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Abstract: Apoptosis, or programmed cell death, is a highly conserved cellular suicide mechanism. Apoptosis is critical to 

the effective resolution of inflammation, particularly in regulating the lifespan of neutrophils. Neutrophils are key 

components of the first line of defense against microorganisms. Thus, subversion of this critical host defense mechanism 

by pathogens can contribute to susceptibility to severe and recurrent infections. In this review, we describe the molecular 

mechanisms involved in PMN death in relationship with viral infections. 

INTRODUCTION 

 Polymorphonuclear neutrophils (PMN) contribute to the 
early innate response by rapidly migrating to inflamed 
tissues, where their activation triggers microbicidal 
mechanisms such as the release of proteolytic enzymes and 
antimicrobial peptides, and rapid production of reactive 
oxygen species (ROS), in the so-called oxidative burst. 

 PMN are terminally differentiated cells with a short life 
span in the circulation (8-20 h); aged PMN undergo 
spontaneous apoptosis (programmed cell death), in the 
absence of cytokines or other proinflammatory agents, prior 
to their removal by macrophages [1]. This phagocytic 
removal of intact, apoptotic neutrophils prevents them from 
releasing their cytotoxic content into the extracellular 
environment that would occur if the cells died by necrosis. 
Apoptosis is an intrinsic cellular process that can be 
regulated by external factors. In particular, PMN activation 
by circulating bacterial products, endogenous cytokines and 
other pro- inflammatory mediators can affect the rate of 
PMN apoptosis [2-4]. The prolongation of PMN life span is 
critical in their efficiency against pathogens [5]. 
Inappropriate PMN survival and persistence at sites of 
inflammation are thought to contribute to the pathology of 
chronic inflammatory diseases [6]. In contrast, shortened 
PMN survival due to apoptosis may contribute to 
susceptibility to severe and recurrent infections in some 
pathological situations [7, 8]. Thus, the death program in 
PMN needs to be well controlled to provide appropriate 
balance between their immune functions and their safe 
clearance. Finally, PMN death contributes to PMN’s 
pathogen killing capability. It is an essential step for the 
generation and the release of PMN extracellular  
traps (NETs), extracellular structures composed of 
chromatin, and granules proteins that bind and kill invading 
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microorganisms. This mechanism allows PMN to fulfil their 
antimicrobial function even beyond their life span [9]. 

 Pathogens, have evolved diverse mechanisms to evade 
the innate immune response and escape clearance by 
immune cells. Modulation of PMN apoptosis is recognized 
as a key mode of immune evasion, altering the timing of 
PMN death. This review point to some examples of viral 
infections associated with modulation of PMN apoptosis 
which may be involved at least in part in the 
pathophysiology of the disease. 

NEUTROPHIL APOPTOSIS 

 PMN have a short life-span [10]. Apoptosis is one of the 
main types of cell death characterized so far [11]. PMN 
death display features of classical apoptosis, such as cell 
body shrinkage, cellular crenation, vacuolated cytoplasm, 
mitochondria depolarization, nuclear condensation, 
internucleosomal DNA fragmentation, and externalization of 
phosphatidylserine residues from the inner to the outer 
leaflet of the plasma membrane [12, 13]. This externalisation 
facilitates the recognition of apoptotic neutrophils by 
macrophages [14-16]. Some of the features of classical 
apoptosis, including those observed in constitutive 
neutrophil death, are also shared by autophagic cell death 
[17]. 

 Dying PMN show molecular alterations on their cell 
surface and is accompanied by the down-regulation of the 
immunoglobulin superfamily members (e.g. CD31, CD50, 
CD66acde, CD66b, CD63 and CD87) and cell surface 
receptors (e.g. CD15, CD16, CD32, CD35, CD88, CD120b) 
[18]. 

