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Abstract: Direct numerical simulation (DNS) of a fully-developed turbulent flow in a channel rotating around the span-
wise axis is performed. A vortex in cell (VIC) method, of which numerical accuracy was successfully improved by the 
authors in their prior study, is applied to the DNS. The Reynolds number based on the friction velocity and the channel 
half width is 171, and the nondimensional rotation number defined with the channel angular velocity and width is 2.1.  
The simulated turbulence statistics, such as the mean velocity and the Reynolds shear stress, are favorably compared with 
the existing DNS results. The simulation can analyze the disappearance of the streak structures near the suction-wall due 
to the channel rotation. It also captures the secondary flow of the Taylor-Görtler vortex pattern near the pressure-wall. 
These simulation results demonstrate that the VIC method improved by the authors is indeed applicable to the DNS of 
turbulent flows in rotating channel. 
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1. INTRODUCTION 

 Vortex in cell (VIC) method is one of the numerical 
computation methods of incompressible flows [1]. It is clas-
sified as vortex methods, which simulate the time evolution 
of the flow by solving a vorticity equation. The VIC method 
discretizes the vorticity field into vortex elements and com-
putes the time evolution of the flow by tracing the convec-
tion of each vortex element using the Lagrangian approach. 
The Lagrangian calculation markedly reduces numerical 
diffusion and also improves numerical stability. Thus, the 
VIC method is eminently suitable for direct numerical simu-
lation (DNS) of turbulent flows. Various simulation results 
have been reported. Cottet and Poncet [2] applied the VIC 
method for the wake simulation of a circular cylinder, and 
captured the streamwise vortices occurring behind the cylin-
der. Cocle et al. [3] analyzed the behavior of two vortex sys-
tem near a solid wall, and made clear the interaction between 
two counter-rotating vortices and the eddies induced in the 
vicinity of the wall. Chatelain et al. [4] simulated trailing 
edge vortices, and visualized the unsteady phenomena 
caused by disturbances. These studies are concerned with 
time-developing free shear flows, which are dominated by 
the convection of large-scale eddy. But the VIC method has 
not been applied to the turbulent flow bounded by solid 
walls. Thus, the authors [5] performed the DNS of a  
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turbulent channel flow, which is a representative example of 
the wall turbulent flows. The Reynolds number based on the 
friction velocity and the channel half width is 180. They 
applied an improved VIC method, of which computational 
accuracy was successfully heightened by them [5]. The DNS 
highlighted that the turbulence statistics, such as the mean 
velocity, the Reynolds shear stress, and the velocity and vor-
ticity fluctuations, are in good agreement with the existing 
DNS results. It also indicated that the organized flow struc-
tures, such as streaks and streamwise vortices appearing in 
the near wall region, are favorably captured. These demon-
strated the validity of the DNS for turbulent channel flows 
performed with the VIC method improved by the authors. 
 Incompressible flows in rotating fields have been exten-
sively studied by a number of researches [6-9] to understand 
air currents in the atmosphere and to grasp turbomachinery 
flows. Turbulent flows in channel rotating around the span-
wise axis were investigated by the LES [10, 11] and the 
DNS [12, 13], and the effects of the Coriolis force on the 
flow stability and turbulent structures were explored. The 
VIC method is expected to be useful for the DNS of the ro-
tating turbulent channel flows. But such DNS has not been 
carried out. 
 In this study, the DNS of a rotating turbulent channel 
flow is performed with the VIC method, of which computa-
tional accuracy was improved by the authors [5]. The Rey-
nolds number based on the friction velocity and the channel 
half width is 171, while the nondimensional rotation number 
defined with the channel angular velocity and width is 2.1. 
The simulation highlights that the effect of the channel rota-
tion on the turbulence statistics is favorably analyzed, dem-
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onstrating the validity of the DNS for the rotating turbulent 
channel flows by the authors' VIC method. 

2. VORTEX IN CELL METHOD 

 Let us consider an incompressible fully-developed turbulent 
flow between two infinite parallel plates in spanwise rotation 
with a constant angular velocity Ω about the z-axis in a Car-
tesian coordinate system, as shown schematically in Fig. (1). 
The governing equations are the Navier-Stokes and continu-
ity equations written in a reference frame rotating with the 
plates. The vorticity equation is given by 

   
!"

