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Abstract: Cox’s proportional hazard model or logistic regression model has been the classical mathematical approach to 

predict transplant results, but artificial neural networks may offer better results. In order to compare both methods, a logis-

tic regression and a neural network model were generated to predict early transplant failure assessed at 90 days.  

Methods: Medical charts from 701 liver transplant patients were used as generation cohort, collecting variables from do-

nor, recipient and operative data. The discrimination capacity of the models was measured through the area under their 

ROC curves. Models were validated by applying them to a second cohort of 170 patients (validation cohort), although af-

terwards it was enlarged to 246 patients in order to increase statistical power. 

Results: For the generation sample, ROC curves were 75% for logistic regression and 96% for neural network (
2
 = 44,60. 

p<0,00001). Applied to the whole validation sample these values dropped to 68.7 % for logistic regression and 69.9 % for 

neural network (
2
 = 0.026. p: 0,87). However, when models where applied to the validation cohort in cumulative groups 

of 50 patients two aspects became evident: 1) predictions worsened for patients who were more distant in time from the 

generation cohort; 2) for the first hundred patients in validation cohort, neural network was clearly superior to logistic re-

gression model (93 % vs 76 %; 
2
 = 10.52. p:0,001). 

Conclusions: Our results suggest that, provided with the same information and for a limited period of time, neural net-

works may offer better diagnostic performances than with logistic regression models. 
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INTRODUCTION 

 The role of predictive models in liver transplants has 
evolved quite substantially in recent years, fuelled mainly by 
the increasing lack of donors. This situation was foreseen by 
Starzl back in 1989, when he predicted that the organ supply 
would increasingly influence the candidacy criteria and 
would limit the practice of this procedure [1]. The earliest 
models, initially developed to identify outcome-related vari-
ables such as primary failure or graft dysfunction [2-6], have 
evolved and are now used as tools for managing the alloca-
tion of grafts according to their likelihood of success [7-9].  

 Cox’s proportional hazard model and the logistic regres-
sion model have become the most commonly used mathe-
matical approaches to solving this problem. Neural networks 
(NN) are a less popular alternative. The name ‘neural net-
work’ alludes to its similarity with the human brain: the 
method comprises a structure of basic and interconnected 
elements (artificial neurons) that have to be trained in order 
to yield a suitable answer. This method implies that the sys-
tem is, in fact, able to learn, and it is preferred over other 
mathematical methods when solving certain problems, such  
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as when it is difficult to find a set of defining systematic 
rules, or when the problem presents changeable conditions. 
Neural networks are also very powerful when there is a sig-
nificant number of sample cases or when there is a large 
number of explicative variables [10], all of which are present 
in liver transplants. Another advantage of this methodology 
is that previous hypotheses are not required about the system 
from which the information is to be sourced, unlike general-
ised linear models which assume an exponential distribution 
function. One of the classical criticisms of neural networks is 
that compared to conventional statistical techniques, they 
have a lower explanatory power, resembling “black boxes” 
that are unable to explain how the decisions are taken. How-
ever, a variety of authors have demonstrated that it is also 
possible to extract knowledge from NN [11,12]. 

 With regard to liver transplantation, this method was al-
ready applied when studying different range of aspects, as 
recurrence of hepatocellular carcinoma [13], early graft fail-
ure [14], or survival rates at three or twelve months [15]. In 
light of the theoretical advantages of neural networks over 
traditional methods, and as it is suggested that in the near 
future the method for allocating grafts shall be based on the 
likelihood of success [16], our working hypothesis is that 
using the same data, a model developed using NN will be 
more able to discriminate than other model developed by 
means of logistic regression. 
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MATERIAL AND METHODS 

 All data for generating predictive models were obtained 
from charts from the Liver Surgery and Transplant Unit of 
La Fe University Hospital in Valencia, Spain. Files pertain-
ing to transplants carried out between August 1997 and  
August 15th 2004 were used. Multi-organ transplants,  
paediatric transplants (recipient under 14 years of age) and  
those carried out with special techniques (split liver, living  
donor) were excluded. Readily available and preferably  
objective variables were selected, with the condition they  
were previously related to the result by means of multi- 
variant type studies (Table 1). The number of variables em-
ployed was limited in order to reduce the risk of random 
associations, which rises with the number of variables in-
cluded [17]. The MELD score was not considered as it was 
not included in the majority of patients in the generation 
sample, and we preferred not to estimate INR based on the 
available data. Even though a recent study show the influ-
ence of the MELD in the result of the transplant during the 
first year [18], its absence in both models minimises its im-
pact on the study aim. 
 