MOLECULAR MECHANISMS OF NEUTROPHIL 
APOPTOSIS (FIG. 1) 

 PMN apoptosis involves the activation of a family of 
cysteine proteases, called caspases, which cleave cellular 
substrates at an obligatory aspartic acid within a preferred 
sequence [19]. Caspase activation is a central event in 
apoptosis and results in the proteolytic degradation of 
multiple substrate proteins that contribute to the apoptotic 
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phenotype. Two major pathways that regulate apoptosis have 
been defined in a number of different cell types, including 
PMN. The first pathway depends on death receptors such as 
TNFRs and Fas (CD95) that can directly activate a caspase 
cascade via the activation of the caspase-8, an initiator 
caspase [20]. Bid, a pro-apoptotic members of the Bcl-2 
family is cleaved [21]. Activated Bid is then translocated to 
mitochondria and can induce the release of cytochrome c and 
other proapoptotic factors. 

 The second pathway termed intrinsic apoptosis pathway 
involves mitochondria and the Bcl-2 family members, and 
results in activation of caspase cascade via the activation of 
caspase-9 as an initiator caspase [22]. The release of 
mitochondrial cytochrome c is under the control of the 
relative levels of pro- and anti-apoptotic members of the Bcl-
2 family [22]. 

 PMN have been reported to express a variety of 
regulatory and effector caspases, including caspases-1, -3 
and -8 [23, 24]. PMN contain barely detectable levels of 
cytochrome c; however, the trace of amount of cytochrome c 
present in PMN is both necessary and sufficient for caspase 
activation [25]. 

 It is now generally agreed that human PMN do not 
express the anti-apoptotic protein Bcl-2 but they express 
mRNA for the anti-apoptotic proteins, Mcl-1, A1 and Bcl-XL 
[4, 26]. Mcl-1 and A1 proteins are expressed in bloodstream 
neutrophils and their levels decrease prior to the onset of 
apoptosis [4, 26]. Mcl-1 and A1 proteins have very short half 
lives (approximately 2-3 h) whereas the half lives of the pro-

apoptotic proteins such as Bax, Bak and Bad, are relatively 
long. Hence, PMN apoptosis may be governed by the 
cellular levels of the relatively short-lived survival proteins, 
Mcl-1 and A1. In the absence of de novo synthesis of Mcl-1 
and A1, the activity of the longer lived pro-apoptotic 
proteins prevails and tips the balance towards apoptosis. 
However, in the presence of survival signals (e.g. cytokines) 
the enhanced expression of the anti-apoptotic proteins, via 
pathways involving activated transcription, will ensure 
survival. It has been demonstrated that separate 
transcriptional signalling pathways leading to NF- B and 
MAPKs activation regulate the expression of these proteins. 

 Calpains are a family of noncaspase cysteine proteases 
present in isolated PMN [27]. The ubiquitous calpain 
isoforms calpain-1 and calpain-2 are distinguished by their in 
vitro calcium requirements. During PMN spontaneous death, 
levels of calpastatin, a highly specific calpain inhibitor, 
decreases, leading to a drastic enhancement of the calpain-1 
activity. Activated calpain-1 cleaves Bax into an active 
fragment [28]. Selective reduction of calpastatin by antisense 
oligodeoxynucleotides has been shown to accelerate 
spontaneous PMN apoptosis [29]. Further support for the 
importance of the calpastatin-calpain system was obtained 
by analysing PMN from patients with cystic fibrosis that 
exhibited delayed apoptosis. PMN display markedly 
increased calpastatin and decreased calpain-1 protein levels 
compared with PMN from healthy individuals [28]. More 
recently, it has been proposed that cathepsin D, a serine 
protease localized in the azurophilic granules, mediates 
caspase-8 activity. Pharmacological or genetic inhibition of 

 

Fig. (1). Pathways leading to neutrophil death. 
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cathepsin D resulted in delayed caspase activation and 
reduced PMN apoptosis [30]. Furthermore, it has been 
reported that calpain mediates the cleavage of Atg5, an 
autophagy-related gene require for the formation of 
autophagosomes, swithching autophagy to apoptosis [31]. 

MODULATION OF NEUTROPHIL APOPTOSIS 

 The expression of constitutive PMN death programme 
can be delayed or accelerated by environmental factors. 