!t
+#$ "u( ) = #$ u"( ) +%#

2
" + 2&$#( )u

 (1) 

where ω ( u!"= ) is the vorticity. 
 According to the Helmholtz theorem, the velocity u is 
the sum of the curl of a vector potential ψ and the gradient of 
a scalar potential ! . The velocity u is thus expressed as 

 u = !"# +!$  (2) 

When ψ is postulated to be solenoidal or !." =0 , the curl of 
Eq. (2) yields the vector Poisson equation for ψ : 

 !
2" = #$  (3) 

 Substituting Eq. (2) into the continuity equation and re-
writing the resultant equation, the Laplace equation for φ is 
obtained: 

 !
2" = 0  (4) 

 Once ψ and φ have been computed from Eqs. (3) and (4) 
respectively, the velocity u is calculated from Eq. (2). The 
vorticity ω  in Eq. (3) is estimated from Eq. (1). The vortex 
in cell (VIC) method discretizes the vorticity field into vor-
tex elements, and calculates the distribution of ω  by tracing 
the convection of each vortex element. 

 It is postulated that the position vector and vorticity for 
the vortex element p are xp  

= xp , yp , zp( )  and ωp respectively. 
The Lagrangian form of the vorticity equation, Eq. (1), is 
written as follows [14]: 

    

dxp

dt
= u xp( )

 (5) 
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 When the position and vorticity of a vortex element are 
known at time t, the values at t +Δ t are computed from Eqs. 
(5) and (6). In the VIC method, the flow field is divided into 
computational grid cells to define ψ, φ and ω on the grids. If 
ω is defined at a position xg 

  
= xg , yg , zg( ) , the vorticity ω is 

assigned to xg, or a vortex element with vorticity ω is redis-
tributed onto xg: 
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where Nv is the number of vortex elements, and hi (i=x,y,z) is 
the grid width. For the redistribution function W, various 
forms are presented [14]. To suppress the numerical dissipa-
tion, a high-order scheme, which preserves the three first 
moments of the distribution, twice continuously differenti-
able and symmetric, is employed for W: 
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3. IMPROVEMENTS OF VIC METHOD 

3.1. Discretization by Staggered Grid 

 For incompressible flow simulations, the MAC and 
SMAC methods solve the Poisson equation, which is derived 
from the equation for pressure gradient and the continuity 
equation. These methods employ a staggered grid to ensure 
consistency among the discretized equations, and to prevent 
numerical oscillations of the solution. The staggered grid 
would appear to be useful for discretizing the Poisson equa-
tion for ψ and the Laplace equation for φ, which are derived 

 
Fig. (1). Rotating channel and coordinate system. 
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in the VIC method. However, staggered grids are not readily 
accommodated in the existing VIC method. 
 The authors proposed a VIC method using a staggered 
grid in their prior study [5]. Fig. (2) shows the arrangement 
of the variables in the grid. The scalar potential φ and the 
velocity u are defined at the center and sides of the grid, 
respectively. The vorticity ω and the vector potential ψ are 
defined on the edges. 

3.2. Correction of Vorticity Field 

 In the VIC method, the vorticity field is discretized into 
vortex elements, and the field is expressed by superimposing 
the vorticity distributions around each vortex element. This 
superposition is performed by Eq. (7). The resulting vorticity 
field ωr does not necessarily satisfy the solenoidal condition 
[14]. Denoting the vorticity satisfying this condition by ωs  
( = !" u ), ωr is expressed as [3] 

 ! r = "F +! s  (9) 

where F is a scalar function. Equation (9) corresponds to the 
Helmholtz decomposition of ωr. 
 Taking the divergence of Eq. (9), the Poisson equation 
for F is obtained: 

  !
2F = !"# r  (10) 

 Calculating F from Eq. (10) and substituted into Eq. (9) 
gives the recalculated vorticity ωs [3]. This correction for 
vorticity needs to solve the Poisson equation, which in-
creases the computational time. To reduce this additional 
cost, the authors [5] have proposed a simplified correction 
method. 
 The uncorrected vorticity, ωr, is linked to ψr through Eq. 
(3). Taking the divergence of Eq. (3) and substituting Eq. 
(10) into the resultant equation, the following relations are 
obtained: 

  

!2 !"# r( ) = $!"% r

= $!2F  (11) 

 Unlike the assumption for the solenoidal condition of ψ, 
the following equation for a non-solenoidal vorticity is de-
rived from Eq. (11). 