Table 1.  Variables Selected for Generating the Models 

Donor Recipient Operative 

Age 

Gender 

Cause of death 

Days in intensive care 

Need for vasopressors 

pH 

Steatosis 

Serum sodium 

Age 

Gender 

Transplant indication 

UNOS stage 

Serum creatinine 

Bilirubin 

Protrombin time 

Child-Pugh score 

Cold ischemia 

Warm ischemia 

Blood consumption 

 

 Transplant failure assessed at 90 days was the main out-
come, considering failure being both death of the recipient 
from directly related causes as retransplantation due to pri-
mary failure. 

Logistic Regression 

 The logistic regression model (LR) was developed at the 
Valencian School for Health Studies. Previous univariant 
analysis were used, including in the multivariant analysis 
those variables with a p < 0.10. The model was adjusted us-
ing the SPSS 11.0.1. statistical program according to classi-
cal procedures. The end variables of the final model were 
selected using the procedure of sequential input based on the 
likelihood ratio (forward selection by LR), and comparing 
the result independently by repeating the process with the 
procedure of sequential withdrawal (backward selection by 
LR) with input probabilities of 0.05 and output probabilities 
of 0.1. Finally, the most balanced model is selected formed 
only with the variables whose coefficients showed statistical 
significance, the level of which was set to the standard 5%.  

Neural Network 

 The neural network model (NN) was trained at the Elec-
tronic Engineering Department of the University of Valen-

cia. The NN was developed using a specific module belong-
ing to the Digital Signal Processing Group of this Depart-
ment. Programming was carried out on a Matlab environ-
ment (belonging to MathWorks).  

 The type of neural network used was the multilayer per-
ceptron with two layers of neurons (Fig. 1). The hyperbolic 
tangent function was used at the hidden and output nodes as 
activation function, since it improves training performance in 
problems related to sample classification. 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic representation of the multilayer perceptron 

structure. 

 Each training iteration was carried out by applying the 
backpropagation algorithm. As the algorithm’s name im-
plies, the errors (and therefore the learning) propagate back-
wards from the output nodes to the input nodes. We varied 
the number of hidden neurons from 2 to 10 (<10 to avoid 
overfitting). Data were divided at random in two groups, one 
with 25% of sample size to constantly evaluate the level of 
overfitting or memorization of data used in learning. Models 
were selected by evaluating the sum of the sensitivity and 
specificity factors to obtain well-balanced models. 

 The discrimination capacity of the models was measured 
through the area under their ROC curves (AUC). Compari-
sons between obtained AUCs was carried out in accordance 
with Hanley and McNeil’s [19] method, considering both 
curves correlated, using the EpiDat 3.1. program. 

 Models were validated by applying them to a second set 
of patients transplanted between August 16th 2004-April 
2006. For selecting the cutoff point of the ROC curves to be 
used in practice it was assumed that the cost of a false nega-
tive (the model indicates success but the patient dies) was 
worse than a false positive. 

RESULTS 

Generation Sample 

 During the period of the study 729 patients were operated 
on, with 701 fulfilling inclusion criteria. 101 transplants 
failed in the first 90 days, which accounts for an early failure 
prevalence of 14.4% (IC 95% 11.73-17.07). Sample charac-
teristics were similar to the rest of the Spanish enlisted popu-
lation, with a predominance of transplants carried out be-
cause of post viral cirrhosis and alcoholic etiology, account-
ing for 77% (Table 3). Survival was similar to that of a wider 
series, with survival rates of 85.6% at 90 days, increasing to 
88.35% if retransplants are excluded. These values are simi-
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lar to those obtained from the European Liver Transplant 
Registry (ELTR) for more than 34,000 cases [9]. 

 Variables finally included in the LR model are shown in 
Table 4. This model showed an AUC of 75%. With regard to 
the NN, its performance was clearly superior, with an AUC 
of 96% (Fig. 2). Difference between AUCs was statistically 
significant ( 2 = 44,60. p<0,00001).  