Antiapoptotic Factors 

 PMN life-span increases significantly once they migrate 
out of the circulation and into the sites of inflammation, 
where they encounter various pro-inflammatory mediators. 
In particular, it has been reported that pro-inflammatory 
mediators including cytokines (IL-1 , IL-2, TNF- , IL-15, 
IFN- , G-CSF, GM-CSF) can prolong PMN survival [2]. 
The reported effects of IL-6 on PMN apoptosis are 
controversial [32, 33]. IL-8, a chemokine, has also been 
shown to delay PMN apoptosis mediated by Fas and TNF-  
receptors [34, 35]. 

 Toll Like Receptors (TLR) agonists such as Malp2 
(TLR2), LPS (TLR4), R-848 (TLR7/8), and CpG-DNA 
(TLR9) can also prolong PMN survival [4]. Treatment of 
PMN with such agents, that delay apoptosis, either increases 
or maintains Mcl-1 and A1 levels, providing a mechanism to 
explain cytokine-mediated increased survival via enhanced 
expression of anti-apoptotic proteins. 

 Similarly, a role of endothelial transmigration in the 
regulation of PMN apoptosis has been reported again 
indicating that adhesion molecules can generate intracellular 
signals that trigger enhanced survival of neutrophils as they 
migrate from the bloodstream into tissues [36, 37]. In this 
context, soluble ligand of M 2 integrin, including 
fibrinogen, delay PMN apoptosis through Akt activation 
[38]. 

Proapototic Stimuli 

 Fas signaling can mediate PMN apoptosis, and overrides 
the antiapoptotic effect of GM-CSF and TNF [39, 40]. An 
interaction between Fas and its counterpart, Fas ligand 
(FasL), was originally suggested to represent a mechanism to 
explain constitutive PMN apoptosis [41]. PMN express 
significant levels of Fas and whilst early reports indicated 
that they could also express FasL [41], this finding was not 
confirmed in later reports [42, 43]. PMN from CD95 
deficient mice (lacking CD95) undergo apoptosis at the same 
rate as control mice, arguing against a role for the Fas system 
in constitutive apoptosis [44, 45]. Interestingly, it has been 
shown that membrane-bound form of Fas-L induce PMN 
infiltration in vivo which may be related to the release of IL-
1  from inflammatory cells [46]. Hence, the role of the 
Fas/FasL system in regulation of PMN apoptosis in 
inflammation and disease is still controversial. 

DYNAMICS OF NEUTROPHIL APOPTOSIS DURING 
VIRAL INFECTIONS 

 Several lines of evidence suggest a key role of PMN, at 
least through defensin expression, in controlling viruses such 
as adenovirus, influenza virus and herpes simplex virus [47-
49]. In addition, human neutrophil -defensins 1-4 have 

been reported to inhibit HIV-1 replication in vitro [50-52], 
and activated PMN have been demonstrated to exert 
cytotoxic activity against HIV-infected cells [53]. PMN also 
attract and stimulate other immune cells through the release 
of proinflammatory chemokines and cytokines [54] and 
through direct interactions with immune cells such as 
dendritic cells [55], implying that PMN have the potential to 
orchestrate adaptive immune responses and play a key role 
during viral infections. Therefore, modulation of PMN 
survival during viral infections may have important 
consequences in disease evolution. 

Inhibition of PMN Apoptosis During Viral Infections 
(Table 1) 

