 

S1,S2 ..,SQ , the collision step in momentum space can be 

written as  

 

%R = R S(R Req )  (12) 

where  
%R  describes the post collision state and Req =Mfeq  is 

the vector of the moments of the discrete Maxwell 

distributions Fi . The diagonal elements of S  are called the 

relaxation frequencies. In this paper the following relaxation 

frequencies are used:  

diag(S) = (0,1.25,1.25,0,0.89,0,0.89,0,

0.89,1.25,1.25,1.25,1.25,1.25,1.25,1.25,0.89,0.89,0.89)
 (13) 

M =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

30 11 11 11 8 8 8 8 8 8 11 11 11 8 8 8 8 8 8

12 4 4 4 1 1 1 1 1 1 4 4 4 1 1 1 1 1 1

0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0

0 4 0 0 1 1 1 1 0 0 4 0 0 1 1 1 1 0 0

0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1

0 0 4 0 1 1 0 0 1 1 0 4 0 1 1 0 0 1 1

0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1

0 0 0 4 0 0 1 1 1 1 0 0 4 0 0 1 1 1 1

0 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2

0 4 2 2 1 1 1 1 2 2 4 2 2 1 1 1 1 2 2

0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0

0 0 2 2 1 1 1 1 0 0 0 2 2 1 1 1 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1
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 Since only two relaxation frequencies are used, the 
corresponding collision operator is also referred to as a two 
relaxation time operator. Once the collision, see equation 
(12), has been carried out,  

%R  has to be transformed to the 
velocity space again to complete the collision step. 

2.4. Boundary Conditions 

 Four different boundary conditions (BC) are used in this 
study, namely the no-slip, velocity, pressure and symmetry BC. 

 No-slip BC: For no-slip boundaries the full bounce back 
(FBB) BC is employed. The FBB boundary condition is 
completely local and independent of the orientation of the 
boundary. These properties make this boundary condition 
very interesting for the simulation of flow through porous 
media, since all lattice nodes representing the solid matrix 
can simply be assigned the FBB boundary condition. It is 
easily observed that the FBB algorithm conserves mass 
whilst producing a zero velocity. It has been shown that the 
FBB boundary condition is only numerically accurate to 
first-order ([13-15]). Hence degrading the second-order 
accuracy of the LBM. Ziegler ([14]) as well as Zou and He 
([13]) concluded that the FBB condition corresponds to a no-
slip wall halfway between the row of fluid nodes and the row 
where the condition is applied. This conclusion is limited to 
simple geometries such as Couette or Poiseuille flow. 

 Velocity BC: The velocity boundary condition is 

implemented using the method proposed by Zou and He 

([13]). This boundary condition is based on applying the 

bounce-back rule to the non-equilibrium parts of certain 

distribution functions. Using this BC, only the unknown 

velocity distribution functions are computed and the others 

are left untouched. Since the velocity is prescribed at the 

moving wall boundary, the density can be computed using 

the known distribution functions. The density of a boundary 

node can be split into three components. The first, , is the 

sum of the unknown particle populations. The second, + , is 

the sum of the particle populations opposite to the unknown 

ones, and the third, 0 , sums up the particle populations 

whose lattice vector is tangential to the boundary or zero. Let 

u  be the projection of the macroscopic velocity onto the 

boundary normal pointing outside of the computational 

domain. Then, the particle density of the boundary node is 

given by  

  = + + + 0  (14) 

and the normal momentum is given by  

    u = +  (15) 

 Combining these equations yields the density as a 
function of the known distribution functions:  

    
=

1

1 + u
2 + + 0( )  (16) 

 Knowing the density and the velocity at the boundary 

allows us to compute the equilibrium distribution function 

feq . The non-equilibrium part of the known distribution 

functions fneq  can then be calculated:  

    f i ,neq = f i f i ,eq  (17) 

 In the following, the index i+ x  identifies the lattice link 
pointing in the opposite direction to the one with the index 
i . All unknown distribution functions are now assigned a 
preliminary value in the following way:  

    f i = f i ,eq + f i +x ,neq  (18) 

 In this manner, the exact value of the velocity component 

in the direction of the boundary normal is recovered. To 

keep this relation valid, the sum over the values of the 

unknown particle populations needs to be kept invariant 

during subsequent operations. The excess of momentum is 

then evaluated in the remaining directions tangential to the 

boundary. With the index t  indicating the tangential 

direction and c  representing the lattice vectors, the excess 

momentum Et  reads:  

    

Et =
i

f i ,neq c i ,t  (19) 

 The values Et  are then redistributed over the unknown 
distribution functions in order to achieve the desired 
momentum in all directions. Denoting the preliminary values 
for the unknown distribution functions as fi

'
, their final 

value can be expressed as follows:  

fi = fi
'

t

1

nt
ci,t Et  (20) 

where 
t

n  denotes the number of unknown distribution 
functions for which the according lattice vector 

ti
c

,
 is non-

zero. This concludes the streaming step at the boundary and 
is followed by the collision step.  