Validation Sample 

 170 charts were used for validation, from a whole sample 
of 187 transplants performed in the second period of the 
study. Twelve transplants failed during the first 90 days, 
which means a prevalence of 7.05% (IC 95%: 2.91-11.20), 
significantly lower than the one founded in the generation 
sample (z: 2.43, p: 0.015).  

 The discrimination capacity of the LR model was 78%, 
whereas for the NN model it reached 81% (Fig. 2). In this 
case the difference between AUCs did not reach statistical 
significance (

2
 = 0.09. p: 0.75). Using the method proposed 

by Hanley and McNeil [20] to compare curves derived from 
same cases, for an  error of 5% and a statistical power of 
80%, 21 cases would be needed for each result (dead/alive), 
whereas in the sample studied we only had seven cases in the 
“failure” group, as a consequence of charts with missing 
values, and only cases with complete data can generate a 
prediction from the models. In an attempt to obtain more 
failed cases, the validation sample was expanded to 246 
cases out of the 266 transplants performed until February 
2007. Results were very similar for both groups: LR model 
68.7%, NN model 69.9%; (

2
 = 0.026, p: 0.87) (Fig. 2). The 

prevalence of early failure in this second validation cohort 
(22 cases, 8.9%) was also significantly lower than the gen-
eration sample (z: 2.083, p: 0.037). 

 Given the fact that the results of the generation sample 
were clearly favourable to the NN, one possible explanation 
is that the diagnostic performance in the more recent cases 
was worse than in the older cases – which were thus closer in 
time to the generation sample – so that the results of both 
models were compared according to the size of the validation 
sample. Table 5 shows the results, revealing how the inclu-
sion of new cases penalises the performance of the NN, 
which initially performed much better than the LR; however, 
with more than 100 cases there are no statistically significant 
differences between both models. 

DISCUSSION 

 In spite of the different options developed to increase the 
number of available grafts, there is still a gaping chasm 
worldwide between the organ supply and demand which 
results in the need to rationally manage a scarce and expen-
sive resource. Each transplant failure means the loss of a 
valuable resource and may mean the death of another patient 
on the waiting list. Under these conditions, rationally using 
organs means offering them first to patients on the waiting 
list with a lower chance of survival; however, the likelihood 
of success -or the likelihood of failure- also needs to be 
taken into account. Still, the idea of assigning organs only to 
patients with the greatest likelihood of success is rather ques-
tionable from an ethical point of view, since transplant re-
sults should be interpreted from an intent-to-treat basis given 
these patients’ dismal prognosis. However, in the event that 

Table 2.  Characteristics of Samples for Continuous Variables. Student’s T-Test or Mann-Withney U-Test was Used, Depending on 

Normality Test 

GROUP 

Generation (n=701) Validation (n=246) 

 

Mean S.D. Mean S.D. 

p 

Bilirubin (mg/dl) 5,17 8,05 6,81 10,5 0.058 

Creatinin (mg/dl) 1,07 0,60 0,95 0,72 0.0001 

ICU stay (days) 2,64 2,86 3,23 4,53 n.s. 

Donor age (years) 46,86 18,62 50,19 19,23 0.0001 

Recipient age (years) 52,74 10,73 53,18 9,63 n.s. 

Warm ischemia (minutes) 39,49 17,23 43,75 14,73 0.003 

Cold ischemia (minutes) 363,75 168,51 335,84 164,19 0.028 

Donor pH 7,41 0,09 7,40 0,09 0.013 

Child-Pugh score 8,94 2,18 9,46 2,36 0.006 

Protrombin time (%) 62,29 21,19 58,96 22,09 0.018 

Blood consumption (units) 3,77 2,99 2,77 2,31 0.001 

Donor sodium (mEq/l) 147,98 9,97 149,42 10,56 n.s. 
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there were an appropriate instrument, donor-recipient com-
binations that show a high likelihood of failure could be 
avoided. 

 The fist part of this problem has been resolved by apply-
ing the Model for Endstage Liver Disease (MELD), which 
was shown to be more reliable than the Child-Turcotte-Pugh 
Score as the instrument to prioritise organ allocation [20]. 