1. Respiratory Syncytial Virus (RSV) Inhibit PMN 

Apoptosis 

 RSV, a ssRNA virus, is the major cause of lower 
respiratory tract disease (LRTD) in infants. In addition to 
virus-induced pathology, the immunological response to 
viral infection is thought to be responsible for disease 
pathogenesis, ultimately leading to respiratory distress. One 
of the characteristic phenomena of RSV LRTD is the 
presence of large numbers of neutrophils in the lower 
airways [56]. This is more profound than in any other viral 
respiratory condition in childhood in which mostly alveolar 
macrophages and lymphocytes prevail. It has been suggested 
that PMN may even contribute to the pathology observed in 
the airway. In this context, IL-9 production by PMN, which 
regulates mucus production by goblet cells, was found to be 
associated with severe RSV infection. In addition, it has 
been reported that RSV leads to an inhibition of the 
constitutive apoptotic program. This process was found to be 
dependent on both PI3K activity and NF- B activation. The 
antiapoptotic effect was abrogated by preincubation with the 
lysomotropic agent chloroquine, indicating the requirement 
for endolysosomal internalization. Furthermore, addition of 
ssRNA, a ligand for the intracellular TLR7/TLR8, also 
inhibited PMN apoptosis, suggesting that intracellular TLRs 
could be involved in induction of the antiapoptotic effect. IL-
6, reported to inhibit neutrophil apoptosis, was present in 
supernatants from RSV-exposed PMN, suggesting that there 
is an autocrine or paracrine antiapoptotic role for IL-6. 
Finally, RSV treatment of PMN resulted in increased 
expression of the antiapoptotic Mcl-1 protein [57]. Whether 
or not an increased neutrophil life span is to the benefit of 
the host is unclear. It also may be a non specific immune 
evasion technique evolved by viruses that may even be 
harmful to the host when occuring in neutrophils by 
increasing pathology to the airway. 

2. Human Cytomegalovirus (HCMV) Inhibit PMN 

Apoptosis 

 HCMV is one of the eight viruses that belong to the 
herpes virus family. As with other herpes viruses, a primary 
HCMV infection is followed by life-long persistence of the 
virus in a latent state, and reactivation may occur repeatedly 
throughout life. Generally, HCMV infection is subclinically 
in immunocompetent individuals, but the virus can cause 
fatal disease in immunocompromised patients, for example 
after transplantation in AIDS patients and in the fetus. 
Patients undergoing active HCMV infection also have an 
increased risk of developing severe secondary clinical 
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bacterial infections. This higher incidence of bacterial 
infections in HCMV patients may not be due directly to a 
dysfunction of PMN. Instead, HCMV-infected PMN become 
more activated, in terms of adhesion molecules expression 
and ROS production, than uninfected cells. Moreover, PMN 
apoptosis was significantly inhibited in HCMV-infected 
PMN [58]. This may be related to binding of the viral protein 
UL36 to caspase 8, blocking its activation and in this way 
inhibiting Fas-ligand-mediated apoptosis [59]. An additional 
anti-apoptotic effect may be mediated by the shedding of IL-
8 from the endothelial cells at the time of infection as 
suggested [60]. 

 The fact that apoptosis is inhibited by HCMV may cause 
overreactive PMN creating inflammation. In this context, 
active HCMV infection in inflammatory cells, including 
PMN, has been reported in intestinal tissue sections from 
approximately 90% of patients with active inflammatory 
bowel disease (IBD) [61]. This may result in further 
aggravation of disease such as IBD and possibly also in other 
chronic inflammatory diseases. 

Exacerbation of PMN Apoptosis During Viral Infections 
(Table 2) 

1. Exacerbation of PMN Apoptosis During HIV and SIV 

Infection 

 The use of non-human primate models, particularly SIV-
infected Asian Rhesus macaques (RMs), has allowed the 
detailed and sequential investigation of the events of SIV 
infection in terms of virus dynamics, immune response, and 
changes in the pool of CD4

+
 T cells [62]. Thus, SIVmac 

infection of RMs has proved an invaluable animal model for 
studies of AIDS pathogenesis, therapeutics, and vaccines. In 
particular, we and others have demonstrated that RMs of 
Chinese origin is a particularly relevant model to study 
human diseases [63-69]. 

 Recently, we showed that PMN death increased early 
during the acute phase of SIV infection in RMs, and 
coincided with the peak of viral replication on day 14 post-
inoculation. The level of PMN death was significantly more 
severe in RMs that progress rapidly to AIDS and coincided 
with neutropenia. In contrast, no changes in the levels of 

PMN death and PMN counts were observed in the non-
pathogenic model of SIV infection of natural African Green 
Monkeys (AGMs) despite similar high viral replication. 
Consequently, the early increase in PMN death that we 
identified may account for the decline in PMN numbers that 
occurs during primary SIV infection and may, thus, have 
important implications for subsequent viral replication and 
disease progression. PMN death was a Bax and Bak-
independent mitochondrial insult, which is prevented by 
inhibiting calpain activation but not caspase activation. 
Accelerated PMN death was not related to PMN infection, 
but we found that SIV particle binding to the cell surface is 
sufficient to prime PMN for death [70]. 