 Pressure BC: Prescribing the density instead of the 
velocity can also be achieved using the Zou and He 
boundary condition ([13]). In this case, equations (14) and 
(15) are used to determine the normal velocity at the 
boundary instead of the pressure, the tangential velocity 
components must be zero. The resulting equation for the 
normal velocity reads:  

    
u =

2 + + 0( )
1  (21) 

 Now that the macroscopic velocity vector and the density 
are known, the distribution functions can be determined as in 
the case of the velocity boundary condition. 

 Symmetry BC: In the case of a symmetry boundary, the 
plane in which the boundary nodes lie is also a symmetry 
plane of the problem to be solved. Symmetry boundary 
conditions are very easy to implement. After streaming the 
unknown distribution functions at the boundary nodes are 
simply set to the values of the corresponding distribution 
functions on the other side of the symmetry plane. 

3. DISCRETIZATION OF THE FIBRES 

 In this study, the centre-line of a fibre is always chosen to 

be at a lattice node. Therefore the discrete centre-line of a 

fibre that does not coincide with the Cartesian coordinates of 

the lattice is jagged. On all lattice nodes which are within the 

distance of the fibre radius r  from the discrete centre line of 
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the fibre, the FBB boundary condition is enforced. In the 

following, the smallest radius which is necessary for a 

certain fibre discretization to be achieved is called the 

discretization radius rd . As shown in Fig. (1), 19 possible 

discretizations of a circle exist if the discretization radius is 

chosen to be rd 6  lattice units. 

 

Fig. (1). Possible discretizations of a circle for discretization radii 

rd 6  lattice units. The dots represent lattice points and continuous 

and dashed lines represent the circles corresponding to the different 

discretization radii. 

 When discretizising fibres using the LBM in conjunction 

with the FBB-BC, two important factors have to be 

considered. Firstly, the exact location of the fluid-solid 

interface is located somewhere between the solid and the 

neighbouring fluid nodes. Where exactly the interface is 

modeled depends on the specific LBM scheme used and can 

not be influenced locally to adjust the interface location. In 

Ladd ([16]), the interface is assumed to be half way between 

the solid and neighbouring fluid nodes. In Fig. (2), the 

resulting geometry when discretizising a circle with a radius 

of 2.5 Lattice units is illustrated. In the following, the points 

at which the interface is effectively modeled are called 

boundary nodes. The exact location of the boundary nodes is 

not known for the LBM used here but the geometric 

observations presented in this paragraph hold true as long as 

the boundary nodes are located a constant fraction of the 

lattice link away from the solid nodes. Due to this 

uncertainty, the modeled geometry is not well defined. It is 

convenient to define a reference geometry that can be 

uniquely associated with a certain discretization. In the case 

of fibres considered here, the previously introduced 

discretization radius rd  is chosen to describe the reference 

geometry. Secondly, curved fluid-solid interfaces can only 

be approximated by a jagged interface when using the FBB 

boundary condition, as can be seen in Fig. (2). Following the 

example given in Fig. (2), the resulting geometries that are 

represented by the the different discretizations considered 

here can be obtained and are depicted in Fig. (3). It can be 

seen that an increase in discretization radius does not 

necessarily result in a better geometric representation of a 

circle. When the discretization radius is chosen to be 0, 

1.415 or 2.829 for example, then effectively the discretizised 

geometry is a square. As a measure of how well a certain 

discretization describes the fibre it represents, the following 

volume ratio is introduced:  

    
VR =

Vf

Vd

 (22) 

 

Fig. (3). Effectively modeled geometries for all discretization radii 

rd 6  when assuming the boundary nodes to be half way between 

the fluid- and solid nodes. 

where Vf  is the volume of the fibre to be discretizised and 

Vd  is the volume enclosed by the surface connecting the 

 
 