However, MELD has been shown to be somewhat inaccurate 
when applied to transplant results. Consequently, a new 
model taking into account both donor and recipient charac-
teristics would be needed [18]. To date, no predictive model 
has been developed that is sufficiently reliable to be used in 
practice, although there have been multiple theoretical at-
tempts. The models developed based on Cox’s regression 

Table 3.  Characteristics of Samples for Categorical Variables. Comparisons Through Chi-Square Test 

GROUP 

Generation (n=701) Validation (n=246) 

 

n % n % 

p 

Donor cause of death  

 trauma 239 34,6 69 28,4 

 stroke 415 60,1 163 67,1 

 anoxia 37 5,4 11 4,5 

n.s. 

Transplant indication  

 postnecrotic 541 77,4 184 74,8 

 cholestatic 29 4,1 7 2,8 

 malignancy 16 2,3 4 1,6 

 acute failure 19 2,7 11 4,5 

 miscellaneous 39 5,6 22 8,9 

 early retransplant 28 4 8 3,3 

 late retransplant 27 3,9 10 4,1 

n.s. 

UNOS  

 home 612 87,4 208 86,3 

 hospital 59 8,4 13 5,4 

 ICU 29 4,1 20 8,3 

0.01 

Vasopressors  

 No 463 66 110 44,7 

 Yes 238 34 136 55,3 
0.0001 

Sex match  

 Male-male 310 44,2 117 47,8 

 Male-female 112 16,0 30 12,2 

 Female-male 173 24,7 67 27,3 

 Female-female 106 15,1 31 12,7 

n.s. 

Steatosis  

 mild  696 99,3 237 96,3 

 moderate 5 0,7 8 3,3 

 severe - - 1 0,4 

0.0001 
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[7,8,18] have the problem of offering a relative as opposed to 
an absolute risk of failure, which entails the need to previ-
ously set up a threshold beyond which transplants should be 
rejected [16]. One alternative to this methodology is logistic 
regression [9], which, unlike Cox’s regression, provides the 
likelihood of death for each specific case, thus enabling it to 
be used as a binary diagnostic test that classifies patients 
(dead/alive or success/failure) once established a cut-off 
point to determine class membership. Neural network mod-
els fall within this latter group, and they have been success-
fully applied in a variety of fields where the interactions be-
tween co variables are significant, such as in classification, 

modelling and signal processing problems [21]. They have 
also been used to predict temporary series in diverse fields 
such as economics [22], engineering [23], telecommunica-
tions [24] and medicine, where, among other areas, they 
have been applied in liver transplantation to predict different 
outcomes such as primary failure, death, tacrolimus levels or 
cancer recurrence [14,15,25-27]. More recently, a NN model 
applied on waiting list mortality [28] has showed better re-
sults than the MELD, generated by means of a Cox’s regres-
sion. 

 In our study, NN showed a higher ability to discriminate 
than LR in the generation sample, but no in the validation 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Diagnostic performance of predictive models. 

 

Table 4.  Variables Included in the Logistic Regression Model  

Variable Odds Ratio S. E. p 95% C.I. 

Child-Pugh score 1.288 0.112 0.004 1.086 - 1.527 

Protrombin time 1.026 0.009 0.005 1.007 - 1.045 

Blood consumption 1.209 0.048 0.000 1.117 - 1.308 

Bilirubin 1.050 0.017 0.003 1.017 - 1.086 

Donor Vasopressors 1.665 0.440 0.054 0.991 - 2.795 

Sex combination (donor-recipient)  

 Male-female 1.446 0.521 0.306 0.713 - 2.932 

 Female-male  0.716 0.249 0.337 0.362 - 1.415 

 Female-female 2.098 0.735 0.035 1.055 - 4.172 

Cold ischemia time 1.001 0.0007 0.023 1.0002 - 1.003 
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sample, where both models’ results were quite similar. How-
ever, when results were analyzed depending on sample size, 
NN offered figures over 90%, an unusual finding in this 
field. Both models’ gradual loss in the power to discriminate 
as the size of the validation cohort rose is compatible with 
their being applied to subjects that are increasingly distant in 
time from those that generated it, with up to ten years of dif-
ference. This loss in precision is more pronounced in the NN 
model due to its better results in the first 100 cases, dropping 
later to figures similar to those using LR. Another interesting 
point is the differing degrees of early failure prevalence be-
tween generation and validation samples, a finding for which 
we have no clear explanation. Comparison between groups 
(Table 2) reveals that subjects in the validation sample had a 
lower cold ischemia time, blood consumption and creatinin, 
yet they also showed higher bilirubin levels, donor age and 
Child-Pugh scores. Early failure prevalence trends do not 
seem to fall either. In any case, we believe that these differ-
ences do illustrate real practice.  