 During the chronic phase, we also demonstrated that 
PMN from RM chronically infected with the virulent strain 
SIVmac251 display increased susceptibility to undergo 
apoptosis. PMN apoptosis was significantly increased in 
RMs progressing faster to AIDS as compared to non 
progressors RMs. Furthermore, the percentage of apoptotic 
cells correlated with PMN activation state reflected by 
increased CD11b expression and reactive oxygen species 
production. Interestingly, inflammatory cytokines IL-8 and 
IL-1  that prevent in vitro PMN death, were lower in RMs 
progressing towards AIDS. Thus, this decrease of 
inflammatory cytokines might lead to an abnormal tendency 
of PMN to die during the chronic phase. However, this is not 
reflected by an apparent decline of PMN counts. This result 
contrasts with the data observed during the acute phase 
demonstrating that PMN death is associated with 
neutropenia [71]. Increased PMN apoptosis has been also 
observed in HIV-infected patients having less than 200 CD4

+
 

cells/mm
3 

[72-78]; the introduction of HAART reducing 
spontaneous PMN apoptosis. This increased PMN apoptosis 
found in both HIV infection and pathogenic SIV models may 
also be due to increased translocation of gut bacterial 
products into the bloodstream that results from HIV/SIV 
associated enteropathy [79]. 

 Increased emigration from the bone marrow of mature 
PMN could be an explanation for the absence of apparent 
depletion compensating cell death in chronically infected 
macaques. The consequences of PMN activation generating 

Table 1. Inhibition of PMN Apoptosis during Viral Infections 

 

 Respiratory Syncitial Virus (RSV) Human Cytomegalovirus (HCMV) 

Virus-induced Pathology - Lower respiratory tract disease in infants 

- Associated with respiratory distress 

- Belong to the Herpes family: 

persistence of the virus in a latent state and repeated 
reactivation 

- Subclinically in immunocompetent individuals but 

fatal disease for immunocompromized patients 

Characteristics - Accumulation of PMN in lower airways 

- PMN production of IL-9 which increases mucus production by 
Goblet cells  

- Presence of activated-PMN 

Mechanisms - Presence of the anti-apoptotic cytokine IL-6 

- Interaction of ssRNA from RSV with TLR7/8 ? 

- Activation of PI3K and NF B signaling pathways 

- Increased expression of the anti-apoptotic protein Mcl1 

- Interaction of the viral protein UL36 with apoptotic 
pathways 

- Blockade of caspase 8 activation 

- Inhibition of Fas ligand-mediated apoptosis 

Consequences - Immune evasion -Exacerbation of inflammatory responses e.g. in 
intestinal tissue 
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general oxidative stress molecules might include an 
increased PMN susceptibility to apoptotic death during the 
chronic phase of infection [80]. In addition, these results 
support the idea that increased granulopoiesis in bone 
marrow leads to a compensatory release of mature PMN. 
Interestingly, PMN activation has been reported in the bone 
marrow of chronically SIV-infected macaques [81], 
contrasting with a defect in bone marrow lymphopoiesis [82, 
83]. In fact, reciprocal dynamics of the bone marrow 
lymphocyte and neutrophil populations lead to cellular 
competition within a developmental niche. In particular, 
blocking bone marrow lymphopoiesis results in the specific 
and reciprocal expansion of the granulocytic compartment of 
bone marrow [84]. 