Fig. (2). Schematic cross-section of a fibre with a radius of 2.5 

lattice units. Filled circles represent lattice nodes and red squares 

represent boundary nodes. All nodes within the circle are solid 

nodes and the remaining nodes are fluid nodes. Lattice links 

connecting fluid- and solid-nodes are shown as lines with the 

boundary nodes at their centers. The red dotted line describes the 

resulting geometry that is effectively discretizised. 
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boundary nodes as illustrated in Fig. (2). Furthermore a 

radius rVR  is defined which fulfils the relationship 

Vd = rVR
2 . The VR  for the discretization radii considered in 

this paper are listed in Table 1. 

4. GENERATION OF RANDOM FIBROUS POROUS 

MEDIA 

 In this paper two types of random fibrous porous media 

are investigated, namely the random array of parallel 

cylinders and the random disordered array of cylinders. For 

the simulations, cubic samples of the porous media are 

created. In the case of the random array of parallel cylinders, 

a lattice point within the sample domain is randomly chosen 

which represents a point on the centerline of one of the 

fibres. The fibre is then discretizised according to paragraph 

4. This procedure is repeated until the required SVF is 

achieved. The SVF is related to the porosity p  of a porous 

medium in the following way:  

    SVF = 1 p .  (23) 

 In the case of the random disordered arrays of cylinders, a 
point on the centerline, the angle  between the fibre and the 
x-z-plane and the angle  between the fibre and the x-y-plane 

are randomly chosen. The fibre is then discetizised according 
to paragraph 4. The process is repeated until the required 
SVF is achieved. Overlapping of fibres is possible employing 
the approaches for geometry creation described here. 

5. CALIBRATION OF THE LBM 

 On coarse numerical lattices, both the uncertainty of the 

location of the solid-fluid interface and the jagged shape of 

the fibre-discretizations rd  are expected to have a significant 

impact on the predicted permeability. Assuming an unimodal 

fibrous medium with the fibre radius rd  and the LBM 

representation of that medium being discretizised using rd , 

the difference between a characteristic property R  of the 

flow through that medium and the value of that property as 

predicted by the LBM can be divided as follows:  

    R RLB = RU + D ,J + r  (24) 

Here RU  is the difference between the predicted and the 

correct value of R  due to the uncertainty of the solid-fluid 

boundary location, D,J  is the error due to the jaggedness of 

the curved boundaries and 
r

 represents all other error 

terms. On coarse numerical lattices, the first two terms in 

equation (24) are expected to be dominant and hence 

RU + D,J >> r , with the exception of flows through narrow 

channels. In the latter case the spacial discretization of the 

channel is likely to be less than two lattice units, in which 

case the LBM is known to yield significant discretization 

errors. In the case of unimodal fibrous porous media, RU  is 

expected to be independent of the fibre arrangement 

considered, since every fibre is discretizised in the same 

way. D,J  on the other hand is not, since the difference 

between the actually modeled geometry and the desired 

geometry due to the jaggedness has different hydrodynamic 

effects for different fibre arrangements in general. With 

increasing distance from a fibre, the effect of a fibre on the 

flow is less dependent on the actual cross-section of that 

fibre. Therefore, in the special case of low SVFs, D,J  is 

assumed to be constant. Following the above assumptions, 

RU + D,J  can be estimated by carrying out computations for 

hydrodynamic problems where the solution is known and 

can be accounted for in subsequent predictions. The 

procedure of determining     RU + D ,J  can therefore be 

considered as a calibration process of the LBM for a specific 

type of geometry and its discretization. This calibration 

process is carried out for the different fibre discretizations 

depicted in Fig. (3). 

 The benchmark problem employed here is the flow 

through a square array of parallel cylinders. The geometry of 

the problem is uniquely defined by the SVF C , which is a 

function of the cylinder radius r :  