 !"# r = $F  (12) 

 Using ω r to calculate ψr from Eq. (3), and determining φr 
from Eq. (4), the curl of u

r
 transforms as follows: 

   

!" ur = !" !#r +!"$ r( )
= ! !%$ r( )&!2$ r

= &!F +' r

=' s

 (13) 

 Equation (13) demonstrates that the curl of the velocity 
u

r
 calculated from ωr yields a vorticity ωs that satisfies the 

solenoidal condition. If the vorticity is recalculated by Eq. 
(13), or the vorticity is corrected immediately after calculat-
ing the velocity by Eq. (2), the discretization error in the 
vorticity is completely removed and the flow dynamics are 
accurately simulated without solving the Poisson equation 
[Eq. (10)]. It should be noted that the staggered grid is re-
quired for rendering the transformation in Eq. (13) applica-
ble to the corresponding discretized equations. 

3.3. Simulation Procedure 

 Given the flow at time t , the flow at tt !+  is simulated 
by the following procedure: 

1. Calculate the change in the strength of each vortex 
element, or calculate the vorticity ωp from Eq. (6). 

2. Calculate the convection of each vortex element, or 
calculate the position px  from Eq. (5). 

 
Fig. (2). Staggered grid. 
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3. Redistribute the vortex element onto the grids, or 
calculate the vorticity ω on the grids by Eq. (7). 

4. Calculate the vector potential ψ from Eq. (3). 
5. Calculate the scalar potential φ from Eq. (4). 
6. Calculate the velocity u from Eq. (2). 
7. Correct the vorticity, or calculate the corrected vor-

ticity from the curl of u. 

3.4. Application to Cavity Flow Simulation 

 To demonstrate the applicability of the abovementioned 
improved VIC method, the flows in a cubic cavity are simu-
lated [5]. A comparison simulation using regular grids is also 
conducted, in which the correction of the vorticity by Eq. 
(13) is not employed.  

 Fig. (3) shows the computational domain and the coordi-
nate system. The side length of the cavity is a. The upper 

wall (y/a=1) moves in the x-direction with velocity U. The 
Reynolds number Re is defined as   aU / ! . The domain is 
divided into uniform grids, and the time increment   U!t / a  
is 0.01. The non-slip condition is imposed on the walls. 
Equation (3) is solved by the SOR method. The second-order 
Adams-Bashforth method is used for the Lagrangian calcula-
tion of Eqs. (5) and (6). 

 Calculating the divergence of the vorticity on each grid 

point at Re=400 and 1000, the root-mean-square !"#  
varies as shown in Fig. (4), where N is the number of grids 
along one axis of the cubic cavity. In the simulation using 
the staggered grids with the vorticity correction method, the 
vorticity field sufficiently satisfies the solenoidal condition. 
One can find the applicability of the authors' VIC method. 

 

 
Fig. (3). Cubic cavity and coordinate system. 

 
Fig. (4). Rms for divergence of vorticity in cubic cavity flow at Re=400 and 1000. 
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4. COMPUTATIONAL CONDITIONS 

 The fully-developed turbulent flow between two infinite 
parallel plates in spanwise rotation is simulated. Note that x, 
y and z imply the streamwise, wall-normal and spanwise 
directions respectively, and that u, v and w are the velocity 
components in the x, y and z directions respectively, as 
shown in Fig. (1). The channel width Ly is  2! , while the 
streamwise period Lx and the spanwise one Lz are set at 
 12.8!  and  6.4!  respectively. The computational domain is 
divided into 256!512!256 uniform grids. The boundaries 
at   y / ! = 0  and 2 correspond to the pressure- and suction-
walls respectively. The computational conditions are listed 
in Table 1. 