2. Influenza A Viruses Increased PMN Apoptosis 

 PMN have been reported to be involved in the initial host 
response to influenza A virus (IAV). Early after IAV 
infection, neutrophils infiltrate the airway probably due to 
release of chemokines that attract PMN [85]. Clearly, severe 
IAV infection is characterized by increased neutrophil influx 
into the lung or upper respiratory tract [86]. However, IAV 
also causes neutrophil dysfuction and accelerated neutrophil 
apoptosis [87, 88]. The latter effect is most pronounced 
when neutrophils are coincubated with IAV and bacteria, 
such as Escherichia Coli, Streptococcus pneumoniae [88-
92]. These effects appear to contribute to the predisposition 
of IAV-infected individuals to suffer bacterial 
superinfections. In particular, IAV infection appears to 
increase susceptibility to bacterial pneumonia, otitis and 
meningitis [93]. The reduced PMN recruitment in lungs post 
influenza virus infection clearly impairs protection against 
secondary bacterial infections. Although TLR desensitization 
may be a contributing factor for reduced recruitment [94], 
PMN apoptosis occurring during influenza virus infection 
may be a more likely explanation as these bacterial 
infections occur quickly after or during influenza virus 
infection. Such bacterial superinfections constitute a major 
cause of morbidity and mortality during IAV epidemics [93]. 
The ability of IAV to accelerate neutrophil apoptosis on 
exposure to bacteria may be related, at least in part, to the 
virus-induced respiratory burst response [89, 90]. In  
 

 

addition, IAV increased neutrophil expression of Fas antigen 
and Fas ligand into the cell supernatant [88]. 

CONSEQUENCES OF PMN DEATH ON IMMUNE 
RESPONSE AND FUTURE PERSPECTIVES 

 One consequence of such abnormal PMN apoptosis could 
be to facilitate the dissemination of viruses in vivo by 
modulating immune responses. Apoptotic cells are sources 
of biologically active oxidized phospholipids which serve as 
recognition signals on apoptotic cells, facilitating 
phagocytosis by macrophages [95]. Engulfment of apoptotic 
PMN has been shown to inhibit the production of pro-
inflammatory mediators by macrophages, by secretion of 
anti-inflammatory cytokines such as TGF-  [96, 97]. In this 
context, we recently demonstrated that TGF-  is increased in 
the tissues of SIV-infected RMs [67]. Such anti-
inflammatory events can inhibit antigen presentation and 
promote microbial growth within macrophages [97], HIV 
replication [98] as well as the expansion of IL-17-producing 
cells [99, 100]. 

 Altogether these data lead us to discuss the use of anti-
apoptotic PMN drugs in HIV-infected patients. It has been 
previously reported that G-CSF and GM-CSF exert potent 
stimulatory effect on PMN functions in HIV-infected 
patients at the late stage of the disease [101, 102]. In 
addition, IL-15 significantly enhanced PMN functional 
activity and decreased the percentage of apoptotic PMN 
from untreated advanced HIV-infected patients [103]. 
Finally, Lichtner et al. have recently reported that HIV 
protease inhibitor (PI) therapy reverses in vitro PMN 
apoptosis of AIDS patients by direct calpain inhibition [104]. 
Further studies are necessary to evaluate the in vivo effect of 
such anti-apoptotic factors in non-human primates models. 
Indeed, it remains to provide the proof of concept that 
inhibiting PMN death early after infection is beneficial for 
patients preventing further disease evolution to Aids. 

 Overall, PMN apoptosis or survival during viral 
infections can have important consequences in promoting or 
impairing the ability of the host to clear infection but also 
contribute or reduce infection-associated pathology. 
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Table 2. Exacerbation of PMN Apoptosis During Viral Infections 

 

 HIV/SIV Influenza Virus A 

Virus-induced Pathology - Immune deficiency - Bacterial superinfections which constitute the major 
cause of morbidity and mortality 

Characteristics - Neutropenia during primary SIV infection 

- No changes in the levels of PMN death and PMN counts in the 

non-pathogenic model of SIV infection (AGM)  

- PMN infiltration of the airway 

- Increased recruitment into the lung related to 

chemokines 

Mechanisms - Increased expression of BOB/GPR5 

- Priming of PMN for death by particle binding to cell surface 

- Calpain-dependent PMN death 

- Bax and Bak-independent mitochondrial insult 

- Lower expression of the anti-apoptotic cytokines IL-8 and IL-1B 

during the chronic phase. 

- ROS-dependent PMN apoptosis 

- Activation of PMN oxidative burst by the virus ? 

- Increased expression of Fas antigen and Fas ligand 

Consequences - Correlation with disease severity  - Increased susceptibility to bacterial infections 
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