 A variety of factors will have to be clarified before a use-
ful model for clinical practice can be put forth, such as the 
number of variables to be included, and the mathematical 
method most appropriate to generate it. With regard to this 
point, our results, if confirmed in an external database, sug-
gest that just like in other fields, neural networks may offer 
better results than the classical methods. We have used a 
very limited number of variables compared to other authors 
[15], but in practice the existence of computerised databases 
would enable a higher number of variables to be controlled 
and might make it possible to eliminate those that, such as 
ischemia times and operative blood consumption, cannot be 
known prior to surgery. Another factor to take into account 
is the way that these models might be used in assignment 
systems. Unlike the MELD, a universal model that is appli-
cable to any patient, the use of a model for managing the 
assignment of grafts will depend on different circumstances 
in each clinical scenario, such as the number of donations 
available in each country, the early failure prevalence for 
each centre and the patient’s clinical status. The result is that 
its utility will be variable and will depend on each specific 

case. For example, considering the utility of liver transplan-
tation as a function depending on the expected outcome and 
the emergency, as proposed by Burton [29], a predictive 
model that offers 80% sensitivity and 88% specificity -
figures offered by the NN model for the first 100 cases in the 
validation sample – in a hospital with a 9% prevalence of 
early failure, would present the utilisation strategy shown in 
Fig. (3). It shows how the predictive model would be the 
best option for patients with 90 days survival on the waiting 
list between 58% to 42%, which is equivalent to a MELD 
score between 14 to 19, respectively. This strategy would be 
different for a model with better sensitivity and specificity 
figures (the utility would rise), or if the centre had a 5% 
early failure rate (in this case, it would drop). Nor will the  
predictive model be either fixed or immobile, rather the ideal 
situation is for all the information available to be used for 
new predictions with the goal of gathering temporal trends 
that are difficult to quantify in concrete variables, such as 
overall improvements in patient management. In our study, a 
total of 947 records were managed (701 in the generation 
cohort and 246 in the validation cohort), but the prediction 
made for the last patient in the validation cohort took into 
account only the 701 transplants performed in the generation 
cohort, while in reality information on over 800 transplants 
was available. This would explain why the performance of 
both models was higher with the patients that were closer to 
the generation cohort and then gradually worsened. 

 Until today, when new technologies can solve the prob-
lem of the scarcity of organs, the use of predictive models 
may be an invaluable aid for rationally managing grafts. 
Nevertheless, proper use of these models, just like any other 
diagnostic test, will demand accurate evaluations of the pre-
test probabilities and the patient’s clinical status, as stated by 
Pauker and Kassirer [30] more than 20 years ago. 
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Table 5.  AUC comparisons between Models Depending on Validation Sample Size 

AUC (CI 95%) Comparison between AUC 
Cases in  

Validation Sample 
NN LR X

2
 p 

50 
0.957 

(0.88-1) 

0.774 

(0.62-0.92) 
6.599 0.010 

100 
0.938 

(0.87-0.99) 

0.768 

(0.66-0.87) 
10.522 0.001 

150 
0.817 

(0.66-0.97) 

0.798 

(0.71-0.88) 
0.037 n.s. 

200 
0.731 

(0.56-0.89) 

0.693 

(0.51-0.86) 
0.097 n.s. 

246 
0.699 

(0.56-0.83) 

0.687 

(0.54-0.82) 
0.026 n.s. 
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ABBREVIATIONS 

AUC = Area under curve 

ELTR = European liver transplant registry 

MELD = Model for end stage liver disease 

LR = Logistic regression 

NN = Neural network 

ROC = Receiver operator characteristics 

CI 95%  = Confidence Interval at 95% 

2
 = Chi- square 
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Fig. (3). Utility strategy for a theoretical predictive model with a 80% sensitivity and 88% specificity, applied in a centre with an early fail-
ure prevalence of 9%. For patients with a MELD between 14 and 19, the predictive model would be preferred. 
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