 A non-slip condition is imposed on the walls, while a 
periodic boundary condition is assumed in the x- and z-
directions. The velocity normal to the wall is zero, and the 
relation  !"# = 0  should be satisfied on the wall. These im-
ply that the tangential component of ψ and the normal de-
rivative of the normal component of ψ are zero. The non-slip 
condition on the walls is realized by imposing the velocity 
on the grid points located outside of the wall. The boundary 
condition of ω on the wall is given by the curl of the veloc-
ity. The boundary conditions are summarized as: 

  u = 0  (14) 

  
! x = 0,! z = 0,

"! y

" y
= 0

 (15) 

  
! x =

"w
"y

, ! y = 0, ! z = #
"u
"y

 (16) 

where ωx and ωz are estimated with a second-order central 
difference scheme by using the velocities on the grid points 
located inside and outside of the wall. 

 The Poisson equation, Eq. (3), is solved with the aid of 
the fast Fourier transform in the streamwise (x) and spanwise 
(z) directions. The mean flow is driven by imposing a bulk 
velocity u

m
. As the scalar potential satisfies the relation 

 ! = umx , the velocity u is calculated from the following 
equation: 

  u = !"# + um  (17) 

 First, the flow in the non-rotating channel has been cal-
culated when the Reynolds number Re (=  2um! / " ) is set at 

5626. It was confirmed that the Reynolds number  Re
! 0  

(=  u! 0" / # ), based on the friction velocity 0!u  and ! , is 
180. This agreed with the DNS of Kim et al. [15]. By using 
this flow field as the initial condition, the present study 
simulated the flow at the nondimensional rotation number 

 Ro
! 0 = 2 , where   Ro

! 0 = 2"# / u
! 0 . The simulation demon-

strated that the friction velocity at the pressure-wall u
! p

/ u
! 0

 
is 1.14 and that the friction velocity at the suction-wall 

0!!
u/u s  is 0.713. This study defines the friction velocity 

!
u  by the following equation with reference to the defini-
tion of Kristoffersen and Andersson [12] and Grundestam et 
al. [13]. 

  
u
!

2
= u

! p
2

+ u
!s
2( ) / 2  (18) 

 In the current simulation, 0!!
u/u  is 0.951, Reynolds 

number  Re
!

 (=  u!
" / # ) is 171, and the nondimensional ro-

tation number  Ro
!

 (=  2!" / u
#

) is 2.1. 

 The time increment  !t+  (=  !tu
"

2 / # ) is set to 0.018. The 

computation was executed up to a time of 5100  ! / u
"

2  to ob-
tain the fully-developed flow. It was further continued for 
965 2

!
" u/  to calculate the statistical average. 

5. RESULTS AND DISCUSSION 

5.1. Turbulence Statistics 

 The distribution of the mean velocity  u+  (=
!

u/u ) is 
shown in Fig. (5). When compared with the distribution at 
the non-rotating condition ( Ro

!
=0) obtained by the authors 

[5], the velocity gradient in the wall-normal direction is 
larger near the pressure-wall (  y

*
= y/! = 0 ) and lower near 

Table 1. Computational Conditions 

Coordinate Streamwise 

x 

Wall-normal 

y 

Spanwise 

z 

Domain length  L  

 L
+  

 12.8!  

2191 
 2!  

342 
 6.4!  

1096 

Grid number  N  256 512 256 

Grid size   u!
h /"  8.56 0.669 4.28 

Time increment  !t+   0.018  

Reynolds number  Re
!

  171  

Rotation number  Ro
!

  2.1  
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the suction-wall (  y
*

= 2 ). The velocity gradient remains 
unaltered at the mid-channel, being parallel with the nondi-
mensional rotation number  Ro

!
. 

 The mean velocity  u+ changes as a function of wall co-
ordinate as plotted in Fig. (6), where the velocities are ex-
pressed in the nondimensional form with the use of the cor-
responding friction velocities u

! p
 and u

! s
. The logarithmic 

region disappears near the suction-wall, and the velocity 
distribution almost indicates a feature for laminar flow. The 

velocity near the pressure-wall is lower than that in the non-
rotating channel at the logarithmic region. 