    
C =

r 2

L2
 (25) 

where L  is the shortest distance between two cylinders to be 

found in the array. The characteristic parameter of the flow is 

Table 1. Table of all Discretization Radii rd Considered in this 

Paper Together with the Corresponding Volume 

ratio VR and the Effective Hydrodynamic Radii rh 

Obtained Via the Calibration Process 

rd   rh   VR 

1.000  1.257799253  0.628 

1.415  1.575406821  0.699  

2.000  2.177106122  0.967  

2.237  2.527603649  0.749  

2.829  2.771143826  1.006  

3.000  3.154686881  0.975  

3.163  3.484259055  0.849  

3.606  3.723425773  0.908  

4.000  4.079299929  1.026  

4.124  4.395236807  0.937  

4.243  4.456854462  0.927  

4.473  4.666210863  0.911  

5.000  5.141047012  0.970  

5.100  5.406455984  0.918  

5.386  5.404980687  0.940  

5.657  5.671614683  0.995  

5.831  5.837739421  0.980  

6.000  6.102821297  1.001  
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chosen to be the non-dimensional drag force FND  on a single 

cylinder in the array. FND  can be computed from the LBM 

results in the following way:  

    
FND ,LB =

p A

U l
 (26) 

where p  is the average pressure drop between two 

neighbouring symmetry planes perpendicular to the main 

flow direction, A  is the the cross-sectional area for a repeat 

element, U  is the volume averaged velocity in the main-flow 

direction,  is the lattice viscosity and l  is the length of the 

cylinders which is choosen to be unity throughout this paper. 

The results obtained using the LBM are compared with the 

literature data to obtain an estimate for RU + D,J . At 

volume fractions of C = 0.2 and less, the analytical 

expression for dilute arrays  C =1  proposed by Sangani and 

Acrivos ([17]) to obtain the non-dimensional drag force FND  

is used for comparison:  

FND = FND (C) = FND (r
2 ) =

F

U l
=

4

ln C1/2 0.738+C 0.887C2 + 2.038C 3
+ 0C 4

 (27) 

where F  is the dimensional drag force. At higher SVFs this 

expression is not accurate and the computational results of 

Sangani and Acrivos ([17]) are used for comparison. To be 

able to easily apply the obtained results for RU + D,J  to 

other fibrous geometries, it is expressed using the idea of an 

effective hydrodynamic radius rh . Using the LBM results and 

the literature data for FND , the effective hydrodynamic radius 

rh  can be defined so that the following relation is satisfied:  

    FND ,LB = FND (rh
2 ) = FND (rd

2 ) + RU + D,J + r  (28) 

 It is worth noting that the choice of rd  as a reference 

radius has some implications on the interpretation of r . 

Since rd  is defined as the smallest possible radius to achieve 

a certain discretization and the actual boundary is known to 

lie somewhere between the solid nodes and their 

neighbouring fluid nodes, the difference of the two radii 

r = rh rd  is likely to be positive. 

 In Fig. (4), the difference between the discretization 

radius and the effective hydrodynamic radius, r , is shown 

as a function of the discretization radius rd  for different 

SVFs C , C =C(rd ) . For certain combinations of rd  and C , 

no meaningful LBM solution can be obtained since the gap 

between the cylinders reduces to one lattice unit and this is 

insufficient to model the flow in the gap. The results 

obtained show that the determined values of rh  for different 

SVFs are clearly correlated. This supports the assumption 

that the error in the LBM is dominated by RU + D,J  and it is 

relatively independent of the considered fibre arrangement. 

To further illustrate this assumption, more complex problems 

have to be considered since all cases considered here involve 

relatively similar arrangements. another interesting detail is 

that r  correlates very well with rVR = rVR rd , which 

suggests that the SVF of the modeled medium is of much 

higher importance than the actual cross-section of the 

modeled fibre. 

 
Fig. (4). The difference between discretization radius and 

hydrodynamic radius, r = rh rd , as a function of the 

discretization radius rd  for different SVFs C . The SVFs are based 

on the discretization radius rd . In addition rVR = rVR rd  is 

presented.  

6. PERMEABILITY PREDICTIONS FOR RANDOM 

FIBROUS GEOMETRIES 

 Two different geometries are investigated, namely a 

random array of parallel cylinders and a random disordered 

array of cylinders. Since, in the former case the problem can 

be reduced to two dimensions, it is referred to as the 2D case 

and the latter problem is referred to as the 3D case. Taking 

into account the findings of the previous section, the 

discretization radius rd  is chosen in a way so that the 

associated effective hydrodynamic radius rh  matches the 

desired fibre radius. The actual porous medium being 

modeled is of square or cubic shape for the 2D and 3D cases, 

respectively. The length of the edges l  of the porous domain 

are chosen to be 100 rh  for the 2D case and 50 rh  for the 

3D case. According to previous studies ([18]) the chosen 

domain sizes are large enough to obtain a result which is 

sufficiently statistically independent. In the main flow 

direction, the domain extends a distance S  to both sides of 

the porous medium. The chosen boundary conditions are the 

same for the 2D and 3D cases and are illustrated in Fig. (5). 

