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Abstract: A three-dimensional numerical model is proposed to determine heat and fluid flow characteristics in metal 
foams. A series of full three-dimensional numerical calculations was performed to reveal complex three-dimensional ve-
locity, pressure and temperature fields within three-dimensional porous structures of the metal foams. These numerical re-
sults are processed to obtain the macroscopic characteristics such as the permeability, inertia, dispersion and interstitial 
heat transfer coefficients. An effective pore diameter concept has been proposed to correlate the resulting heat and fluid 
flow characteristics with available empirical correlations.  
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INTRODUCTION 

 Metal foam materials have complex and irregular struc-
ture, and there are many pores with different sizes (see  
Fig. 1). They have meandering flow paths and large surface 
area as well as low density. And they have high thermal 
conductivity. Because of these characteristics, high perform-
ance of heat transfer between the fluid and solid phases can 
be achieved using such foams with high permeability. There-
fore, metal foam materials can be used for high performance 
heat exchangers. Heat and fluid flow characteristics must be 
explored to optimize these equipments. Recently, consider-
able attention has been directed to numerical investigations 
[1-4]. However, heat transfer characteristics in metal foams 
have not been fully investigated numerically. Moreover, 
there is no general method to determine the characteristic 
length of three-dimensional numerical models yet. 
 In this study, we shall conduct a numerical study on heat 
and fluid flow in metal foam using a three-dimensional nu-
merical model of periodical structure. In order to capture 
irregularities in real foams, quantities calculated at specific 
flow angles are ensemble-averaged over the flow angle. A 
rational way to evaluate the effective pore diameter, which is 
used as the characteristic length of present three-dimensional 
numerical model, is proposed. Permeability, Forchheimer 
coefficient, thermal dispersion and volumetric heat transfer 
coefficient are determined by spatially averaging micro-
scopic numerical results. The validity of the present numeri-
cal model and the effective pore diameter are examined by 
comparing the numerical results with available empirical 
correlations. Furthermore, an interesting relationship be-
tween the thermal dispersion conductivity and the volumet-
ric heat transfer coefficient is elucidated. 
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NUMERICAL MODEL AND METHOD 

 We shall consider heat and fluid flow through a foam 
heated at constant temperature Ts as shown in Fig. (2a). 
Governing equations for the fluid phase are given as follows. 
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where the subscripts f denotes the fluid phase. !, cp, k and µ 
are density, specific heat, thermal conductivity and viscosity, 
respectively. Since the structure is periodic, numerical do-
main can be limited to a structural unit (see Fig. (2b)) ex-
ploiting periodic boundary conditions. The macroscopic 
flow direction is set in terms of " and # as shown in Fig. 
(2c). Calculations are performed for various sets of " and #, 
and these results are ensemble-averaged to determine the 
representative characteristics. The boundary and compatibil-
ity conditions are set as follows [5]. 
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 All calculations are conducted for a structural unit using 
grid nodes 151×151×151, to ensure grid independency.  
Fig. (3) shows a procedure to generate a structural unit. A 
cubic space (H×H×H) is subtracted by spheres (D) placed at 
vertices and the center of the cube. All structural units used 
in calculations are shown in Fig. (4). Present three-
dimensional numerical model has the same structure with 
Kelvin model [6]. There are two kinds of pores A and B with 
different sizes. But only pore A is in low porosity. The po-
rosity is set from ε=0.839 to ε=0.964 by changing D. 
 In general way, a diameter of pore is determined by im-
age analysis [7] or rational method [8]. From these methods, 
a pore diameter is not a pure diameter but an effective di-
ameter. Thus, the effective pore diameter to be used for a 
characteristic length may be evaluated from 
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Fig. (1). Foam material. 

 
Fig. (2). Numerical model. 

 
Fig. (3). Generation of a structural unit. 
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 There are two kinds of pores A and pore B in a structural 
unit (see Fig. 5). Thus, the effective number of pores, 
namely n, in unit projected area (H×H) may be evaluated 
from  
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 As indicated in the foregoing equation, the numbers of 
the pore A and that of the pore B, namely nA and nB, are 
weighted by the corresponding projected diameters dmA and 
dmB, respectively. Note that dmA is much larger than dmB such 
that the effective number of pores n is closer to nA (=4) than 
to nB (=2). 
Determination of Coefficients 
 The macroscopic pressure gradient is modeled according 
to the Forchheimer extended Darcy model: 
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 The intrinsically averaged pressure gradient obtained 
from the numerical calculations is correlated against the 
foregoing equation to determine the permeability K and 
Forchheimer coefficient b. The details of this procedure may 
be found elsewhere (5).  
 The macroscopic heat transport equation for the fluid 
phase is given as follow: 
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 The second term on the right hand side of the equation is 

modeled using the thermal dispersion tensor 
dis
k :  
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 In this study, only the axial component kdisXX is focused 
as follows: 
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 The third term on the right hand side of equation (13) is 
modeled using the volumetric heat transfer coefficient hv as 
follows: 
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RESULTS AND DISCUSSION 