 The Reynolds shear stress   !u '+ v '+ distributes as shown 
in Fig. (7). It is heightened by the channel rotation near the 
pressure-wall, while it is lowered near the suction-wall. The 
gradient at the mid-channel coincides with that in the non-
rotating channel. 
 Fig. (8) shows the turbulence intensities. The channel 
rotation increases the turbulent intensities near the pressure-
wall, but it decreases them near the suction-wall. These are 

 
Fig. (5). Mean velocity profile in global coordinates. 

 
Fig. (6). Mean velocity profile in wall coordinates. 
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attributable to the changes in the Reynolds shear stress 
shown in Fig. (7). 

 The abovementioned results agree nearly with the DNS 
at  Re

!
=194 and  Ro

!
=2.31 of Kristoffersen and Andersson 

[12], demonstrating the validity of the DNS for the rotating 
turbulent channel flows by the authors' VIC method. 

 The two-point correlations of the streamwise velocity 
fluctuation   u ' ,  Ruu , are presented in Fig. (9), where the re-

sults near the pressure- and suction-walls are plotted.  
Fig. (9a) shows the change in the streamwise direction. The 
channel rotation slightly decreases  Ruu  near the pressure-
wall. The slight reduction of the fluctuation scale occurs 
there. Near the suction-wall, the decrement of  Ruu  in the 
streamwise direction becomes gradual due to the channel 
rotation. One can reconfirm that the flow exhibits the lami-
nar characteristics, which is found from the mean velocity 
profile shown in Fig. (6). The spanwise change in  Ruu  is 

 
Fig. (7). Reynolds shear stress. 

 
Fig. (8). Rms of velocity fluctuation. 
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plotted in Fig. (9b). For the non-rotating channel flow 
( Ro

!
=0),  Ruu  takes the negative peak at +z =50. This is the 

reflection of the capture for the streak structures [5]. Near 
the pressure-wall of the rotating channel, the negative peak 
still appears, and therefore the channel rotation less affects 

 Ruu . But such negative peak disappears near the suction-
wall. This suggests that the flow is laminarized and that the 
streaks are diminished. 

5.2. Organized Flow Structures 

 When calculating the fluctuating component for the 
streamwise velocity u '

+ , the instantaneous iso-surfaces for 

  u '+ = ±3  distribute as plotted in Fig. (10). The iso-surface 
for the second invariant of velocity gradient tensor Q, 

 Q
+ =0.015, is also presented in Fig. (10). The iso-surfaces 

between the central cross-section at y
* =1 and the walls are 

projected onto the x-z plane. Fig. (10a) shows the results for 
the non-rotating flow ( Ro

!
=0). The high-speed streak 

(  u '+ = 3 ) and the low-speed streak (  u '+ = !3 ) appear recip-
rocally in the spanwise (z) direction. The streak structures 
are favorably resolved. The streamwise vortices are vividly 
visualized as found from the distribution of Q. The results 
for the rotating flow ( Ro

!
=2.1) are plotted in Figs. (10b) 

and (10c). As the turbulent intensity decreases due to the 
reduction of the Reynolds shear stress (see Fig. 7), the 
streaks are almost diminished as shown in Fig. (10b). But 
the effect of channel rotation less appears near the pressure-
side as found in Fig. (10c). 
 Fig. (11) is the perspective view of the streaks and the 
streamwise vortices presented in Fig. (10). Near the suction-
wall, the organized vortical structures, which are the distinc-
tive features of the turbulent channel flow, almost disappear. 

 Fig. (12) shows the iso-surfaces for u '
+  and  Q

+  pro-
jected onto the z-y plane perpendicular to the flow direction. 
For the non-rotating flow ( Ro

!
=0), the iso-surfaces concen-

trate near the walls as found from Fig. (12a). The organized 
vortical structures appear near the walls. For the rotating 
flow ( Ro

!
=2.1), the streamwise vortices and the low-speed 

streaks also exist locally at the mid-channel as shown in Fig. 
(12b). This is because a secondary flow of the Taylor-
Görtler vortex pattern transports the momentum near the 
suction-wall to the mid-channel region as discussed later. 
 On a cross-section perpendicular to the flow direction, 
the velocity distributes as shown in Fig. (13), where the dis-
tribution on the z-y plane of x+ = 0 at the same time point as 
Fig. (12b) is presented. Some large-scale eddies are ob-
served in the region at a distance from the pressure-wall.  