In the 2D case, the geometry was created in such a way that 

the fibres do not intersect. This restriction was not applied in 

the 3D case. Due to limited computational resources, 

computations were only carried out for discretization radii up 

to rd = 4  lattice units for the 3D case. Furthermore, no 

converged results were obtained for the 2D case at a SVF of 

C =  0.4. The non-dimensional permeability k  is chosen as 

the reference parameter and is defined as follows:  

    
k =

U 

p t m a 2
 (29) 
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Fig. (5). Schematic of the boundary conditions employed for the 

permeability predictions. The blue and red surfaces represent the 

inlet and outlet boundaries, respectively. At the inlet a uniform 

velocity in the positive z-direction is enforced while a uniform 

pressure is enforced at the outlet. The other boundaries confining 

the computational domain are symmetry boundary conditions. S  

denotes the distance from the porous medium to the inlet or outlet 

boundaries. l  denotes the size of the square (2D case) or cubic (3D 
case) sample of the porous medium.  

where tm  is the thickness of the porous medium in the main 

flow direction in lattice units and a  is the fibre radius in 

lattice units which is used to make the permeability non-

dimensional. Here, tm  equals l  and a  equals rh .  

 The results obtained using the LBM are compared to the 
results obtained by Sangani and Mo ([19]) in the 2D case 
and with the results of Clague et al. ([4]) in the 3D case. In 
Sangani and Mo ([19]) the results are presented in the form 
of a scaled average force per cylinder. It is transformed into 
the above definition of k  as follows:  

    

k =
F

4 U 

 

 
  

 

 
  

1

1

4 r 2
 (30) 

where the term in the brackets on the right hand side 
represents the results as given in ([19]) and r2  is obtained as 
follows:  

    
r 2 =

C
 (31) 

 The data taken from ([19]) is in very good agreement 
with the results obtained by other authors ([20] and 
references therein). The results presented in Clague et al. 
([4]) are for different SVFs than the ones considered in this 
paper and the required values are obtained by manual 

interpolation. Results for the permeability of random 
disordered fibrous porous media vary considerably ([21]) 
and have to be interpreted with care. All literature data that is 
used for comparison in this paper is summarised in Table 2. 

 The total error E , as calculated with the literature values 

for the permeability kL  and the corresponding LBM result 

kLB  is expressed as a percentage of the literature value. A 

negative error indicates an overprediction of the permeability 

and the converse argument is true. In Fig. (6) the error is 

depicted for the different discretizations and for different 

SVFs for both the 2D and the 3D case. Since the calibration 

process aimed at compensating for RU  and D,J , E  is the 

residual error 
r

 plus an error 
c

 which represents the error 

due to the limited applicability of the assumptions made 

during the calibration process. In general the residual error 

r  is expected to decrease monotonically with increasing 

lattice resolution. 

 

Fig. (6). The error E  of the LBM predictions of the hydraulic 

permeability as a function of the discretization radius rd  for 

different SVFs and different geometries. The 2D case refers to a 

random array of parallel cylinders while the 3D case refers to a 

random disordered porous medium.  

 It can be seen that the error, as a function of the 
discretization radius E = E(rd ) , is alternating and is 
correlated for all considered cases. Due to the calibration 
process, the error does not decrease monotonically with the 
lattice refinement. With the exception of the 3D cases with a 
SVF of 0.4, E  alternates around 0 and the amplitude 
decreases slightly with increasing discretization radius. Since 

r
 is expected to decrease monotonically with the lattice 

resolution, the alternating behaviour of E  can be attributed 
to the limited applicability of the assumptions made during 
the calibration process. 

Table 2. Literature Data for the Non-Dimensional Permeability k  for the Different SVFs C . Data Taken from [19] and [4]. In the 

Last Line the Error a,abs  Obtained in this Paper is Presented for the Different SVFs 

C  0.1 0.2 0.3 0.4 

k , S & M, 2D 1.667 0.338 0.094 N/A 

k , Clague, 3D  2.15 0.71 0.27 0.102 

a,abs[%]  3.6 5.8 9.7 33.1 
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 The assumption of 
JD,

 being sufficiently independent 

of the structure of the fibrous medium is only valid if the 

distance between the fibres is large enough. With increasing 

SVF this assumption becomes less valid and therefore 
c

 is 

expected to increase. With increasing SVF, the fluid 

channels become narrower and are therefore represented by 

fewer fluid nodes. This leads to an expected increase in 
r

. 