 The dimensionless permeability thus determined is plot-
ted against the porosity in Fig. (6a). In the same figure, the 
empirical correlation [9] is plotted along with specific sur-
face variation. The permeability increases with the porosity 
in accord with the empirical correlation, since the specific 
surface area decreases resulting in the reduction of intersti-
tial viscous force. 
 In Fig. (6b), the effect of porosity on the Forchheimer 
coefficient is presented with the empirical correlation [10]. 
The ratio of the diameter of pore A to the length of numeri-

 
Fig. (4). Bird’s view of structural units. 

 
Fig. (5). Structural units observed from z axis. 
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cal domain dmA/H is also indicated in the same figure. The 
Forchheimer coefficient decreases as increasing the porosity, 
since dmA/H increases the porosity diminishing the interstitial 
form drag. 
 The axial thermal dispersion conductivity kdisXX is plotted 
in Fig. (6c), for ε=0.909. The axial component kdisXX is typi-
cally 20 to 100 times larger than the vertical one kdisYY. Thus, 
the empirical correlation [11] for kdisYY is multiplied by 20 
and 100 times, and plotted in the figure for comparison. The 
present numerical results agree well with the line generated 

by kdisYY×100. The exponent for the Reynolds number of 
present numerical results is found to be 1.17, somewhat 
larger than 1. 

 Fig. (6d) shows the dimensionless volumetric heat trans-
fer coefficient, namely Nusselt number Nuv, with the empiri-
cal correlation [11], for ε=0.909. From the figure, interstitial 
heat transfer is seen promoted as increasing Reynolds num-
ber. The volumetric heat transfer coefficient appears to be 
proportional to Reynolds number to the power 0.61.  

 
Fig. (6). Numerical results. 

 
Fig. (7). Relationship between the axial thermal dispersion conductivity and the volumetric heat transfer coefficient. 
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 All heat and fluid flow characteristics such as permeabil-
ity, Forchheimer coefficient, axial thermal dispersion con-
ductivity and volumetric heat transfer coefficient well agree 
with empirical correlations. These results clearly indicate 
that the present numerical method and the effective pore 
diameter concept are valid. 
 The following relation holds between the interstitial heat 
transfer coefficient and thermal dispersion [12]: 

 
Nu

v
k

dis
XX

k
f

= C RePr( )
2

 
(17) 

where C is the proportional constant. Fig. (7) shows the 
product Nuv kdisXX / kf 

against the Pécret number, for ε = 
0.909. The proportional constant C = 0.15 has been deter-
mined from the numerical results. The figure clearly indi-
cates that the proportional relationship [12] holds over a 
wide range of the Peclet number. 

CONCLUSIONS 

 In this study, we carried out numerical investigation of 
heat and fluid flow though metal foams. The numerical re-
sults were processed to determine permeability, Forchheimer 
coefficient, thermal dispersion conductivity and volumetric 
heat transfer coefficient. The effective pore diameter concept 
has been proposed to correlate the resulting heat and fluid 
flow characteristics with available empirical correlations. 
Present numerical results were well accord with available 
empirical correlations. Moreover, the interesting relationship 
between the axial thermal dispersion conductivity and the 
volumetric heat transfer coefficient held over wide range of 

 number. These results indicate that the present nu-
merical method and the effective pore diameter concept are 
valid. 