 
Fig. (9). Two-point correlation of   u ' . 
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Fig. (10). Visualization of high- and low-speed streaks and second invariant of velocity gradient tensor Q (  u '+ = 3 ; blue,   u '+ = !3 ; yellow, 

  Q
+

= 0.015 ; light-gray). 

 

Fig. (11). Perspective view of high- and low-speed streaks and second invariant of velocity gradient tensor ( u '
+

= 3 ; blue, u '
+

= !3 ; yel-
low,   Q

+
= 0.015 ; light-gray). 
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Fig. (12). Iso-surfaces of high- and low-speed streaks and second invariant of velocity gradient tensor Q projected onto z-y plane (  u '+ = 3 ; 
blue,   u '+ = !3 ; yellow,   Q

+
= 0.015 ; light-gray). 

 
Fig. (13). Velocity distribution on z-y section. 

 
Fig. (14). Time-averaged velocity distribution on z-y section. 

 

However, the high-speed flow is not found near the suction-
wall. 

 Calculating the time-averaged flow velocity during 

  5.6! / u
"

 on the cross-section depicted in Fig. (13), it dis-
tributes as shown in Fig. (14). Two pairs of vortices exist, 
and the center of each vortex locates closer to the pressure-

wall. These correspond to the secondary flow of the Taylor-
Görtler vortex pattern, which were explored through the ex-
periments of Johnston et al. [6] and Koyama et al. [8], the 
LES of Miyake and Kajishima [10], and the DNS of Kristof-
fersen and Andersson [12]. Kristoffersen and Andersson [12] 
grasped two pairs of vortices by the DNS of 

  
Lz / Ly = ! , 
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 Re
!

=194 and  Ro
!

=2.31. These computational conditions 
are almost the same as this study. Therefore, it is confirmed 
that the present simulation can resolve accurately the secon-
dary flow of the Taylor-Görtler vortex pattern. 

6. CONCLUSIONS 

 The DNS for an incompressible fully-developed turbu-
lent flow between two infinite parallel plates in spanwise 
rotation with a constant angular velocity !  is conducted. 
The vortex in cell (VIC) method, of which computational 
accuracy was heightened by the authors in their prior study, 
is employed for the DNS. The Reynolds number based on 
the friction velocity 

!
u  and the channel half width ! , 

!"
#

/u , is 171, and the nondimensional rotation number 

  2!" / u
#

 is 2.1. 

 The DNS shows that the effects of the channel rotation 
on the turbulence statistics, such as the mean velocity and 
the Reynolds shear stress, are favorably analyzed. It also 
indicates that the disappearance of the streak structures near 
the suction-wall due to the channel rotation and the secon-
dary flow of the Taylor-Görtler vortex pattern are success-
fully captured. These demonstrate the validity of the DNS 
for rotating turbulent channel flows by the authors' VIC 
method. 

NOMENCLATURES 

 a  = side length of cubic cavity 

 h  = grid width 

L = side length of computational domain 

 N  = number of grids along one axis 

 Q  = second invariant of velocity gradient tensor 

 Re
!

 = Reynolds number   = u
!
" / #  

!
Ro  = nondimensional rotation number   = 2!" / u

#
 

 Ruu  = two-point correlation coefficient of stream-
wise velocity fluctuation 

t  = time  

 u  = velocity  

w,v,u  = velocity components in x, y, z directions 

mu  = bulk mean velocity 

!
u  = friction velocity   = (! w / ")1/2  

 W  = redistribution function of vorticity 

 x  = position vector 

  x, y, z  = orthogonal coordinates  

!  = channel half width 

 !t  = time increment 

!  = kinematic viscosity  

!  = density  

 ! w  = wall shear stress 

!  = scalar potential 

ψ = vector potential  

!  = rotating angular velocity of channel 

ω = vorticity  = !" u   

Subscripts 

 0  = non-rotating channel ( ! = 0 ) 

 p  = pressure-wall 

 rms  = root mean square 

s  = suction-wall 

  x, y, z  = components in directions  x ,  y  and  z  

+  = normalized by  u!
, !  and !  

* = normalized by !  

‘ = fluctuation component 

!  = statistically averaged over x, z and t 
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