In Table 2 the absolute value of the error, averaged over all 

discretizations, 
absa,

 is presented and indeed increases with 

increasing SVF. While both components of E  are expected 

to increase with C , they can affect the result contrarily. This 

observation can explain why, for certain discretizations, the 

absolute error is not increasing with the SVF. 

 The aim of this paper is to improve the accuracy of the 
LBM in predicting the permeability of fibrous porous media 
when using coarse numerical lattices. In Fig. (7) the total 
error of the non-calibrated LBM is presented for a square 
array of parallel cylinders. In this case, the effective 
hydrodynamic radius rh  was chosen to be equal the 
discretization radius rd . For the square array of parallel 
cylinders the SVF is a function of the distance L  between 
the center lines and the cylinder radius r  (compare equation 
(25)). Since in the LBM L  is an integer value, the possible 
SVFs that can be modeled using a certain discretization 
radius are finite. For this reason only certain data points are 
included in Fig. (7). To determine the error the LBM results 
were compared with the data obtained by Sangani and 
Acrivos ([17]). Comparing Figs. (7) and (6) it can be 
observed that the calibration process did, in general, not 
improve the accuracy of the LBM at fibre discretisations of 
rd 4 . In the non-calibrated case, the error strongly increases 
for smaller discretization radii while the amplitude of E(rd )  
increases only moderately. 

 

Fig. (7). The total error of the LBM predictions of the hydraulic 

permeability of a square array of parallel cylinders as a function of 

the discretization radius rd  for different SVFs. The solid lines are 

regressions of the point data. For these computations rh  is set equal 

to rd .  

CONCLUSIONS 

 The calibration process employed in this paper is able to 

significantly improve the accuracy of the LBM for the 

special case of fibrous porous media when using very small 

discretization radii rd 4 . At moderate discretization radii of 

4 rd 6  the calibration process does not generally have a 

positive effect on the results. For SVFs 0.2  the calibration 

process offers the possibility to significantly reduce the 

computational cost if an error of about 10-15%  is 

acceptable. At higher SVFs the error significantly increases 

and makes the use of coarse lattices questionable. Since the 

error as a function of the discretization radius alternates 

around 0 for SVFs  3, the accuracy of the LBM can be 

improved by carrying out several computations on coarse 

lattices and averaging the results. 
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NOMENCLATURE 

Roman Letters 

A = Area 

cS  = Lattice speed of sound 

C  = Solid volume fraction 

E  = Error term 

Et  = Excess momentum 

fi  = Discrete velocity distribution function 

Fi  = Discrete equilibrium distribution function 

FND  = Force on a single cylinder 

k  = Non-dimensional permeability 

m  = Moment of the distribution function 

nt  = Number of unknown distribution functions 

p = Lattice pressure 

Q = Number of velocity vectors 

R = Characteristic property 

rd  = Discretization radius 

rh  = Effective hydrodynamic radius 

t  = Time 

tm  = Material thickness 

U  = Volume averaged lattice velocity 

VR  = Volume ratio 

wi  = Weigthing factor 

Greek Letters 

 = Fibre angle 

 = Fibre angle 

p  = Porosity 

r  = Error term 

D,J  = Error term 

 = Lattice viscosity 
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 = Lattice density 

 = Relaxation rate 

 = Collision operator 

 = Momentum ansatz 

Vectors and Tensors 

ei  = Lattice link 

f  = Vector containing distribution functions 

M  = Transformation matrix 

r  = Particle position vector 

R  = Momentum vector 

 
%R  = Momentum vector, post collision state 

Req  = Equilibrium momentum vector 

S  = Relaxation matrix 

u  = Macroscopic velocity vector 

i  = Particle velocity vector 

Abbreviations 

BC = Boundary condition 

BGK = Baghnar-Gross-Krook 

FBB = Full bounce back 

LU = Lattice unit 

LBM = Lattice Boltzmann method 

MRT = Multiple relaxation time 

SRT = Single relaxation time 

SVF = Solid volume fraction 

TRT = Two relaxation time 
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