NOMENCLATURE 

Aint = interfacial area between fluid and solid 
phases 

b = Forchheimer coefficient 
cp = constant pressure specific heat  
D = diameter of sphere 
dm = the effective pore diameter 
dmA, dmB = projected diameters of pore A and that of 

pore B 
hv = volumetric heat transfer coefficient 
H = length of numerical domain 

kji
rrr

 , ,  = unit vector in the x, y, z directions 

k = thermal conductivity 

dis
k  = thermal dispersion conductivity tensor 

kdis XX = axial thermal dispersion conductivity 
K = permeability 

GREEK SYMBOLS 

", # = angles between the macroscopic velocity 
vector and principal axis 

$ = porosity 

µ = viscosity 

! = density 

% = similarity factor 

n = the effective number of pores 

nA, nB
 = the number of the pore A and that of the 

pore B 

Nuv = dimensionless volumetric heat transfer 
coefficient: Nusselt number 

Pe = Peclet number 

Pr = Prandtl number 

Re = Reynolds number 

T = temperature 

u, v, w = velocity components in the x, y, z direc-
tions 

u
r  = velocity vector 

V = volume 

x, y, z = cartesian coordinates 

X = axis in the macroscopic flow direction 

SUBSCRIPTS 

f = fluid phase 

s = solid phase 

 !  = deviation from volume averaged value 

SPECIAL SYMBOLS 

 = volume average 

 

f  = intrinsic average 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no con-
flicts of interest. 

ACKNOWLEDGEMENT 

 Declared none. 

REFERENCES 
[1]  Z.W. Caliot, C. G. Flamant, and Z. Wang, “Numerical simulation 

of convective heat transfer between air flow and ceramic foams to 
optimize volumetric solar receiver performances”, International 
Journal of Heat and Mass Transfer, vol. 54, pp. 1527-1537, 2011. 

[2]  A. Kopanidis, A. Theodorakakos, E. Gavaises, and D. Bouris, “3D 
numerical simulation of flow and conjugate heat transfer through a 
pore scale model of high porosity open cell metal foam”, Interna-
tional Journal of Heat and Mass Transfer, vol. 53, pp. 2539–2550, 
2010. 

[3]  S. Krishnan, S. V. Garimella, and J. Y.  Murthy, “Simulation of 
Thermal Transport in Open-Cell Metal Foams: Effect of Periodic 
Unit-Cell Structure”, ASME Journal of Heat Transfer, vol. 130, pp. 
024503-1～024503-5, 2008. 

[4]  W. Xu, H. Zhang, Z. Yang, and J. Zhang, “Numerical investigation 
on the flow characteristics and permeability of three-dimensional 



6 The Open Transport Phenomena Journal, 2012, Volume 5 Kuwahara and Fumoto 

reticulated foam materials”, Chemical Engineering Journal, vol. 
140, no. 1, pp. 562-569, 2008. 

[5]  A. Nakayama, F. Kuwahara, Y. Kawamura, and H. Koyama, 
“Three-Dimensional Numerical Simulation of Flow Through a Mi-
croscopic Porous Structure”, In: Proceedings ASME/JSME Ther-
mal Engineering Conference, Hawaii, 1995, vol. 3, pp. 313-318, 
1995. 

[6]  L. Kelvin, “On the Division Of Space With Minimum Partitional 
Area”, Philosophical Magazine, vol. 24, No. 151, pp. 503-514, 
1887. 

[7]  J. T. Richardson, Y. Peng, and D. Remue, “Properties of ceramic 
foam catalyst supports: pressure drop”, Applied Catalysis A: Gen-
eral, vol. 204, pp. 19-32, 2000. 

[8]  X. Fu, R. Viskanta, and J. P. Gore, “Measurement and correlation 
of volumetric heat transfer coefficients of cellular ceramics”, Ex-
perimental Thermal and Fluid Science, vol. 17, pp. 285-293, 1998. 

[9]  V. V. Calmidi, “Transport phenomena in high porosity fibrous 
metal forms”, Ph.D. dissertation, University of Colorado, Boulder, 
CO, 1998. 

[10]  N. Dukhan, “Correlations for the pressure drop for flow through 
metal foam”, Experiments in Fluids, vol. 41, no. 4, pp. 665-672, 
2006. 

[11]  V. V. Calmidi, and R. L. Mahajan, “Forced convection in high 
porosity metal foams”, ASME Journal of Heat Transfer, vol. 122, 
pp. 557-565, 2000. 

[12]  Y. Sano, F. Kuwahara, M. Mobedi, and A. Nakayama, “Effects of 
thermal dispersion on heat transfer in cross-flow tubular heat ex-
changers”, International Journal of Heat and Mass Transfer, vol. 
48, no 1, pp. 183-189, 2012. 

 

Received: March 13, 2013 Revised: April 10, 2013 Accepted: April 10, 2013 

© Kuwahara and Fumoto; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-
licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 
  
 
 


